1
|
Wu T, Shi Y, Xu C, Zhu B, Li D, Li Z, Zhao Z, Zhang Y. A pharmacovigilance study of adverse events associated with polymyxins based on the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS) database. Expert Opin Drug Saf 2025; 24:69-77. [PMID: 38676603 DOI: 10.1080/14740338.2024.2348610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Polymyxins have been regarded as last-line treatment for multidrug-resistant gram-negative bacterial infections. Nonetheless, concerns regarding toxicity persist. This study aimed to explore and compare potential adverse events (AEs) between colistin and polymyxin B (PMB). METHODS Polymyxins-related AEs were retrieved from the U.S. Food and Drug Administration Adverse Event Reporting System between 2004 and 2022. Potential signals were estimated by the reporting odds ratio (ROR), and subgroup analyses were preformed to adjust for potential factors in AEs with significant disproportionality. RESULTS Analysis of 3,915 records involving 718 patients revealed a higher disproportionality of renal and urinary disorders (ROR 1.62, 95% CI 1.01-2.59) and acute kidney injury (ROR 1.75, 95% CI 1.07-2.87) with colistin treatment. Conversely, colistin exhibited a lower risk for neurotoxicity (ROR 0.47, 95% CI 0.30-0.73). Seven cases of skin hyperpigmentation were reported with PMB, whereas none were reported with colistin. Over 80% of cases involving polymyxin-related AEs occurred during the first two weeks of therapies, with a median onset time of 4.5 days. CONCLUSIONS Patients received colistin displayed a higher potential risk of nephrotoxicity but a lower risk of neurotoxicity. Clinicians should be vigilant in monitoring the AEs of hyperpigmentation disorders induced by PMB.
Collapse
Affiliation(s)
- Tingxi Wu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanfeng Shi
- Center of excellence for Omics Research, National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chang Xu
- Clinical Trials Institutions for Drugs and Medical devices, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dandan Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhe Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Zhang N, Xu Y, Liang B, Zeng J, Wang R, Cai Y. A Rapid and Simple HPLC-MS/MS Method for the Quantitative Determination of Colistin for Therapeutic Drug Monitoring in Clinical Practice. Drug Des Devel Ther 2024; 18:4877-4887. [PMID: 39502715 PMCID: PMC11537190 DOI: 10.2147/dddt.s479329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/29/2024] [Indexed: 11/08/2024] Open
Abstract
Colistin is the last-line option for the treatment of multidrug-resistant gram-negative bacterial infections with narrow therapeutic window. It is essential to ensure its efficacy and safety by therapeutic drug monitoring (TDM). Quantitative determination of colistin is difficult due to its complex ingredients. Previous determination methods demand intricate sample pre-treatment which are not only time-consuming but also costly, and is difficult to apply in clinical practice. Therefore, in order to carry out quantitative determination of colistin accurately and quickly, we establish a rapid high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) with simple sample pre-treatment process. The sample was purified by acetonitrile to remove the plasma protein. Then purified colistin was effectively separated from terfenadine, an internal standard (IS) using Phenomenex Kinetex C18 column (50.0×2.1mm, 5µm) with acetonitrile and water mobile phase at a flow rate of 0.5 mL/min and 40°C column temperature. Colistin and IS were monitored in positive ion mode. Our method expressed good linearity in 50.0~6000 ng/mL of colistin B and 28.31~3397.51 ng/mL of colistin A in plasma. Methodology validations, including selectivity, precision, accuracy, recovery, stability, matrix effect, and dilution integrity met acceptance criteria of Bioanalytical Method Validation (M10) of the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH).
Collapse
Affiliation(s)
- Na Zhang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, People’s Republic of China
| | - Yiran Xu
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, People’s Republic of China
- Department of Pharmacy, The Second Naval Hospital of Southern Theater Command of PLA, Sanya, People’s Republic of China
| | - Beibei Liang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, People’s Republic of China
| | - Jinru Zeng
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, People’s Republic of China
| | - Rui Wang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, People’s Republic of China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Chai M, Yusufu P, Chen Y, Chai J, Yang X, Xiao Y, Long H, Maimaiti D, Xu D. Empyema Caused by Peptoniphilus asaccharolyticus and Complicated by Secondary Pulmonary Infection from Acinetobacter baumannii: A Case Report. Infect Drug Resist 2024; 17:4531-4537. [PMID: 39464834 PMCID: PMC11505558 DOI: 10.2147/idr.s485235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
Peptoniphilus asaccharolyticus is a gram-positive anaerobic coccus that can cause infections in immunocompromised individuals. P. asaccharolyticus causing empyema has not been reported earlier. Here, we present a novel case of empyema caused by P. asaccharolyticus. A 72-year-old male had a constant fever with difficulty breathing. A chest computed tomography scan revealed infiltration in the right lower lobe and pleural effusion. Following hospital admission, pleural fluid drainage was conducted, and the culture isolated P. asaccharolyticus. Initially treated with piperacillin/tazobactam, the patient experienced excessive thick sputum production, prompting a tracheostomy. Subsequent sputum cultures identified Acinetobacter baumannii. After transitioning to cefoperazone/sulbactam for antibiotic treatment and continued pleural effusion drainage, recovery was achieved. Empyema can be caused by P. asaccharolyticus and further complicated by a secondary infection with A. baumannii. Management should include appropriate antibiotic therapy, pleural drainage, vigilant monitoring, and supportive care. We aim to raise clinicians' awareness of the potential for P. asaccharolyticus to cause empyema in immunocompromised patients and to provide early treatments, thereby improving morbidity and mortality.
Collapse
Affiliation(s)
- Min Chai
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Patajiang Yusufu
- Department of Emergency Medicine, Seventh Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Yixin Chen
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Jiannan Chai
- Department of Laboratory, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Xinran Yang
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yuqi Xiao
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Hongwei Long
- Department of Neurosurgery, Meihekou Central Hospital, Changchun, Jilin, People’s Republic of China
| | - Dilimulat Maimaiti
- Department of Emergency Medicine, Seventh Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Dahai Xu
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
4
|
Song S, Liu J, Su W, Yu H, Feng B, Wu Y, Guo F, Yu Z. Population Pharmacokinetics of Tigecycline for Critically Ill Patients Undergoing Continuous Renal Replacement Therapy. Drug Des Devel Ther 2024; 18:4459-4469. [PMID: 39391354 PMCID: PMC11464410 DOI: 10.2147/dddt.s473080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Background Tigecycline is considered one of the last resorts for treating infections caused by multidrug-resistant bacteria. Continuous renal replacement therapy (CRRT) is widely used in critically ill patients, especially those with acute kidney injury or severe infections. However, pharmacokinetic data for tigecycline in patients receiving CRRT are limited. Methods This was a single-center prospective clinical study with intensive sampling that included critically ill patients who received tigecycline and CRRT. A population pharmacokinetic (PPK) model was developed and evaluated by goodness-of-fit plots, bootstrap analysis, visual predictive checks, and numerical predictive checks. Pharmacokinetic/pharmacodynamic target attainment and cumulative fraction of response analyses were performed to explore the potential need for dose adjustments of tigecycline in CRRT. Results In total, 21 patients with 167 concentrations were included. A two-compartment model adequately described the tigecycline concentration-time points, but no covariates were found to adequately explain the viability in the pharmacokinetic parameters of tigecycline. The typical values of CL, Q, V1 and V2 were 4.42 L/h, 34.8 L/h, 30.9 L and 98.7 L, respectively. For most infections, the standard regimen of 50 mg/12 h was deemed appropriate, expect for skin and soft skin tissue infections and community-acquired pneumonia caused by Acinetobacter baumannii and Klebsiella pneumoniae, which required a dosage regimen of 100 mg/12 h or higher. Conclusion A tigecycline PPK model describing critically ill patients undergoing CRRT was successfully developed. The optimized dosage regimens for various infections are recommended.
Collapse
Affiliation(s)
- Shuping Song
- Intensive Care Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jieqiong Liu
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Department of Pharmacy, The 903rd Hospital of PLA Joint Logistic Support Force, Hangzhou, People’s Republic of China
| | - Wei Su
- Intensive Care Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Haitao Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Binbin Feng
- Intensive Care Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yinshan Wu
- Intensive Care Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Feng Guo
- Intensive Care Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhenwei Yu
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
5
|
Corcione S, Longo BM, Scabini S, Pivetta E, Curtoni A, Shbaklo N, Costa C, De Rosa FG. Risk factors for mortality in Acinetobacter baumannii bloodstream infections and development of a predictive mortality model. J Glob Antimicrob Resist 2024; 38:317-326. [PMID: 39029658 DOI: 10.1016/j.jgar.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024] Open
Abstract
OBJECTIVES Acinetobacter baumannii (A. baumannii) nosocomial infections represent a serious hazard to public health, given high mortality rates and rapid spread of multidrug-resistance. The primary outcome of this study was to evaluate predictors of 14- and 30-d mortality in bloodstream infections (BSIs) due to both carbapenem-resistant and carbapenem-sensitive Acinetobacter. Secondary end points were to identify risk factors for BSIs due to carbapenem-resistant A. baumannii (CRAB) and to develop a predictive model for mortality in CRAB-related BSIs. METHODS Between 2019 and 2023, all consecutive hospitalized adult patients with bacteraemia due to A. baumannii were retrospectively enrolled at a single-centre. RESULTS One hundred twenty-six episodes of BSI caused by A. baumannii were recorded, 89.7% of which were due to CRAB. Recent burn injuries, older age, previous CRAB colonization, and antibiotics exposure were identified as risk factors for acquiring CRAB BSI. Overall, 14-d mortality was observed in 26.1% of the patients and 30-d mortality in 30.9% of the patients. On multivariate analysis, the Sequential Organ Failure Assessment (SOFA) score was associated with both 14- and 30-d mortality, whereas burn injuries correlated with 30-d survival. Concurrent coronavirus disease (COVID) was associated with mortality, although not reaching statistical figures. No major impact of receiving appropriate treatment was observed. Based on these findings, a multivariable model to predict mortality among patients with CRAB BSI was built and internally validated. CONCLUSIONS A. baumannii BSIs are characterized by poor outcomes and limited therapeutic options. This study aimed to assist physicians in prompt identification of patients who are at greater risk of death, contributing to more informed clinical decision making.
