1
|
Starlin Chellathurai M, Mahmood S, Mohamed Sofian Z, Wan Hee C, Sundarapandian R, Ahamed HN, Kandasamy CS, Hilles AR, Hashim NM, Janakiraman AK. Biodegradable polymeric insulin microneedles - a design and materials perspective review. Drug Deliv 2024; 31:2296350. [PMID: 38147499 PMCID: PMC10763835 DOI: 10.1080/10717544.2023.2296350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023] Open
Abstract
Microneedle (MN) delivery devices are more accepted by people than regular traditional needle injections (e.g. vaccination) due to their simplicity and adaptability. Thus, patients of chronic diseases like diabetes look for alternative pain-free treatment regimens circumventing regular subcutaneous injections. Insulin microneedles (INS-MNs) are a thoughtfully researched topic (1) to overcome needle phobia in patients, (2) for controlled delivery of the peptide, (3) decreasing the frequency of drug administration, (4) to ease the drug administration procedure, and (5) thus increasing patient adherence to the treatment dosage regimes. MNs physically disrupt the hard outer skin layer to create minuscule pores for insulin (INS) to pass through the dermal capillaries into the systemic circulation. Biodegradable polymeric MNs are of greater significance for INS and vaccine delivery than silicon, metal, glass, or non-biodegradable polymeric MNs due to their ease of fabrication, mass production, cost-effectiveness, and bioerodability. In recent years, INS-MNs have been researched to deliver INS through the transdermal implants, buccal mucosa, stomach wall, intestinal mucosal layers, and colonic mucosa apart from the usual transdermal delivery. This review focuses on the design characteristics and the applications of biodegradable/dissolvable polymeric INS-MNs in transdermal, intra-oral, gastrointestinal (GI), and implantable delivery. The prospective approaches to formulate safe, controlled-release INS-MNs were highlighted. Biodegradable/dissolvable polymers, their significance, their impact on MN morphology, and INS release characteristics were outlined. The developments in biodegradable polymeric INS-MN technology were briefly discussed. Bio-erodible polymer selection, MN fabrication and evaluation factors, and other design aspects were elaborated.
Collapse
Affiliation(s)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Cheng Wan Hee
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | | | - Haja Nazeer Ahamed
- Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, India
| | - C. S. Kandasamy
- Department of Pharmacognosy, Karpagam College of Pharmacy, Coimbatore, India
| | - Ayah R. Hilles
- INHART, International Islamic University, Kuala Lumpur, Malaysia
| | - Najihah Mohd Hashim
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ashok Kumar Janakiraman
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Jeong MY, Kim S, Kim HR, Jeon J, Won SS, Yang KJ, Park JS, Yang IG, Lee DG, Myung JH, Kim YG, Jin SG, Choi YS, Kim DK, Kang MJ. Dexamethasone nanocrystals-embedded hydroxypropyl methylcellulose hydrogel increases cochlear delivery and attenuates hearing loss following intratympanic injection. Carbohydr Polym 2024; 345:122546. [PMID: 39227091 DOI: 10.1016/j.carbpol.2024.122546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 09/05/2024]
Abstract
Herein, dexamethasone (DEX) nanocrystalline suspension (NS)-embedded hydrogel (NS-G) was constructed using a hydroxypropyl methylcellulose (HPMC) polymer to enhance cochlear delivery and attenuate hearing loss following intratympanic (IT) injection. Hydrophobic steroidal nanocrystals were prepared using a bead milling technique and incorporated into a polysaccharide hydrogel. The NS-G system with HPMC (average molecular weight, 86,000 g/mol; 15 mg/mL) was characterized as follows: rod-shaped drug crystalline; particle size <300 nm; and constant complex viscosity ≤1.17 Pa·s. Pulverization of the drug particles into submicron diameters enhanced drug dissolution, while the HPMC matrix increased the residence time in the middle ear cavity, exhibiting a controlled release profile. The IT NS-G system elicited markedly enhanced and prolonged drug delivery (> 9 h) to the cochlear tissue compared with that of DEX sodium phosphate (DEX-SP), a water-soluble prodrug. In mice with kanamycin- and furosemide-induced ototoxicity, NS-G markedly enhanced hearing preservation across all frequencies (8-32 kHz), as revealed by an auditory brainstem response test, compared with both saline and DEX-SP. Moreover, treatment with NS-G showed enhanced anti-inflammatory effects, as evidenced by decreased levels of inflammation-related cytokines. Therefore, the IT administration of DEX NS-loaded HPMC hydrogels is a promising strategy for treating hearing loss.