Collapse
Affiliation(s)
- Silvia Corcione
- Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Italy; School of Medicine, Tufts University, Boston, Massachusetts, USA
| | - Bianca Maria Longo
- Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Italy.
| | - Silvia Scabini
- Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Italy
| | | | - Antonio Curtoni
- Microbiology and Virology Unit, University Hospital Citta della Salute e della Scienza di Torino, Turin, Italy
| | - Nour Shbaklo
- Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Italy
| | - Cristina Costa
- Microbiology and Virology Unit, University Hospital Citta della Salute e della Scienza di Torino, Turin, Italy
| | | |
Collapse
|
6
|
Zhang S, Di L, Qi Y, Qian X, Wang S. Treatment of infections caused by carbapenem-resistant Acinetobacter baumannii. Front Cell Infect Microbiol 2024; 14:1395260. [PMID: 39081869 PMCID: PMC11287075 DOI: 10.3389/fcimb.2024.1395260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Patients with severe carbapenem-resistant Acinetobacter baumannii (CRAB) infections currently face significant treatment challenges. When patients display signs of infection and the clinical suspicion of CRAB infections is high, appropriate treatment should be immediately provided. However, current treatment plans and clinical data for CRAB are limited. Inherent and acquired resistance mechanisms, as well as host factors, significantly restrict options for empirical medication. Moreover, inappropriate drug coverage can have detrimental effects on patients. Most existing studies have limitations, such as a restricted sample size, and are predominantly observational or non-randomized, which report significant variability in patient infection severity and comorbidities. Therefore, a gold-standard therapy remains lacking. Current and future treatment options of infections due to CRAB were described in this review. The dose and considerable side effects restrict treatment options for polymyxins, and high doses of ampicillin-sulbactam or tigecycline appear to be the best option at the time of initial treatment. Moreover, new drugs such as durlobactam and cefiderocol have substantial therapeutic capabilities and may be effective salvage treatments. Bacteriophages and antimicrobial peptides may serve as alternative treatment options in the near future. The advantages of a combination antimicrobial regimen appear to predominate those of a single regimen. Despite its significant nephrotoxicity, colistin is considered a primary treatment and is often used in combination with antimicrobials, such as tigecycline, ampicillin-sulbactam, meropenem, or fosfomycin. The Infectious Diseases Society of America (IDSA) has deemed high-dose ampicillin-sulbactam, which is typically combined with high-dose tigecycline, polymyxin, and other antibacterial agents, the best option for treating serious CRAB infections. A rational combination of drug use and the exploration of new therapeutic drugs can alleviate or prevent the effects of CRAB infections, shorten hospital stays, and reduce patient mortality.
Collapse
Affiliation(s)
- Siqin Zhang
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingfang Di
- Department of Clinical Laboratory, Tongxiang First People’s Hospital, Tongxiang, Zhejiang, China
| | - Yan Qi
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang Qian
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Siwei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
7
|
Lee KH, Kim J, Lee JA, Kim CH, Kwon OM, You EJ, Lee HM, Kim JH, Jeong SJ, Ku NS, Yeom JS, Ahn JY, Choi JY. Carbapenem-resistant Acinetobacter baumannii Outbreak in a COVID-19 Isolation Ward and Successful Outbreak Control with Infection Control Measures. Infect Chemother 2024; 56:222-229. [PMID: 38686643 PMCID: PMC11224040 DOI: 10.3947/ic.2023.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/25/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Even amid the coronavirus disease-19 (COVID-19) pandemic, the spread of multidrug-resistant bacteria and infection control are still important tasks. After recognizing the carbapenem-resistant Acinetobacter baumannii (CRAB) outbreak that occurred in the isolation room for COVID-19, we would like to introduce what infection control measures were implemented to eradicate it. MATERIALS AND METHODS All COVID-19 patients with CRAB in any specimen admitted to the COVID-19 isolation ward of the tertiary hospital in Korea from October to November 2021 were analyzed. RESULTS During the outbreak, 23 patients with COVID-19 and CRAB infections were identified. The index case was an 85-year-old female referred from a long-term care facility. CRAB was identified in sputum culture in most patients (91.3%). The CRAB outbreak occurred mainly in the rooms around the index case. Environmental cultures on the floor, air inlet, air outlet, and window frame of the rooms were performed. The antimicrobial resistance patterns of CRAB from patients and the environment were identical; whole-genome sequencing analyses revealed isolated clonality. Infection control measures with enhanced environmental cleaning using 1,000 ppm sodium hypochlorite and phenolic compounds, enhanced hand hygiene, additional education, and mandatory additional gowning and gloving of COVID-19 personal protective equipment (PPE) were applied on 29 October. No CRAB infection cases occurred from 2 November for two weeks. CONCLUSION In addition to applying PPE and COVID-19 precautions in COVID-19 isolation wards, adhering to strict contact precautions along with environmental control can help prevent the spread of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Ki Hyun Lee
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jinnam Kim
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Ah Lee
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Chang Hyup Kim
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Oh Mi Kwon
- Department of Infection Control, Yonsei University Health System, Seoul, Korea
| | - Eun Ju You
- Department of Nursing, Yonsei University Health System, Seoul, Korea
| | - Hyuk Min Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jin Jeong
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Nam Su Ku
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon-Sup Yeom
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Young Ahn
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Yong Choi
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
8
|
Son JY, Kim S, Porsuk T, Shin S, Choi YJ. Clinical outcomes of colistin methanesulfonate sodium in correlation with pharmacokinetic parameters in critically ill patients with multi-drug resistant bacteria-mediated infection: A systematic review and meta-analysis. J Infect Public Health 2024; 17:843-853. [PMID: 38554590 DOI: 10.1016/j.jiph.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Colistin is a viable option for multidrug resistant gram-negative bacteria emerged from inappropriate antibiotic use. Nonetheless, suboptimal colistin concentrations and nephrotoxicity risks hinder its clinical use. Thus, the aim of this study is to investigate clinical outcomes in correlation with pharmacokinetic differences and infection types in critically ill patients on intravenous colistin methanesulfornate sodium (CMS). METHODS A systematic literature search of Embase, Google Scholars, and PubMed was performed to identify clinical trials evaluating pharmacokinetic parameters along with clinical outcomes of CMS treatment from inception to July 2023. The pooled analyses of clinical impact of CMS on nephrotoxicity, mortality, clinical cure, and colistin concentration at steady state (Css,avg) were performed. This study was registered in the PROSPERO (CRD 42023456120). RESULTS Total of 695 critically ill patients from 17 studies were included. The mortality was substantially lower in clinically cured patients (OR 0.05; 95% CI 0.02 - 0.14), whereas the mortality rate was statistically insignificant between nephrotoxic and non-nephrotoxic patients. Inter-patient variability of pharmacokinetic parameters of CMS and colistin was observed in critically ill patients. The standard mean differences of Css,avg were statistically insignificant between clinically cure and clinically failure groups (standard mean difference (SMD) -0.25; 95% CI -0.69 - 0.19) and between nephrotoxic and non-nephrotoxic groups (SMD 0.67; 95% CI -0.27-1.61). The clinical cure rate is substantially lower in pneumonia patients (OR 0.09; 95% CI 0.01 - 0.56), and pharmacokinetic parameters pertaining to microbiological cure were different among strains. CONCLUSION The mortality rate was substantially lower in clinically cured patients with CMS. However, no significant differences in Css,avg of colistin were examined to determine the impact of pharmacokinetic differences on clinical outcomes including mortality rate and nephrotoxicity risk. Nevertheless, the clinical cure rate is substantially lower in patients with respiratory infection than patients with urinary tract infection.
Collapse
Affiliation(s)
- Ji-Young Son
- Korean-National Institute for Bioprocessing Research and Training (K-NIBRT), Yonsei University, Incheon 21983, the Republic of Korea
| | - Semi Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Tuğçe Porsuk
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Sooyoung Shin
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, the Republic of Korea; Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, the Republic of Korea.
| | - Yeo Jin Choi
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, the Republic of Korea; Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, the Republic of Korea; Institute of Regulatory Innovation through Science (IRIS), Kyung Hee University, Seoul 02447, the Republic of Korea.
| |
Collapse
|
9
|
Basardeh E, Piri-Gavgani S, Moradi HR, Azizi M, Mirzabeigi P, Nazari F, Ghanei M, Mahboudi F, Rahimi-Jamnani F. Anti-Acinetobacter Baumannii single-chain variable fragments provide therapeutic efficacy in an immunocompromised mouse pneumonia model. BMC Microbiol 2024; 24:55. [PMID: 38341536 PMCID: PMC10858608 DOI: 10.1186/s12866-023-03080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/22/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The emergence of carbapenem-resistant and extensively drug-resistant (XDR) Acinetobacter baumannii as well as inadequate effective antibiotics calls for an urgent effort to find new antibacterial agents. The therapeutic efficacy of two human scFvs, EB211 and EB279, showing growth inhibitory activity against A. baumannii in vitro, was investigated in immunocompromised mice with A. baumannii pneumonia. RESULTS The data revealed that infected mice treated with EB211, EB279, and a combination of the two scFvs showed better survival, reduced bacterial load in the lungs, and no marked pathological abnormalities in the kidneys, liver, and lungs when compared to the control groups receiving normal saline or an irrelevant scFv. CONCLUSIONS The results from this study suggest that the scFvs with direct growth inhibitory activity could offer promising results in the treatment of pneumonia caused by XDR A. baumannii.
Collapse
Affiliation(s)
- Eilnaz Basardeh
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Somayeh Piri-Gavgani
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Reza Moradi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Parastoo Mirzabeigi
- Department of Clinical Pharmacy and Pharmacoeconomics, Faculty of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Nazari
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Rahimi-Jamnani
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Abirami G, Alexpandi R, Jayaprakash E, Roshni PS, Ravi AV. Pyrogallol loaded chitosan-based polymeric hydrogel for controlling Acinetobacter baumannii wound infections: Synthesis, characterization, and topical application. Int J Biol Macromol 2024; 259:129161. [PMID: 38181925 DOI: 10.1016/j.ijbiomac.2023.129161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Antibacterial hydrogels have emerged as a promising approach for wound healing, owing to their ability to integrate antibacterial agents into the hydrogel matrix. Benefiting from its remarkable antibacterial and wound-healing attributes, pyrogallol has been introduced into chitosan-gelatin for the inaugural development of an innovative antibacterial polymeric hydrogel tailored for applications in wound healing. Hence, we observed the effectiveness of pyrogallol in inhibiting the growth of A. baumannii, disrupting mature biofilms, and showcasing robust antioxidant activity both in vitro and in vivo. In addition, pyrogallol promoted the migration of human epidermal keratinocytes and exhibited wound healing activity in zebrafish. These findings suggest that pyrogallol holds promise as a therapeutic agent for wound healing. Interestingly, the pyrogallol-loaded chitosan-gelatin (Pyro-CG) hydrogel exhibited enhanced mechanical strength, stability, controlled drug release, biodegradability, antibacterial activity, and biocompatibility. In vivo results established that Pyro-CG hydrogel promotes wound closure and re-epithelialization in A. baumannii-induced wounds in molly fish. Therefore, the prepared Pyro-CG polymeric hydrogel stands poised as a potent and promising agent for wound healing with antibacterial properties. This holds considerable promise for the development of effective therapeutic interventions to address the increasing menace of A. baumannii-induced wound infections.
Collapse
Affiliation(s)
- Gurusamy Abirami
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Rajaiah Alexpandi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India; The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Erusappan Jayaprakash
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Prithiviraj Swasthikka Roshni
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Arumugam Veera Ravi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India.
| |
Collapse
|
11
|
Zeng J, Leng B, Guan X, Jiang S, Xie M, Zhu W, Tang Y, Zhang L, Sha J, Wang T, Ding M, Guo N, Jiang J. Comparative pharmacokinetics of polymyxin B in critically ill elderly patients with extensively drug-resistant gram-negative bacteria infections. Front Pharmacol 2024; 15:1347130. [PMID: 38362145 PMCID: PMC10867212 DOI: 10.3389/fphar.2024.1347130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction: Elderly patients are more prone to develop acute kidney injury during infections and polymyxin B (PMB)-associated nephrotoxicity than young patients. The differential response to PMB between the elderly and young critically ill patients is unknown. We aimed to assess PMB exposure in elderly patients compared with young critically ill patients, and to determine the covariates of PMB pharmacokinetics in critically ill patients. Methods: Seventeen elderly patients (age ≥ 65 years) and six young critically ill patients (age < 65 years) were enrolled. Six to eight blood samples were collected during the 12 h intervals after at least six doses of intravenous PMB in each patient. PMB plasma concentrations were quantified by high-performance liquid chromatography-tandem mass spectrometry. The primary outcome was PMB exposure as assessed by the area under the concentration-time curve over 24 h at steady state (AUCss, 0-24 h). Results and Discussion: The elderly group had lower total body weight (TBW) and higher Charlson comorbidity scores than young group. Neither AUCss, 0-24 h nor normalized AUCss, 0-24 h (adjusting AUC for the daily dose in mg/kg of TBW) was significantly different between the elderly group and young group. The half-life time was longer in the elderly patients than in young patients (11.21 vs 6.56 h respectively, p = 0.003). Age and TBW were the covariates of half-life time (r = 0.415, p = 0.049 and r = -0.489, p = 0.018, respectively). TBW was the covariate of clearance (r = 0.527, p = 0.010) and AUCss, 0-24 h (r = -0.414, p = 0.049). Patients with AUCss, 0-24 h ≥ 100 mg·h/L had higher baseline serum creatinine levels and lower TBW than patients with AUCss, 0-24 h < 50 mg·h/L or patients with AUCss, 0-24 h 50-100 mg·h/L. The PMB exposures were comparable in elderly and young critically ill patients. High baseline serum creatinine levels and low TBW was associated with PMB overdose. Trial registration: ChiCTR2300073896 retrospectively registered on 25 July 2023.
Collapse
Affiliation(s)
- Juan Zeng
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bing Leng
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoyan Guan
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuangyan Jiang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Maoyu Xie
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenying Zhu
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yue Tang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lin Zhang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jing Sha
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tengfei Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Min Ding
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Nan Guo
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jinjiao Jiang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
12
|
Bae JY, Yun I, Jun KI, Kim CJ, Lee M, Choi HJ. Association between Pneumonia Development and Virulence Gene Expression in Carbapenem-Resistant Acinetobacter baumannii Isolated from Clinical Specimens. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:8265683. [PMID: 38156310 PMCID: PMC10754638 DOI: 10.1155/2023/8265683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/15/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
We investigated the virulence gene expression of carbapenem-resistant Acinetobacter baumanii (CRAB) isolated from the respiratory samples of patients with CRAB pneumonia and those with CRAB colonization to identify the virulence genes contributing to CRAB pneumonia's development and mortality. Patients with CRAB identified from respiratory specimens were screened at a tertiary university hospital between January 2018 and January 2019. Patients were classified into CRAB pneumonia or CRAB colonization groups according to predefined clinical criteria. A. baumannii isolated from respiratory specimens was examined for the expression levels of ompA, uspA, hfq, hisF, feoA, and bfnL by quantitative reverse-transcription polymerase chain reaction. Among 156 patients with CRAB from respiratory specimens, 17 and 24 met the criteria for inclusion in the pneumonia and colonization groups, respectively. The expression level of ompA was significantly higher in the pneumonia group than in the colonization group (1.45 vs. 0.63, P=0.03). The expression levels of ompA (1.97 vs. 0.86, P=0.02), hisF (1.06 vs. 0.10, P < 0.01), uspA (1.62 vs. 1.01, P < 0.01), and bfnL (3.14 vs. 2.14, P=0.03) were significantly higher in patients with 30-day mortality than in the surviving patients. Elevated expression of hisF (adjusted odds ratio = 5.93, P=0.03) and uspA (adjusted odds ratio = 7.36, P=0.02) were associated with 30-day mortality after adjusting for age and the Charlson score. uspA and hisF may serve as putative targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Ji Yun Bae
- Department of Internal Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
- Ewha Education and Research Center for Infection, Seoul, Republic of Korea
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Ina Yun
- Ewha Education and Research Center for Infection, Seoul, Republic of Korea
| | - Kang Il Jun
- Ewha Education and Research Center for Infection, Seoul, Republic of Korea
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Chung-Jong Kim
- Ewha Education and Research Center for Infection, Seoul, Republic of Korea
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Miae Lee
- Ewha Education and Research Center for Infection, Seoul, Republic of Korea
- Department of Laboratory Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Hee Jung Choi
- Department of Internal Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
- Ewha Education and Research Center for Infection, Seoul, Republic of Korea
| |
Collapse
|
13
|
Li R, Shen X, Li Z, Shen J, Tang H, Xu H, Shen J, Xu Y. Combination of AS101 and Mefloquine Inhibits Carbapenem-Resistant Pseudomonas aeruginosa in vitro and in vivo. Infect Drug Resist 2023; 16:7271-7288. [PMID: 38023412 PMCID: PMC10664714 DOI: 10.2147/idr.s427232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background In recent years, carbapenem-resistant Pseudomonas aeruginosa (CRPA) has spread around the world, leading to a high mortality and close attention of medical community. In this study, we aim to find a new strategy of treatment for CRPA infections. Methods Eight strains of CRPA were collected, and PCR detected the multi-locus sequence typing (MLST). The antimicrobial susceptibility test was conducted using the VITEK@2 compact system. The minimum inhibitory concentration (MIC) for AS101 and mefloquine was determined using the broth dilution method. Antibacterial activity was tested in vitro and in vivo through the chessboard assay, time killing assay, and a mouse model. The mechanism of AS101 combined with mefloquine against CRPA was assessed through the biofilm formation inhibition assay, electron microscopy, and detection of reactive oxygen species (ROS). Results The results demonstrated that all tested CRPA strains exhibited multidrug resistance. Moreover, our investigation revealed a substantial synergistic antibacterial effect of AS101-mefloquine in vitro. The assay for inhibiting biofilm formation indicated that AS101-mefloquine effectively suppressed the biofilm formation of CRPA-5 and CRPA-6. Furthermore, AS101-mefloquine were observed to disrupt the bacterial cell wall and enhance the permeability of the cell membrane. This effect was achieved by stimulating the production of ROS, which in turn hindered the growth of CRPA-3. To evaluate the therapeutic potential, a murine model of CRPA-3 peritoneal infection was established. Notably, AS101-mefloquine administration resulted in a significant reduction in bacterial load within the liver, kidney, and spleen of mice after 72 hours of treatment. Conclusion The present study showed that the combination of AS101 and mefloquine yielded a notable synergistic bacteriostatic effect both in vitro and in vivo, suggesting a potential clinical application of this combination in the treatment of CRPA.
Collapse
Affiliation(s)
- Rongrong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, People’s Republic of China
| | - Xuhang Shen
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Zhengyuan Li
- Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Jilong Shen
- Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, People’s Republic of China
| | - Hao Tang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Huaming Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Jilu Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Anhui Public Health Clinical Center, Hefei, People’s Republic of China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
14
|
Öztürk E, Ganidağlı S, Öztürk ZA. Colistin treatment in older adults: why should we know more? Curr Med Res Opin 2023; 39:1481-1487. [PMID: 37738213 DOI: 10.1080/03007995.2023.2262380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVES We aimed to investigate the risk factors of colistin-associated nephrotoxicity in patients older than 65 years treated in the palliative care unit. METHODS 119 palliative care patients who received intravenous colistimethate for at least 7 days were included in the study. The estimated glomerular filtration rate (GFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) 2021 equation. Data were obtained from the hospital information system. RESULTS The mean age of the participants was 76.7 ± 9.9 years and 49.4% were female. Of the 119 patients, 57 had colistin-induced nephropathy (CIN) according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria. The rate of CIN was higher in women than in men. The baseline phosphate level was higher in the CIN (+) group than in the CIN (-) group. The lower GFR values in patients with pneumonia persisted at days 14 and 30, whereas the lower GFR in patients without pneumonia did not. According to multivariate logistic regression, female gender and baseline phosphate level ≥ 4.5 mg/dl were found as independent variables for the development of nephropathy. CONCLUSIONS The creatinine levels of the patients with pneumonia and CIN did not improve after nephrotoxicity, whereas the creatinine levels of the other patients without pneumonia and CIN did. Female gender and baseline phosphate were independent risk factors for CIN. Prolonged kidney failure may lead to a more difficult clinical follow-up process for clinicians. Therefore, clinicians should be aware of persistent renal insufficiency in older patients with pneumonia receiving colistimethate.
Collapse
Affiliation(s)
- Ercüment Öztürk
- Department of Internal Medicine, Division of Geriatric Medicine, Gaziantep University, Sahinbey, Gaziantep, Turkey
| | - Sencer Ganidağlı
- Department of Internal Medicine, Division of Geriatric Medicine, Gaziantep University, Sahinbey, Gaziantep, Turkey
| | - Zeynel Abidin Öztürk
- Department of Internal Medicine, Division of Geriatric Medicine, Gaziantep University, Sahinbey, Gaziantep, Turkey
| |
Collapse
|
15
|
Nartey YA, Donkor AB, Siaw ADJ, Ekor OE, Jimah BB. Carbapenem-Resistant Acinetobacter baumannii Bloodstream Infection in a Ghanaian Patient with Unilateral Diaphragmatic Eventration and HIV Type 1 Infection. Case Rep Infect Dis 2023; 2023:9930291. [PMID: 37867582 PMCID: PMC10586909 DOI: 10.1155/2023/9930291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/03/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii infection is a critically prioritized pathogen by the World Health Organization and a cause for growing concern due to increased mortality among hospitalised patients. Phrenic nerve palsy is a rare complication of herpes zoster infection of the C3, C4, and C5 nerve roots. We present a case of bloodstream carbapenem-resistant A. baumannii infection in a Ghanaian patient with HIV type 1 infection and multiple risk factors, including unilateral diaphragmatic eventration with compression atelectasis likely secondary to phrenic nerve palsy due to herpes zoster infection, consequently leading to recurrent hospital and ICU admission. In this case, we emphasize the need for clinicians in LMICs to be aware of CRAB, in order to advocate for the availability of evidence-based medicines in resource-limited settings for appropriate treatment. In addition, we illustrate the importance of a high index of suspicion for infection with carbapenem-resistant organisms such as A. baumannii and highlight a rare and severe complication of herpes zoster infection in the form of phrenic nerve palsy and consequent diaphragmatic eventration.