Collapse
Affiliation(s)
- Min Young Jeong
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Subin Kim
- Department of Otolaryngology, College of Medicine, The Catholic University of Korea. 64 Daeheung-ro, Jung-gu, Daejeon, 34943, Republic of Korea
| | - Hye Rim Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Jiae Jeon
- Department of Otolaryngology, College of Medicine, The Catholic University of Korea. 64 Daeheung-ro, Jung-gu, Daejeon, 34943, Republic of Korea
| | - Seong Su Won
- Department of Otolaryngology, College of Medicine, The Catholic University of Korea. 64 Daeheung-ro, Jung-gu, Daejeon, 34943, Republic of Korea
| | - Keum-Jin Yang
- Department of Otolaryngology, College of Medicine, The Catholic University of Korea. 64 Daeheung-ro, Jung-gu, Daejeon, 34943, Republic of Korea
| | - Jun Soo Park
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - In Gyu Yang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Dong Geon Lee
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Jin Hyuk Myung
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Yoon-Gyoon Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Sung Giu Jin
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Dong-Kee Kim
- Department of Otolaryngology, College of Medicine, The Catholic University of Korea. 64 Daeheung-ro, Jung-gu, Daejeon, 34943, Republic of Korea.
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea.
| |
Collapse
|
3
|
Qatmeera ZE, Bajjaly A, Kasem H. Frictional Properties of Biomimetic Micro-Hexagonal-Textured Surfaces Interacting with Soft Counterfaces under Dry and Wet Conditions. Biomimetics (Basel) 2024; 9:542. [PMID: 39329564 PMCID: PMC11430730 DOI: 10.3390/biomimetics9090542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
Biomimetic micro-hexagonal-textured surfaces have sparked interest for their application in fields that demand high friction and adhesion, such as micro-robotics and biomedicine. Despite extensive research conducted on this specific microstructure, its friction behavior against soft counterfaces remains a topic that has not been fully investigated yet. This study examines how micro-hexagon textures behave when they come into contact with engineered and biological materials like gelatin and chicken skin in dry and wet conditions. The results show clearly that under dry contact conditions, flat surfaces generate higher friction compared to hexagon micropattern surfaces. Under wet conditions, hexagon micropattern surfaces generate higher friction compared to flat surfaces. In wet conditions specifically, the static coefficient of friction is up to 13 times greater than that of a flat specimen against glass, up to 11 times greater against gelatin, and up to 6 times greater against chicken skin. For the dynamic coefficient of friction, the patterned surface demonstrates a maximum increase by a factor of 28 against glass, 11 against gelatin, and 5 against chicken skin. These results further develop our knowledge of these hexagon micropattern surfaces and pave the way for their utilization in future technological advancements in which soft and wet counterfaces are to be considered, such as in biomedical applications that can benefit from increased friction in wet conditions for better control and stability.