Collapse
Affiliation(s)
- Yvonne Ayerki Nartey
- Department of Medicine, Cape Coast Teaching Hospital, Cape Coast, Ghana
- Department of Internal Medicine, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | | | | | - Oluwayemisi Esther Ekor
- Department of Anaesthesia and Pain Management, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Bashiru Babatunde Jimah
- Department of Medical Imaging, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
16
|
Luo B, Li Z, Wang Q, Wang C. Synergistic Role of Biofilm-Associated Genes and Efflux Pump Genes in Tigecycline Resistance of Acinetobacter baumannii. Med Sci Monit 2023; 29:e940704. [PMID: 37688296 PMCID: PMC10498786 DOI: 10.12659/msm.940704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/17/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Previous research reported that the resistance mechanism of Acinetobacter baumannii resistance to tigecycline was mainly related to the overexpression of the AdeABC efflux pump system. Biofilm formation is a notable pathogenesis of A. baumannii infections and antibiotic resistance. Our study explores the latent relevance of biofilm-associated genes and efflux pump genes in A. baumannii tigecycline resistance. MATERIAL AND METHODS A total of 78 clinical samples were collected from October 2018 to October 2019. Seventy-two clinically isolated A. baumannii strains were divided into a tigecycline-resistant Acinetobacter baumannii (TR-AN) group and tigecycline-sensitive Acinetobacter baumannii (TS-AN) group by tigecycline minimum inhibitory concentration tests. The biofilm formation of the 2 groups was observed using crystal violet staining. Furthermore, biofilm-related genes and efflux pump genes were analyzed by RT-PCR. RESULTS The biofilm-forming rate of the TR-AN group was 82.2%, and that of the TS-AN group was 14.8%. The biofilm synthesis gene bfs was 91.3% positive in the TR-AN group, significantly higher than in the TS-AN group at the transcription level (P<0.05). The minimum inhibitory concentration of tigecycline was higher in the TR-AN group with biofilm formation than in the TR-AN group without biofilm formation (P<0.05). The efflux pump AdeB gene was 95.2% positive in the TR-AN group with biofilm formation and 38.7% positive in the TR-AN group without biofilm formation. CONCLUSIONS The biofilm formation of A. baumannii may be positively related to tigecycline resistance ability because of the co-expression of the bfs gene and the AdeB efflux pump gene. The enhanced transcription level of bfs and AdeB promotes biofilm formation to improve the resistance of A. baumannii to tigecycline.
Collapse
|
17
|
Cavallo I, Oliva A, Pages R, Sivori F, Truglio M, Fabrizio G, Pasqua M, Pimpinelli F, Di Domenico EG. Acinetobacter baumannii in the critically ill: complex infections get complicated. Front Microbiol 2023; 14:1196774. [PMID: 37425994 PMCID: PMC10325864 DOI: 10.3389/fmicb.2023.1196774] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Acinetobacter baumannii is increasingly associated with various epidemics, representing a serious concern due to the broad level of antimicrobial resistance and clinical manifestations. During the last decades, A. baumannii has emerged as a major pathogen in vulnerable and critically ill patients. Bacteremia, pneumonia, urinary tract, and skin and soft tissue infections are the most common presentations of A. baumannii, with attributable mortality rates approaching 35%. Carbapenems have been considered the first choice to treat A. baumannii infections. However, due to the widespread prevalence of carbapenem-resistant A. baumannii (CRAB), colistin represents the main therapeutic option, while the role of the new siderophore cephalosporin cefiderocol still needs to be ascertained. Furthermore, high clinical failure rates have been reported for colistin monotherapy when used to treat CRAB infections. Thus, the most effective antibiotic combination remains disputed. In addition to its ability to develop antibiotic resistance, A. baumannii is also known to form biofilm on medical devices, including central venous catheters or endotracheal tubes. Thus, the worrisome spread of biofilm-producing strains in multidrug-resistant populations of A. baumannii poses a significant treatment challenge. This review provides an updated account of antimicrobial resistance patterns and biofilm-mediated tolerance in A. baumannii infections with a special focus on fragile and critically ill patients.
Collapse
Affiliation(s)
- Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Rebecca Pages
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Truglio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Giorgia Fabrizio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Martina Pasqua
- Department of Biology and Biotechnology "C. Darwin" Sapienza University of Rome, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enea Gino Di Domenico
- Department of Biology and Biotechnology "C. Darwin" Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Rabi R, Enaya A, Sweileh MW, Aiesh BM, Namrouti A, Hamdan ZI, Abugaber D, Nazzal Z. Comprehensive Assessment of Colistin Induced Nephrotoxicity: Incidence, Risk Factors and Time Course. Infect Drug Resist 2023; 16:3007-3017. [PMID: 37215302 PMCID: PMC10198178 DOI: 10.2147/idr.s409964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Purpose In recent years, the emergence of multidrug-resistant (MDR) microorganisms had caused the resurgence of colistin use after it was previously abandoned due to its side effects, nephrotoxicity in particular. However, the specific incidence of colistin-induced nephrotoxicity varies in reports with different populations. This study aims to assess the incidence of colistin-associated nephrotoxicity and the associated risk factors. Patients and Methods This study was on 178 patients who received colistin for more than 48 hours during the years 2019-2022, who were followed up for 14 days after the initiation of colistin, and demographic and clinical data were gained from medical reports. Logistic regression was used to assess the relationship between nephrotoxicity and study variables. Results The incidence of nephrotoxicity was 44.9% (95% confidence interval (CI); 37% to 53%), and the overall mortality was 33%, with a significantly higher level among patients with nephrotoxicity. The significant risk factors for nephrotoxicity after adjustment were; higher weights (OR = 1.1, 95% CI; 0.03-1.2), P-value: 0.006, and the combination with carbapenem showed a significant protective effect (OR = 0.09, 95% CI; 0.01-0.8), P-value: 0.03. The severity, according to KDIGO classification, was stage 1 (47%), stage 2 (21%), and stage 3 (31%). Higher stages had earlier onset acute kidney injury, a lower percentage of returning to baseline, and exposure to a higher colistin dose. Conclusion Colistin-induced nephrotoxicity was a frequent issue associated with higher weights, mitigated by the combination with carbapenems. While higher colistin dosages, and earlier onset AKI, were linked to the progression to higher AKI stages and the need for dialysis.
Collapse
Affiliation(s)
- Razan Rabi
- Department of Internal Medicine, An-Najah National University Hospital, Nablus, Palestine
| | - Ahmad Enaya
- Department of Internal Medicine, An-Najah National University Hospital, Nablus, Palestine
| | - Mamoun W Sweileh
- Department of Internal Medicine, An-Najah National University Hospital, Nablus, Palestine
| | - Banan M Aiesh
- Infection Control Department, An-Najah National University Hospital, Nablus, Palestine
| | - Ashraqat Namrouti
- Department of Internal Medicine, An-Najah National University Hospital, Nablus, Palestine
| | - Zakaria I Hamdan
- Department of Internal Medicine, An-Najah National University Hospital, Nablus, Palestine
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Dina Abugaber
- Department of Internal Medicine, An-Najah National University Hospital, Nablus, Palestine
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Zaher Nazzal
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
19
|
Ahumada Topete VH, de Dios Sanchez KJ, Casas Aparicio GA, Hernandez Silva G, Lopez Vejar CE, Torres Espíndola LM, Aquino-Galvez A, Rodriguez Ganen O, Castillejos Lopez MDJ. Adverse Events and Drug Resistance in Critically Ill Patients Treated with Colistimethate Sodium: A Review of the Literature. Infect Drug Resist 2023; 16:1357-1366. [PMID: 36925725 PMCID: PMC10013588 DOI: 10.2147/idr.s398930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/11/2023] [Indexed: 03/12/2023] Open
Abstract
The adverse events related to sodium colistimethate have had variability regarding the prevalence of nephrotoxicity, neurotoxicity, and less frequent respiratory depression. In recent years, its use has been relevant due to the increase of multidrug-resistant bacteria since it is considered the last-line drug, being its main adverse event and reason for discrepancies between authors' nephrotoxicity. The indiscriminate use of antibiotic therapy has generated multiple mechanisms of resistance, the most common being related to Colistin, the bactericidal escape effect. Based on the search criteria, no randomized clinical trials were identified showing safety and efficacy with the use of Colistin, inferring that the application of the appropriate dose is governed by expert opinion and retrospective and prospective observational studies, which confounding factors such as the severity of the patient and the predisposition to develop acute renal failure are constant. In this review, we focus on identifying the mechanism of nephrotoxicity and bacterial resistance, where much remains to be known.
Collapse
Affiliation(s)
- Victor Hugo Ahumada Topete
- Hospital Epidemiology and Infectology Unit, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Kevin Jesus de Dios Sanchez
- Hospital Epidemiology and Infectology Unit, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Gustavo Alejandro Casas Aparicio
- Department of Infectious Disease Research, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Graciela Hernandez Silva
- Department of Infectious Disease Research, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Cesar Emmanuel Lopez Vejar
- Hospital Epidemiology and Infectology Unit, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | | | - Arnoldo Aquino-Galvez
- Molecular Biology Laboratory, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Odalis Rodriguez Ganen
- Department of Hospital Pharmacy, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | | |
Collapse
|
20
|
Lin X, Liu X, Wu X, Xie X, Liu G, Wu J, Peng W, Wang R, Chen J, Huang H. Wide-spectrum antibiotic prophylaxis guarantees optimal outcomes in drowned donor kidney transplantation. Expert Rev Anti Infect Ther 2023; 21:203-211. [PMID: 36573685 DOI: 10.1080/14787210.2023.2163237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Drowned victims possibly obtain various pathogens from drowning sites. Using drowned renal donors to expand the donor pool still lacks consensus due to the potential risk of disease transmission. RESEARCH DESIGN AND METHODS This retrospective study enrolled 38 drowned donor renal recipients in a large clinical center from August 2012 to February 2021. A 1:2 matched cohort was generated with donor demographics, including age, gender, BMI, and ICU durations. Donor microbiological results, recipient perioperative infections, and early post-transplant and first-year clinical outcomes were analyzed. RESULTS Compared to the control group, drowned donors had significantly increased positive fungal cultures (36.84% vs.13.15%, p = 0.039). Recipients in the drowned group had significantly higher rates of gram-negative bacteria (GNB) and multidrug-resistant GNB infections (23.68% vs.5.26%, 18.42% vs. 3.95%, both p < 0.05). Other colonization and infections were also numerically more frequent in the drowned group. Drowned donor recipients receiving inadequate antibiotic prophylaxis had more perioperative bloodstream infections, higher DGF incidences, and more first-year respiratory tract infections and recipient loss than those receiving adequate prophylaxis (all p < 0.05). Clinical outcomes were similar between the adequate group and the control group. CONCLUSIONS Drowned donors could be suitable options under wide-spectrum and adequate antimicrobial prophylaxis.
Collapse
Affiliation(s)
- Xiaoli Lin
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Xinyu Liu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Xiaoying Wu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Xishao Xie
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Guangjun Liu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Jianyong Wu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Wenhan Peng
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Rending Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Hongfeng Huang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| |
Collapse
|
21
|
Zha L, Zhang X, Cheng Y, Xu Q, Liu L, Chen S, Lu Z, Guo J, Tefsen B. Intravenous Polymyxin B as Adjunctive Therapy to High-Dose Tigecycline for the Treatment of Nosocomial Pneumonia Due to Carbapenem-Resistant Acinetobacter baumannii and Klebsiella pneumoniae: A Propensity Score-Matched Cohort Study. Antibiotics (Basel) 2023; 12:antibiotics12020273. [PMID: 36830183 PMCID: PMC9952519 DOI: 10.3390/antibiotics12020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
Although the combination of polymyxin and tigecycline is widely used in treating carbapenem-resistant bacterial infections, the benefit of this combination is still uncertain. To assess whether adding polymyxin B to the high-dose tigecycline regimen would result in better clinical outcomes than the high-dose tigecycline therapy in patients with pneumonia caused by carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii, we conducted a propensity score-matched cohort study in a single center between July 2019 and December 2021. Of the 162 eligible patients, 102 were included in the 1:1 matched cohort. The overall 14-day mortality in the matched cohort was 24.5%. Compared with high-dose tigecycline, the combination therapy was not associated with better clinical outcomes, and showed similar 14-day mortality (OR, 0.72, 95% CI 0.27-1.83, p = 0.486), clinical cure (OR, 1.09, 95% CI 0.48-2.54, p = 0.823), microbiological cure (OR, 0.96, 95% CI 0.39-2.53, p = 0.928) and rate of nephrotoxicity (OR 0.85, 95% CI 0.36-1.99, p = 0.712). Subgroup analyses also did not demonstrate any statistical differences. Based on these results, it is reasonable to recommend against adding polymyxin B to the high-dose tigecycline regimen in treating pneumonia caused by carbapenem-resistant K. pneumoniae and A. baumannii.
Collapse
Affiliation(s)
- Lei Zha
- Department of Respiratory Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241000, China
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK
| | - Xue Zhang
- Department of Intensive Care Unit, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yusheng Cheng
- Department of Respiratory Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241000, China
| | - Qiancheng Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241000, China
| | - Lingxi Liu
- Department of Intensive Care Unit, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Simin Chen
- Department of Intensive Care Unit, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiwei Lu
- Department of Respiratory Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241000, China
| | - Jun Guo
- Department of Intensive Care Unit, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (J.G.); (B.T.)
| | - Boris Tefsen
- Division of Microbiology, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
- Natural Sciences, Ronin Institute, Montclair, NJ 07043, USA
- Correspondence: (J.G.); (B.T.)
| |
Collapse
|
22
|
Qian C, Wu Q, Ruan Z, Liu F, Li W, Shi W, Ma L, Peng D, Yin H, Yao L, Li Z, Hong M, Xia L. A Visualized Mortality Prediction Score Model in Hematological Malignancies Patients with Carbapenem-Resistant Organisms Bloodstream Infection. Infect Drug Resist 2023; 16:201-215. [PMID: 36644657 PMCID: PMC9833326 DOI: 10.2147/idr.s393932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Background Bloodstream infection (BSI) due to carbapenem-resistant organisms (CROs) has emerged as a worldwide problem associated with high mortality. This study aimed to evaluate the risk factors associated with mortality in HM patients with CROs BSI and to establish a scoring model for early mortality prediction. Methods We conducted a retrospective cohort study at our hematological department from January 2018 to December 2021, including all HM patients with CROs BSI. The outcome measured was death within 30-day of BSI onset. Survivor and non-survivor subgroups were compared to identify predictors of mortality. Univariate and multivariate Cox regression analyses were used to identify prognostic risk factors and develop a nomogram. Results In total, 150 HM patients were included in the study showing an overall 30-day mortality rate of 56%. Klebsiella pneumonia was the dominant episode. Cox regression analysis showed that pre-infection length of stay was >14 days (score 41), Pitt score >4 (score 100), mucositis (score 41), CAR (The ratio of C-reactive protein to albumin) >8.8 (score 57), early definitive therapy (score 44), and long-duration (score 78) were positive independent risk predictors associated with 30-day mortality, all of which were selected into the nomogram. Furthermore, all patients were divided into the high-risk group (≥160 points) or the low-risk group based on the prediction score model. The mortality of the high-risk group was 8 times more than the low-risk group. Kaplan-Meier analysis showed that empirical polymyxin B therapy was associated with a lower 30-day mortality rate, which was identified as a good prognostic factor in the high-risk group. In comparison, empirical carbapenems and tigecycline were poor prognostic factors in a low-risk group. Conclusion Our score model can accurately predict 30-day mortality in HM patients with CROs BSI. Early administration of CROs-targeted therapy in the high-risk group is strongly recommended to decrease mortality.
Collapse
Affiliation(s)
- Chenjing Qian
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Zhixuan Ruan
- Faculty of Natural, Mathematical and Engineering Sciences, King’s College, London, UK
| | - Fang Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Weiming Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Ling Ma
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Danyue Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Hua Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Lan Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Zixuan Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Mei Hong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China,Correspondence: Mei Hong; Linghui Xia, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No. 1277, Wuhan, Hubei Province, People’s Republic of China, Tel +8613037137937; +8618627733999, Email ;
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| |
Collapse
|
23
|
Lu X, Zhong C, Liu Y, Ye H, Qu J, Zong Z, Lv X. Efficacy and safety of polymyxin E sulfate in the treatment of critically ill patients with carbapenem-resistant organism infections. Front Med (Lausanne) 2022; 9:1067548. [PMID: 36643845 PMCID: PMC9834999 DOI: 10.3389/fmed.2022.1067548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022] Open
Abstract
Objective Polymyxins are currently the last line of defense in the treatment of carbapenem-resistant organisms (CRO). As a kind of polymyxin available for clinical use in China, we aim to explore the efficacy and safety of colistin sulfate (Polymyxin E sulfate, PES) in this study. Methods This real-world retrospective study included 119 patients diagnosed with CRO infection and treated with PES for more than 72 h, from May 2020 to July 2022 at West China Hospital. The primary outcome was clinical efficacy at the end of treatment, and secondary outcomes included microbial response, in-hospital mortality and incidence of nephrotoxicity. Results The effective clinical and microbiological responses were 53.8% and 49.1%, respectively. And the in-hospital mortality was 27.7%. Only 9.2% of patients occurred with PES-related nephrotoxicity. Multivariate analysis revealed that duration of PES was an independent predictor of effective therapy, while age-adjusted Charlson comorbidity index (aCCI) and post-treatment PCT(p-PCT) were independent risk factors for poor outcome. Conclusions PES can be a salvage treatment for CRO-induced infections with favorable efficacy and low nephrotoxicity. The treatment duration of PES, aCCI and p-PCT were factors related to the clinical effectiveness of PES.
Collapse
|
24
|
Gupta N, Angadi K, Jadhav S. Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii with Special Reference to Carbapenemases: A Systematic Review. Infect Drug Resist 2022; 15:7631-7650. [PMID: 36579124 PMCID: PMC9791997 DOI: 10.2147/idr.s386641] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Carbapenemases are β-lactamase enzymes that hydrolyze a variety of β-lactams including carbapenem and belong to different Ambler classes (A, B, D). These enzymes can be encoded by plasmid or chromosomal-mediated genes. The major issues associated with carbapenemases-producing organisms are compromising the activity and increasing the resistance to carbapenems which are the last resort antibiotics used in treating serious infections. The global increase of pathogen, carbapenem-resistant A. baumannii has significantly threatened public health. Thus, there is a pressing need for a better understanding of this pathogen, to know the various carbapenem resistance encoding genes and dissemination of resistance genes from A. baumannii which help in developing strategies to overcome this problem. The horizontal transfer of resistant determinants through mobile genetic elements increases the incidence of multidrug, extensive drug, and Pan-drug resistant A. baumannii. Therefore, the current review aims to know the various mechanisms of carbapenem resistance, categorize and discuss carbapenemases encoding genes and various mobile genetic elements, and the prevalence of carbapenemase genes in recent years in A. baumannii from various geographical regions.
Collapse
Affiliation(s)
- Neetu Gupta
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Kalpana Angadi
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Savita Jadhav
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India,Correspondence: Savita Jadhav, Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India, Tel +919284434364, Email
| |
Collapse
|
25
|
Villanueva-Cotrina F, Condori DM, Gomez TO, Yactayo KM, Barron-Pastor H. First Isolates of OXA-48-Like Carbapenemase-Producing Enterobacteriaceae in A Specialized Cancer Center. Infect Chemother 2022; 54:765-773. [PMID: 36596684 PMCID: PMC9840961 DOI: 10.3947/ic.2022.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND OXA-48-like carbapenemases have been found in a growing and varied number of carbapenemase-producing Enterobacteriaceae (CPE) isolates, and they are spreading to several countries. Although this oxacillinase leads to weak resistance to carbapenems without affecting broad-spectrum cephalosporin activity, when they are associated with other resistance mechanisms, the level of resistance to these antibiotics may be significantly higher. This weak resistance against carbapenems and cephalosporins, along with the absence of other resistance mechanisms, could render OXA-48-like harboring isolates undetected in the laboratory routine. In addition, the lack of a specific screening test for this enzyme complicates the detection of these isolates. This report characterizes the first isolates of OXA-48-like CPE detected in our laboratory. MATERIALS AND METHODS The study was carried out at the Instituto Nacional de Enfermedades Neoplasicas, Lima - Peru, between March and December 2021. OXA-48-like CPE isolates were detected as part of the routine microbiological study, and clinical data were obtained by reviewing medical records. The automated microbiological system provides the bacterial identification and antimicrobial susceptibility profile by the dilution method. Additionally, the column chromatography test is used to detect carbapenemase enzymes, including OXA-48-like. Finally, the molecular identification of the OXA-48-like enzyme was carried out by Polymerase Chain Reaction PCR amplification for the blaOXA-48-like. RESULTS Seven OXA-48-like CPE strains were isolated. Notably, in all cases, the automated system issued a minimum inhibitory concentration (MIC) of ≥1 ug/mL for ertapenem and a MIC of >64/4 ug/mL for piperacillin/tazobactam. In addition, resistance category to imipenem and meropenem was found (2/7), at least one indeterminate category for any of these carbapenems (5/7), and other serine β-lactamases such as Extended-spectrum beta-lactamases (3/7) and AmpC (3/7). The immunochromatographic study confirmed the presence of the OXA-48-like enzyme in all isolates, while class A and class B were ruled out for them. Finally, the multiplex PCR, for the five isolates that could be recovered, showed amplification for carbapenemase OXA-48-like, while none of the other carpabemases was amplified for class A or class B carbapenemase genes. CONCLUSION We confirm the emergence of OXA-48-like CPE isolates in our cancer center and highlight the need to implement surveillance and detection measures of these strains, for controlling their dissemination. We found practical and inexpensive methodologies for the detection of OXA-48-like CPE: (1) the finding of resistance to ertapenem and piperacillin/tazobactam in the antibiogram in the absence of class A and B carbapenemases, for screening and (2) immunochromatographic study, for confirmation.