Collapse
Affiliation(s)
- Zain Eldin Qatmeera
- Department of Mechanical Engineering, Azrieli College of Engineering, Jerusalem 9103501, Israel
| | - Agnes Bajjaly
- Department of Mechanical Engineering, Azrieli College of Engineering, Jerusalem 9103501, Israel
| | - Haytam Kasem
- Department of Mechanical Engineering, Azrieli College of Engineering, Jerusalem 9103501, Israel
| |
Collapse
|
4
|
Cseh M, Katona G, Berkó S, Budai-Szűcs M, Csóka I. A Stereolithography-Based Modified Spin-Casting Method for Faster Laboratory-Scale Production of Dexamethasone-Containing Dissolving Microneedle Arrays. Pharmaceutics 2024; 16:1005. [PMID: 39204350 PMCID: PMC11359026 DOI: 10.3390/pharmaceutics16081005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Microneedle arrays (MNAs) consist of a few dozens of submillimeter needles, which tend to penetrate through the stratum corneum layer of the skin and deliver hardly penetrating drugs to the systemic circulation. The application of this smart dosage form shows several advantages, such as simple use and negligible pain caused by needle punctures compared to conventional subcutaneous injections. Dissolving MNAs (DMNAs) represent a promising form of cutaneous drug delivery due to their high drug content, biocompatibility, and ease of use. Although different technologies are suitable to produce microneedle arrays (e.g., micromilling, chemical etching, laser ablation etc.), many of these are expensive or hardly accessible. Following the exponential growth of the 3D-printing industry in the last decade, high-resolution desktop printers became accessible for researchers to easily and cost-effectively design and produce microstructures, including MNAs. In this work, a low force stereolithography (LFS) 3D-printer was used to develop the dimensionally correct MNA masters for the spin-casting method. The present study aimed to develop and characterize drug-loaded DMNAs using a two-level, full factorial design for three factors focusing on the optimization of DMNA production and adequate drug content. For the preparation of DMNAs, carboxymethylcellulose and trehalose were used in certain amounts as matrices for dexamethasone sodium phosphate (DEX). Investigation of the produced DexDMNAs included mechanical analysis via texture analyzer and optical microscopy, determination of drug content and distribution with HPLC and Raman microscopy, dissolution studies via HPLC, and ex vivo qualitative permeation studies by Raman mapping. It can be concluded that a DEX-containing, mechanically stable, biodegradable DexDMNA system was successfully developed in two dosage strengths, of which both efficiently delivered the drug to the lower layers (dermis) of human skin. Moreover, the ex vivo skin penetration results support that the application of DMNAs for cutaneous drug delivery can be more effective than that of a conventional dermal gel.
Collapse
Affiliation(s)
- Martin Cseh
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; (M.C.); (S.B.); (M.B.-S.); (I.C.)
- 3D Center, Center of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Tisza Lajos Blvd. 107, H-6725 Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; (M.C.); (S.B.); (M.B.-S.); (I.C.)
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; (M.C.); (S.B.); (M.B.-S.); (I.C.)
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; (M.C.); (S.B.); (M.B.-S.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; (M.C.); (S.B.); (M.B.-S.); (I.C.)
| |
Collapse
|
5
|
Arshad MS, Hussain S, Zafar S, Rana SJ, Chohan TA, Hamza M, Nazari K, Ahmad Z. Transcutaneous Delivery of Dexamethasone Sodium Phosphate Via Microneedle-Assisted Iontophoretic Enhancement - A Potential Therapeutic Option for Inflammatory Disorders. Pharm Res 2024; 41:1183-1199. [PMID: 38849712 DOI: 10.1007/s11095-024-03719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/19/2024] [Indexed: 06/09/2024]
Abstract
AIM This study aimed to fabricate dexamethasone sodium phosphate loaded microneedle arrays (MNA) and investigate their efficiency in combination with iontophoresis for the treatment of hind paw oedema in rats. METHODS Drug loaded polyvinyl alcohol, polyvinyl pyrrolidone and D-sorbitol-based MNA11 were fabricated by vacuum micromolding. Physicochemical, morphological, thermal, in-silico, in-vitro insertion ability (on parafilm) and drug release studies were performed. Ex-vivo permeation, in-vivo insertion and anti-inflammatory studies were performed in combination with iontophoresis. RESULTS MNA11 displayed sharp-tipped projections and acceptable physicochemical features. Differential scanning calorimetry results indicated that drug loaded MNA11 were amorphous solids. Drug interacted with PVP and PVA predominately via hydrogen bonding. Parafilm displayed conspicuously engraved complementary structure of MNA11. Within 60 min, 91.50 ± 3.1% drug released from MNA11. A significantly higher i.e., 95.06 ± 2.5% permeation of drug was observed rapidly (within 60 min) from MNA11-iontophoresis combination than MNA11 i.e., 84.07 ± 3.5% within 240 min. Rat skin treated using MNA11 and MNA11-iontophoresis showed disruptions / microchannels in the epidermis without any damage to underlying anatomical structures. MNA11-iontophoresis combination led to significant reduction (83.02 ± 3.9%) in paw oedema as compared to MNA11 alone (72.55 ± 4.1%). CONCLUSION MNA11-iontophoresis combination can act as a promising candidate to deliver drugs transcutaneously for treating inflammatory diseases.