Collapse
Affiliation(s)
- Freddy Villanueva-Cotrina
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru.,Department of Medical Microbiology, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Dick Mamani Condori
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | - Tamin Ortiz Gomez
- Department of Pathology, AUNA Laboratory. Lima, Peru.,Group of Research and Teaching in Molecular Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Katia Mallma Yactayo
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | - Heli Barron-Pastor
- Group of Research and Teaching in Molecular Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
26
|
Wang J, Zhang J, Wu ZH, Liu L, Ma Z, Lai CC, Luo YG. Clinical Characteristics and Prognosis Analysis of Acinetobacter baumannii Bloodstream Infection Based on Propensity Matching. Infect Drug Resist 2022; 15:6963-6974. [PMID: 36474906 PMCID: PMC9719707 DOI: 10.2147/idr.s387898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/14/2022] [Indexed: 09/13/2023] Open
Abstract
PURPOSE In view of the fact that Acinetobacter baumannii bloodstream infection(BSI) is a great threat to human survival, early identification of the risk factors affecting prognosis will be of great benefit to the clinic. PATIENTS AND METHODS A propensity score matching method was used to collect patients identified with Acinetobacter baumannii BSI from 2016 to 2020 from a reputable hospital in China. RESULTS A total of 398 patients were considered. According to the 28-day prognosis, they were divided into the survival group 150 (37.7%) and the death group 248 (62.3%), and the prognosis was analyzed. Subsequently, Propensity score matching was adjusted for variables with p-values CONCLUSION The existence of drug resistance with Acinetobacter baumannii only leads to Inappropriate empirical antibiotic therapy, ultimately, Inappropriate empirical antibiotic therapy was the direct predictor of mortality.
Collapse
Affiliation(s)
- Jinghui Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jun Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Zhuang-hao Wu
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Lei Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Zijun Ma
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Cheng-cheng Lai
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yong-gang Luo
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
27
|
Wei Z, Zhou S, Zhang Y, Zheng L, Zhao L, Cui Y, Xie K. Microbiological characteristics and risk factors on prognosis associated with Acinetobacter baumannii bacteremia in general hospital: A single-center retrospective study. Front Microbiol 2022; 13:1051364. [PMID: 36439789 PMCID: PMC9684651 DOI: 10.3389/fmicb.2022.1051364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/26/2022] [Indexed: 12/19/2023] Open
Abstract
OBJECTIVE Acinetobacter baumannii is one of the most important pathogenic bacteria causing nosocomial infections and has a high mortality rate. Assessment of the microbiological characteristics and risk factors on prognosis associated with A.baumannii is essential. In this study, we aimed to investigate the clinical characteristics and prognostic risk factors of patients with A.baumannii bacteremia. PATIENTS AND METHODS This study retrospectively analyzed the antibiotic resistance of pathogens based on the clinical data of A.baumannii bacteremia patients presented in a tertiary teaching hospital from 2017 to 2022. Logistic regression and decision tree identified the prognostic risk factors for patients with baumannemia. Kaplan-Meier method was used for survival analysis between MDR and Non-MDR groups. The area under receiver-operating characteristic curve (ROC curve) was used to compare the predictive value of the APACHE II score and Sequential Organ Failure Assessment (SOFA) score. RESULTS A total of 110 patients with positive A. Baumannii blood cultures were included. Most of the patients were from intensive care unit (ICU) wards. The drug sensitivity results showed that the resistance rate of A. baumannii to colistin was the lowest (1.1%), followed by tigecycline (3.6%).The survival time of MDR group was significantly shorter than that of Non-MDR group. Multivariate analysis showed that, APACHE II score and SOFA score were independent risk factors affecting the prognosis of 28 days of A.baumannii bacteremia. And both scores displayed excellent AUROCs (SOFA: 0.909, APACHE II: 0.895 in predicting 28-day mortality). The two scoring systems were highly correlated and predicted no significant difference (r 2 = 0.4410, P < 0.001). We found that SOFA > 7 and APACHE II > 21 are associated with significantly higher mortality rates. CONCLUSION A.baumannii bacteremia have the highest incidence in the ICU, with high drug resistance and mortality rates. The survival time of patients with MDR A. Baumannii bacteremia was significantly shortened. The SOFA score and APACHE II score can reflect the severity of A.baumannii bacteremia patients and evaluate the 28-day prognosis. In addition, for the convenience of calculation, the SOFA score may be more clinically useful than the APACHE II score in predicting the mortality rate of A.baumannii bacteremia.
Collapse
Affiliation(s)
- Zhiyong Wei
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuai Zhou
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Zhang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Zheng
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Lina Zhao
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Cui
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
28
|
Wang JL, Xiang BX, Song XL, Que RM, Zuo XC, Xie YL. Prevalence of polymyxin-induced nephrotoxicity and its predictors in critically ill adult patients: A meta-analysis. World J Clin Cases 2022; 10:11466-11485. [PMID: 36387815 PMCID: PMC9649555 DOI: 10.12998/wjcc.v10.i31.11466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Polymyxin-induced nephrotoxicity is a major safety concern in clinical practice due to long-term adverse outcomes and high mortality.
AIM To conducted a systematic review and meta-analysis of the prevalence and potential predictors of polymyxin-induced nephrotoxicity in adult intensive care unit (ICU) patients.
METHODS PubMed, EMBASE, the Cochrane Library and Reference Citation Analysis database were searched for relevant studies from inception through May 30, 2022. The pooled prevalence of polymyxin-induced nephrotoxicity and pooled risk ratios of associated factors were analysed using a random-effects or fixed-effects model by Stata SE ver. 12.1. Additionally, subgroup analyses and meta-regression were conducted to assess heterogeneity.
RESULTS A total of 89 studies involving 12234 critically ill adult patients were included in the meta-analysis. The overall pooled incidence of polymyxin-induced nephrotoxicity was 34.8%. The pooled prevalence of colistin-induced nephrotoxicity was not higher than that of polymyxin B (PMB)-induced nephrotoxicity. The subgroup analyses showed that nephrotoxicity was significantly associated with dosing interval, nephrotoxicity criteria, age, publication year, study quality and sample size, which were confirmed in the univariable meta-regression analysis. Nephrotoxicity was significantly increased when the total daily dose was divided into 2 doses but not 3 or 4 doses. Furthermore, older age, the presence of sepsis or septic shock, hypoalbuminemia, and concomitant vancomycin or vasopressor use were independent risk factors for polymyxin-induced nephrotoxicity, while an elevated baseline glomerular filtration rate was a protective factor against colistin-induced nephrotoxicity.
CONCLUSION Our findings indicated that the incidence of polymyxin-induced nephrotoxicity among ICU patients was high. It emphasizes the importance of additional efforts to manage ICU patients receiving polymyxins to decrease the risk of adverse outcomes.
Collapse
Affiliation(s)
- Jiang-Lin Wang
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Bi-Xiao Xiang
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Xiao-Li Song
- Department of Pharmacy, Sanya Central Hospital, Sanya 572000, Hainan Province, China
| | - Rui-Man Que
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Xiao-Cong Zuo
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Yue-Liang Xie
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
29
|
Serendipitous identification of phenylhydrazine derivatives as potent inhibitors of carbapenem-resistant Acinetobacter baumannii. Future Med Chem 2022; 14:1621-1634. [PMID: 36326019 DOI: 10.4155/fmc-2022-0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: In the authors' previous study, 4-(2-((3-methyl-4-oxo-2-thioxo/dioxothiazolidin-5-ylidene) methyl) hydrazineyl) benzonitriles were found to demonstrate potent antibacterial activity against Acinetobacter baumannii. Interestingly, the aforementioned compounds contain a 4-cyanophenylhydrazine motif. Materials & methods: Intrigued by this observation, the authors focused on preparing a library of 4-cyanophenylhydrazine derivatives and studied their detailed antibacterial potential. Results: This study led to the identification of a 4-cyanophenylhydrazine with potent inhibitory activity against carbapenem-resistant A. baumannii BAA-1605, with minimum inhibitory concentration (MIC) of 0.25 μg/ml and highest selectivity index of 640. The compound also demonstrated potent inhibition against multidrug-resistant A. baumannii isolates (MIC: 0.25-1 μg/ml). Conclusion: The identified 4-cyanophenylhydrazine compound exhibited synergistic activity with amikacin, tobramycin and polymyxin B against carbapenem-resistant A. baumannii BAA-1605.
Collapse
|
30
|
Zheng G, Wang S, Lv H, Zhang G. Nomogram Analysis of Clinical Characteristics and Mortality Risk Factor of Non-Fermentative Gram-Negative Bacteria-Induced Post-Neurosurgical Meningitis. Infect Drug Resist 2022; 15:6379-6389. [PMID: 36345538 PMCID: PMC9636862 DOI: 10.2147/idr.s385502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022] Open
Abstract
Objective To explore the clinical characteristics of post-neurosurgical meningitis (PNM) patients infected with nonfermenting Gram-negative bacilli (NFGNB) and to evaluate the related mortality risk factors. Methods A cohort analysis of PNM patients infected with NFGNB in Beijing Tiantan Hospital and Capital Medical University from 2012.1 to 2020.12. The microbial distribution, antimicrobial sensitivity and genotypes were tested, and potential mortality risk factors were evaluated using Mann–Whitney U or chi-squared tests. Independent risk factors for mortality were established by constructing a logistic model. Results A total of 2940 PNM patients were enrolled in this study, of whom 207 (17.1%) were infected with NFGNB. Among these patients, 29 died of NFGNB meningitis, with an overall mortality rate of 14.0%. The top three NFGNBs were Acinetobacter baumannii (105 cases, 50.7%), Pseudomonas aeruginosa (29 cases, 14.0%) and Acinetobacter lwoffii (20 cases, 9.7%). Nomogram analysis revealed that hypertension (OR 4.551, 95% CI: 1.464–14.154, P = 0.009), external ventricular drainage (EVD) (OR 3.944, 95% CI: 1.286–12.095, P = 0.016), and assisted mechanical ventilator (AMV) (OR 6.192, 95% CI: 1.737–22.081, P = 0.005) were independent risk factors for mortality. In addition, antibiotic prophylaxis was shown to play a vital role in NFGNB-induced PNM therapy. Conclusion PNM patients infected with NFGNB have a high mortality rate. Hypertension, EVD and AMV were independent mortality risk factors, and clinical attention should be paid to their prevention and treatment.