Collapse
Affiliation(s)
| | - Saad Hussain
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Sadia Jafar Rana
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Hamza
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Kazem Nazari
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
6
|
He Y, He D, Fan L, Ren S, Wang L, Sun J. Application of hydrogel microneedles in the oral cavity. Biopolymers 2024; 115:e23573. [PMID: 38506560 DOI: 10.1002/bip.23573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
Microneedles are a transdermal drug delivery system in which the needle punctures the epithelium to deliver the drug directly to deep tissues, thus avoiding the influence of the first-pass effect of the gastrointestinal tract and minimizing the likelihood of pain induction. Hydrogel microneedles are microneedles prepared from hydrogels that have good biocompatibility, controllable mechanical properties, and controllable drug release and can be modified to achieve environmental control of drug release in vivo. The large epithelial tissue in the oral cavity is an ideal site for drug delivery via microneedles. Hydrogel microneedles can overcome mucosal hindrances to delivering drugs to deep tissues; this prevents humidity and a highly dynamic environment in the oral cavity from influencing the efficacy of the drugs and enables them to obtain better therapeutic effects. This article analyzes the materials and advantages of common hydrogel microneedles and reviews the application of hydrogel microneedles in the oral cavity.
Collapse
Affiliation(s)
- Yiyao He
- Graduate School of Dalian Medical University, Dalian, China
| | - Dawei He
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Lin Fan
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Song Ren
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Lin Wang
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Jiang Sun
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| |
Collapse
|
7
|
Rana D, Beladiya J, Sheth D, Salave S, Sharma A, Jindal AB, Patel R, Benival D. Precise Fabrication of Ocular Inserts Using an Innovative Laser-Driven CaliCut Technology: In Vitro and in Vivo Evaluation. J Pharm Sci 2024; 113:1339-1350. [PMID: 38123067 DOI: 10.1016/j.xphs.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Ocular inserts offer distinct advantages, including a preservative-free drug delivery system, the ability to provide tailored drug release, and ease of administration. The present research paper delves into the development of an innovative ocular insert using CaliCut technology. Complementing the hot melt extrusion (HME) process, CaliCut, an advanced technology in ocular insert development, employs precision laser gauging to achieve impeccable cutting of inserts with desired dimensions. Its intelligent control over the stretching process through auto feedback-based belt speed adjustment ensures unparalleled accuracy and consistency in dosage form manufacturing. Dry eye disease (DED) poses a significant challenge to ocular health, necessitating innovative approaches to alleviate its symptoms. In this pursuit, castor oil has emerged as a promising therapeutic agent, offering beneficial effects by increasing the thickness of the lipid layer in the tear film, thus improving tear film stability, and reducing tear evaporation. To harness these advantages, this study focuses on the development and comprehensive characterization of castor oil-based ocular inserts. Additionally, in-vivo irritancy evaluation in rabbits has been undertaken to assess the inserts' safety and biocompatibility. By harnessing the HME and CaliCut techniques in the formulation process, the study demonstrates their instrumental role in facilitating the successful development of ocular inserts.