Collapse
Affiliation(s)
- Guanghui Zheng
- Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, 100076, People’s Republic of China
- NMPA Key Laboratory for Quality Control of in vitro Diagnostics, Beijing, 100076, People’s Republic of China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, 100076, People’s Republic of China
| | - Siqi Wang
- School of clinical laboratory diagnostics, Capital Medical University, Beijing, 100076, People’s Republic of China
| | - Hong Lv
- Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, 100076, People’s Republic of China
- NMPA Key Laboratory for Quality Control of in vitro Diagnostics, Beijing, 100076, People’s Republic of China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, 100076, People’s Republic of China
| | - Guojun Zhang
- Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, 100076, People’s Republic of China
- NMPA Key Laboratory for Quality Control of in vitro Diagnostics, Beijing, 100076, People’s Republic of China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, 100076, People’s Republic of China
- Correspondence: Guojun Zhang, Laboratory of Beijing Tiantan Hospital, Capital Medical University, NO. 119 Nansihuan West Road, Fengtai District, Beijing, People’s Republic of China, Tel +86 15811219411, Email
| |
Collapse
|
31
|
Shrief R, El-Ashry AH, Mahmoud R, El-Mahdy R. Effect of Colistin, Fosfomycin and Meropenem/Vaborbactam on Carbapenem-Resistant Enterobacterales in Egypt: A Cross-Sectional Study. Infect Drug Resist 2022; 15:6203-6214. [PMID: 36324668 PMCID: PMC9621046 DOI: 10.2147/idr.s385411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose The increasing multi-drug carbapenem resistance among Enterobacterales are a severe health problem limiting therapeutic options and worsen the prognosis. This study characterizes carbapenemase genes and integrons among uropathogenic carbapenem resistant Enterobacterales (CRE) isolates recovered from Mansoura University Hospitals and evaluates the effect of colistin, fosfomycin and meropenem-vaborbactam on these isolates. Patients and Methods A total of 200 Enterobacterales isolates were collected from patients with urinary tract infections. Antimicrobial susceptibility testing was performed by the disc diffusion method. Colistin susceptibility was tested using the broth microdilution method and fosfomycin and meropenem/vaborbactam susceptibility were tested by MIC Test Strips. Carbapenem resistant isolates were screened for carbapenemase activity phenotypically using the modified carbapenem inactivation method and EDTA-modified carbapenem inactivation method and genotypically by multiplex PCR. Integrons class 1 and 2 and fosA gene were assayed by PCR. Data were statistically analyzed using the Statistical Package for Social Sciences (SPSS) version 16. The Chi-square or Fisher's exact test was used to compare groups, as appropriate. Results Ninety-two Enterobacterales isolates were resistant to meropenem (46%); 52 E. coli and 40 K. pneumoniae strains. All CRE isolates were multi-drug resistant (MDR). Sensitivity of CRE isolates to colistin, fosfomycin and meropenem/vaborbactam were 67.4%, 82.6% and 58.7%, respectively. Carbapenemase genes were detected by multiplex PCR in 69.6% of CRE isolates (Carbapenemase producing Enterobacterales (CPE) mainly blaNDM (37%). CPE isolates were significantly more resistant to meropenem/vaborbactam than non-CPE isolates; 51.6% vs 17.8%, respectively (P = 0.003) especially blaNDM carrying isolates (70.6%). Class 1 integrons and fosA gene were detected in 91.3% and 11.9% of CRE isolates, respectively. Conclusion This study revealed that about half of the uropathogenic Enterobacterales isolates were MDR CRE. Carbapenemase gene blaNDM was the main gene among CRE isolates. Meropenem/vaborbactam sensitivity was significantly higher on non-CPE than CPE isolates and limited by the predominance of blaNDM .
Collapse
Affiliation(s)
- Raghdaa Shrief
- Medical Microbiology and Immunology Department, Faculty of Medicine, Damietta University, Damietta, Egypt
| | - Amira H El-Ashry
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rasha Mahmoud
- Internal Medicine Department, Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Rasha El-Mahdy
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
32
|
Jantarathaneewat K, Camins B, Apisarnthanarak A. What are the considerations for the treatment of multidrug resistant Acinetobacter baumannii infections? Expert Opin Pharmacother 2022; 23:1667-1672. [PMID: 36210527 DOI: 10.1080/14656566.2022.2134778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Kittiya Jantarathaneewat
- Center of Excellence in Pharmacy Practice and Management Research, Faculty of Pharmacy, Thammasat University, Pathum Thani, Thailand.,Research Group in Infectious Diseases Epidemiology and Prevention, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Bernard Camins
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anucha Apisarnthanarak
- Research Group in Infectious Diseases Epidemiology and Prevention, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand.,Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
33
|
Tilahun M. Multi-Drug Resistance Profile, Prevalence of Extended-Spectrum Beta-Lactamase and Carbapenemase-Producing Gram Negative Bacilli Among Admitted Patients After Surgery with Suspected of Surgical Site Nosocomial Infection North East Ethiopia. Infect Drug Resist 2022; 15:3949-3965. [PMID: 35924020 PMCID: PMC9341454 DOI: 10.2147/idr.s376622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Mihret Tilahun
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
- Correspondence: Mihret Tilahun, Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wollo University, Dessie and Borumeda, PO.BOX 1145, Ethiopia, Tel +251 920988307, Fax +251 333115250, Email
| |
Collapse
|
34
|
Fan Y, Li Y, Chen Y, Yu J, Liu X, Li W, Guo B, Li X, Wang J, Wu H, Wang Y, Hu J, Guo Y, Hu F, Xu X, Cao G, Wu J, Zhang Y, Zhang J, Wu X. Pharmacokinetics and Pharmacodynamics of Colistin Methanesulfonate in Healthy Chinese Subjects after Multi-Dose Regimen. Antibiotics (Basel) 2022; 11:antibiotics11060798. [PMID: 35740204 PMCID: PMC9220111 DOI: 10.3390/antibiotics11060798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Colistin methanesulfonate (CMS) is an important treatment option for infections caused by carbapenem-resistant Gram-negative organisms (CROs). This study evaluated the pharmacokinetic/pharmacodynamic (PK/PD) profiles and safety of CMS in Chinese subjects following a recommended dosage. A total of 12 healthy Chinese subjects received CMS injections at 2.5 mg/kg once every 12 h for 7 consecutive days. The PK/PD profiles of the active form of CMS, colistin, against CROs were analyzed with the Monte Carlo simulation method. No serious adverse events were observed. The average steady-state plasma concentrations of CMS and colistin were 4.41 ± 0.75 μg/mL and 1.27 ± 0.27 μg/mL, and the steady-state exposures (AUC0−12,ss) were 52.93 ± 9.05 h·μg/mL and 15.28 ± 3.29 h·μg/mL, respectively. Colistin, at its minimum inhibitory concentration (MIC) of 0.5 μg/mL, has >90% probability to reduce CROs by ≥1 log. The PK/PD breakpoints for the ≥1 log kill were ≥MIC90 for carbapenem-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa, but were ≤MIC50 for carbapenem-resistant Acinetobacter baumannii. The recommended dose regimen of CMS for 7 consecutive days was safe in Chinese subjects. The systemic exposure of colistin showed a high probability of being sufficient for most CROs, but was not sufficient for some carbapenem-resistant A. baumannii.
Collapse
Affiliation(s)
- Yaxin Fan
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yi Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuancheng Chen
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jicheng Yu
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanzhen Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Beining Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xin Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jingjing Wang
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hailan Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiali Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoyong Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Guoying Cao
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jufang Wu
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yingyuan Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
- Correspondence: (J.Z.); (X.W.)
| | - Xiaojie Wu
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
- Correspondence: (J.Z.); (X.W.)
| |
Collapse
|
35
|
Lu L, Xu C, Tang Y, Wang L, Cheng Q, Chen X, Zhang J, Li Y, Xiao H, Li X. The Threat of Carbapenem-Resistant Gram-Negative Bacteria in Patients with Hematological Malignancies: Unignorable Respiratory Non-Fermentative Bacteria-Derived Bloodstream Infections. Infect Drug Resist 2022; 15:2901-2914. [PMID: 35693849 PMCID: PMC9176635 DOI: 10.2147/idr.s359833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Background Carbapenem-resistant Gram-negative bacteria (CRGNB) bloodstream infection (BSI) pose a significant threat to the prognosis of hematologic malignancies (HM) patients. Understanding the distribution of pathogenic bacteria, changes in carbapenem-resistant trends, risk factors for CRGNB infections, and exploring the early detection measures can help reduce mortality. Methods We conducted a multicenter retrospective study of Gram-negative bacteria (GNB) BSI in patients with HM in three university-affiliated hospitals in Hunan Province, China, from January 2010 to December 2020. Demographic and clinical data were collected from the hospital electronic medical records system. Results CRGNB caused 138 (15.3%) of 902 GNB BSI. The detection rate of CRGNB increased from 6.4% in 2010–2012 to 35.4% in 2019–2020. The 7-day mortality rate was significantly higher in patients with CRGNB BSI than in patients with carbapenem-susceptible Gram-negative bacteria (CSGNB) BSI [31.9% (44/138) vs 9.7% (74/764), P < 0.001], and the mortality rate in patients with carbapenem-resistant non-fermenting bacteria (CRNFB) bloodstream infections was generally higher than that of carbapenem-resistant Enterobacteriaceae (CRE). Urinary catheter (OR, 2.814; CI=1.395–5.680; P=0.004) and prior exposure to carbapenem (OR, 4.372; CI=2.881–6.635; P<0.001) were independent risk factors for CRGNB BSI. Analysis of co-infections showed that 50%–85% of patients with CRGNB BSI had pulmonary infections, sputum culture results suggested that sputum culture positivity rate was as high as 57.1%–66.7% in patients with carbapenem-resistant Acinetobacter baumannii (CRAB) and Stenotrophomonas maltophilia BSI, and the results of antimicrobial susceptibility testing of sputum cultures were consistent with the blood cultures. Conclusion Carbapenem resistance has dramatically increased in HM patients with GNB BSI in recent years and is associated with a worse outcome, especially for non-fermenting bacteria. In high-risk patients, early screening of the respiratory tract specimens may help to detect CRNFB colonization and protect patients from breakthrough BSI.
Collapse
Affiliation(s)
- Linli Lu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Cong Xu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yishu Tang
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Liwen Wang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Qian Cheng
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Xin Chen
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jian Zhang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Ying Li
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Han Xiao
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Xin Li
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Correspondence: Xin Li, Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China, Tel/Fax +86-731-88618241, Email
| |
Collapse
|
36
|
Zhang Z, Tian L. Trends in DTR, CR, ECR, and FQR in Four Common Gram-Negative Bacteria: A Retrospective Study from 2013 to 2021. Infect Drug Resist 2022; 15:2625-2631. [PMID: 35634581 PMCID: PMC9139338 DOI: 10.2147/idr.s365139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The purpose of this study was to examine the prevalence of four important drug-resistance phenotypes: difficult-to-treat resistance (DTR), fluoroquinolone resistance (FQR), carbapenem resistance (CR), and extended-spectrum cephalosporin resistance (ECR). Methods DTR was defined as insensitivity to all the β-lactams and fluoroquinolones tested. We retrospectively analyzed the distribution characteristics of specific drug-resistant phenotypes of the main Gram-negative bacteria causing bloodstream infections (BSIs) in Tongji Hospital (Wuhan, China) between 2013 and 2021: Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Results FQR was the main antimicrobial resistance phenotype of E. coli, accounting for 59.45% (1117/1879, 95% confidence interval, 57.21%-61.65%); the detection rates for CR and DTR were low, accounting for 1.86% (35/1879, 1.34%-2.58%), and 1.81% (34/1879, 1.30%-2.52%), respectively. However, the detection rates for CR and DTR in K. pneumoniae were 38.83% (497/1280, 36.20%-41.53%) and 35.94% (460/1280, 33.35%-38.60%), respectively. In P. aeruginosa, the detection rates of the four drug-resistant phenotypes (DTR, CR, FQR, and ECR) were all < 30%, but conversely, for A. baumannii, the detection rates were all > 80%. The changes in the data from 2013 to 2021 showed upward trends (z > 0) for CR-E. coli, DTR-E. coli, FQR-E. coli, CR-K. pneumoniae, DTR-K. pneumoniae, FQR-K. pneumoniae, and ECR-K. pneumoniae, but downward trends (z < 0) for ECR-E. coli, CR-A. baumannii, DTR-A. baumannii, FQR-A. baumannii, ECR-A. baumannii, CR-P. aeruginosa, DTR-P. aeruginosa, FQR-P. aeruginosa, and ECR-P. aeruginosa. Conclusion DTR warrants further attention, especially in in BSI-associated K. pneumoniae and A. baumannii, in which the detection rates were very high. Between 2013 and 2021 in this region, DTR-E. coli and CR-E. coli showed obvious upward trends, whereas DTR-P. aeruginosa and ECR-P. aeruginosa showed obvious downward trends.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Lei Tian
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| |
Collapse
|
37
|
Mirjalili M, Mirzaei E, Vazin A. Pharmacological agents for the prevention of colistin-induced nephrotoxicity. Eur J Med Res 2022; 27:64. [PMID: 35525994 PMCID: PMC9077985 DOI: 10.1186/s40001-022-00689-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/19/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Colistin is a polymyxin antibiotic which has been used for treatment of Gram-negative infections, but it was withdrawn due to its nephrotoxicity. However, colistin has gained its popularity in recent years due to the reemergence of multidrug resistant Gram-negative infections and drug-induced toxicity is considered as the main obstacle for using this valuable antibiotic. RESULTS In total, 30 articles, including 29 animal studies and one clinical trial were included in this study. These compounds, including aged black garlic extract, albumin fragments, alpha lipoic acid, astaxanthin, baicalein, chrysin, cilastatin, colchicine, curcumin, cytochrome c, dexmedetomidine, gelofusine, grape seed proanthocyanidin extract, hesperidin, luteolin, lycopene, melatonin, methionine, N-acetylcysteine, silymarin, taurine, vitamin C, and vitamin E exhibited beneficial effects in most of the published works. CONCLUSIONS In this review, the authors have attempted to review the available literature on the use of several compounds for prevention or attenuation of colistin-induced nephrotoxicity. Most of the studied compounds were potent antioxidants, and it seems that using antioxidants concomitantly can have a protective effect during the colistin exposure.
Collapse
Affiliation(s)
- Mahtabalsadat Mirjalili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Mirzaei
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Afsaneh Vazin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
38
|
Hu H, Lou Y, Feng H, Tao J, Shi W, Ni S, Pan Q, Ge T, Shen P, Zhong Z, Xiao Y, Qu T. Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii Isolates Among Intensive Care Unit Patients and Environment. Infect Drug Resist 2022; 15:1821-1829. [PMID: 35444432 PMCID: PMC9013810 DOI: 10.2147/idr.s349895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/26/2022] [Indexed: 12/31/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Hangbin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yifeng Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Infectious Disease Department, Sanmen People’s Hospital, Taizhou, Zhejiang, People’s Republic of China
| | - Haiting Feng
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jingjing Tao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Weixiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Shuangling Ni
- Infectious Disease Department, Lishui People’s Hospital, Lishui, Zhejiang, People’s Republic of China
| | - Qunying Pan
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Tianxiang Ge
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Zifeng Zhong
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Correspondence: Tingting Qu; Yonghong Xiao, Tel +86 571 87236673, Email ;
| |
Collapse
|
39
|
Qu J, Qi TT, Qu Q, Long WM, Chen Y, Luo Y, Wang Y. Polymyxin B-Based Regimens for Patients Infected with Carbapenem-Resistant Gram-Negative Bacteria: Clinical and Microbiological Efficacy, Mortality, and Safety. Infect Drug Resist 2022; 15:1205-1218. [PMID: 35345474 PMCID: PMC8957303 DOI: 10.2147/idr.s357746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background The increasing prevalence of carbapenem-resistant Gram-negative bacteria (CR-GNB) represents a global healthcare crisis. This study explored the efficacy and safety of Polymyxin B (PMB)-based regimens and factors influencing their effectiveness. Methods Patients with CR-GNB infections treated with PMB for more than three days were enrolled in this retrospective study from 1st June 2018 to 30th April 2020. Data were collected on patient characteristics, bacterial culture, and drug-sensitivity test results; anti-infection treatment regimens, particularly details of PMB use; and adverse drug reactions. Clinical and microbiological efficacy, mortality, and safety of PMB-based regimens in CR-GNB infected patients were evaluated. Univariate analysis and multivariate logistic regression analyses were used to assess factors influencing efficacy and mortality. Results A total of 373 CR-GNB strains were cultured from 268 patients. About 41.04% of patients used PMB loading dose of 1.01 (0.84–1.69) mg/kg. Maintenance dose was 0.85 (0.82–1.00) mg/kg q12h. The clinical efficacy rate was 36.57% (98/268), the total bacterial clearance rate of PMB was 39.42%, and the all-cause mortality rate was 33.96%. The adverse drug reaction rate was 19.58%, among which the incidence of renal toxicity was highest (8.21%). Multivariate logistic regression analysis showed that clinical efficacy, bacterial clearance rate, and all-cause mortality were associated with patient-related facts, including mechanical ventilation use, underlying diseases (such as respiratory disease), the type and site of CR-GNB infection, and PMB administration timing and loading dose. Conclusion PMB is a relatively safe and effective antibiotic drug for treatment of critically ill patients with CR-GNB infection; however, PMB use should be subject to guidelines recommendations for early administration, loading administration, and adequate administration, which could help to improve the clinical efficacy, microbiological efficacy, and mortality.
Collapse
Affiliation(s)
- Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People’s Republic of China
| | - Ting-Ting Qi
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People’s Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410078, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, People’s Republic of China
| | - Wen-Ming Long
- Department of Pharmacy, Jingzhou District, Second People’s Hospital of Huaihua City, Huaihua, 418400, People’s Republic of China
| | - Ying Chen
- Department of Pharmacy, Wuhan University, Renmin Hospital, Wuhan, 430060, People’s Republic of China
| | - Yue Luo
- Department of Pharmacy, The People’s Hospital of Liuyang, Liuyang, 410300, People’s Republic of China
| | - Ying Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People’s Republic of China
- Correspondence: Ying Wang, Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, People’s Republic of China, Tel +86-15173198700, Fax +86-731-85292072, Email
| |
Collapse
|
40
|
Keski̇n AS, Seyman D, Önder KD, Kizilateş F, Keski̇n O. Investigation of Effect of the Colistin Loading Dosage on the clinical, Microbiological, and Laboratory Results in Acinetobacter baumannii Ventilator-Associated Pneumonia /Pneumonia. Int J Clin Pract 2022; 2022:5437850. [PMID: 36105785 PMCID: PMC9441370 DOI: 10.1155/2022/5437850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/13/2022] [Indexed: 11/21/2022] Open
Abstract
MATERIALS AND METHODS Adult patients administered colistin with and without LD for MDR Acinetobacter baumannii VAP/pneumonia in intensive care units (ICUs) in a tertiary teaching hospital between 1 January 2018 and 31 December 2019 were included in this retrospective cohort study. The primary endpoint was an assessment of clinical and microbiological success between treatment groups. Secondary endpoints included 14- and 30-day mortality and development of nephrotoxicity. RESULTS A total of 101 patients were included (colistin with LD, n = 57; colistin without LD, n = 44). No significant difference in clinical success was observed between groups (73.7% versus 77.3%; p=0.670). In patients receiving colistin with LD, the microbiological success rate increased from 65.9% to 71.9%, but there was no statistically significantly difference (p=0.510). In terms of using combination therapies with carbapeneme and/or tigecycline, there was no significant difference between treatment groups (p=0.30). The rates of 14- and 30-day mortality were similar between groups. The colistin with LD group had a higher rate of nephrotoxicity compared to the other group (52.6% versus 20.5% p=0.001). The clinical and microbiological response times were found significantly higher in the colistin with LD group (p=0.001; p=0.017). CONCLUSION Colistin with LD was associated with a higher risk of nephrotoxicity and was not related to clinical success, microbiological success, and prolonged survival. Randomized comparative studies are needed to confirm the efficacy of LD colistin regimen on MDR Acinetobacter infection.
Collapse
Affiliation(s)
- Ayşegül Seremet Keski̇n
- University of Health Sciences Antalya Training and Research Hospital, Infectious Disease and Clinical Microbiology, Antalya, Turkey
| | - Derya Seyman
- University of Health Sciences Antalya Training and Research Hospital, Infectious Disease and Clinical Microbiology, Antalya, Turkey
| | - Kübra Demir Önder
- University of Health Sciences Antalya Training and Research Hospital, Infectious Disease and Clinical Microbiology, Antalya, Turkey
| | - Filiz Kizilateş
- University of Health Sciences Antalya Training and Research Hospital, Infectious Disease and Clinical Microbiology, Antalya, Turkey
| | - Olgun Keski̇n
- University of Health Sciences Antalya Training and Research Hospital, Department of Pulmomology., Antalya, Turkey
| |
Collapse
|