Collapse
Affiliation(s)
- Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), India
| | - Jayesh Beladiya
- Department of Pharmacology, L.M. College of Pharmacy, Ahmedabad, India
| | - Devang Sheth
- Department of Pharmacology, L.M. College of Pharmacy, Ahmedabad, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), India
| | - Amit Sharma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Rikin Patel
- Graduate School of Pharmacy, Gujarat Technological University Gandhinagar Campus, Gandhinagar, 382028, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), India.
| |
Collapse
|
8
|
Mazzantini C, El Bourji Z, Parisio C, Davolio PL, Cocchi A, Pellegrini-Giampietro DE, Landucci E. Anti-Inflammatory Properties of Cannabidiol and Beta-Caryophyllene Alone or Combined in an In Vitro Inflammation Model. Pharmaceuticals (Basel) 2024; 17:467. [PMID: 38675427 PMCID: PMC11055086 DOI: 10.3390/ph17040467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Cannabis contains over 500 different compounds, including cannabinoids, terpenoids, and flavonoids. Cannabidiol (CBD) is a non-psychoactive constituent, whereas beta-caryophyllene (BCP) is one of most the well-known terpenoids of Cannabis sativa. In recent years, there has been an emerging idea that the beneficial activities of these compounds are greater when they are combined. The aim of this study was to evaluate the anti-inflammatory effect of CBD and BCP using the in vitro model of lipopolysaccharide (LPS)-stimulated human keratinocytes (HaCaT) cells. The vitality of the cells was quantified using LDH and MTT assays. The levels of the following pro-inflammatory proteins and genes were quantified: IL-1β, COX-2, and phospho-NF-κB p65 (p-p65) through Western blotting (WB) and interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNFα) through quantitative real-time polymerase chain reaction (RT-qPCR). When present in the incubation medium, CBD and BCP reduced the increased levels of pro-inflammatory proteins (IL-1β, COX-2, and p-NF-kB) induced by LPS. The anti-inflammatory effects of CBD were blocked by a PPARγ antagonist, whereas a CB2 antagonist was able to revert the effects of BCP. Selected concentrations of CBD and BCP were able to revert the increases in the expression of pro-inflammatory genes (IL-1β, IL-6, and TNFα), and these effects were significant when the drugs were used in combination. Our results suggest that CBD and BCP work in concert to produce a major anti-inflammatory effect with good safety profiles.
Collapse
Affiliation(s)
- Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (Z.E.B.); (D.E.P.-G.)
| | - Zahraa El Bourji
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (Z.E.B.); (D.E.P.-G.)
| | - Carmen Parisio
- Farmacia del Madonnone, Via Aretina 9R, 50135 Florence, Italy; (C.P.); (P.L.D.)
| | - Pier Luigi Davolio
- Farmacia del Madonnone, Via Aretina 9R, 50135 Florence, Italy; (C.P.); (P.L.D.)
| | - Arianna Cocchi
- Tuscopharm srl, Viale Giacomo Leopardi 45, 57121 Livorno, Italy;
| | - Domenico E. Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (Z.E.B.); (D.E.P.-G.)
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (Z.E.B.); (D.E.P.-G.)
| |
Collapse
|
9
|
Zhang Q, Liu X, He J. Applications and prospects of microneedles in tumor drug delivery. J Mater Chem B 2024; 12:3336-3355. [PMID: 38501172 DOI: 10.1039/d3tb02646a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
As drug delivery devices, microneedles are used widely in the local administration of various drugs. Such drug-loaded microneedles are minimally invasive, almost painless, and have high drug delivery efficiency. In recent decades, with advancements in microneedle technology, an increasing number of adaptive, engineered, and intelligent microneedles have been designed to meet increasing clinical needs. This article summarizes the types, preparation materials, and preparation methods of microneedles, as well as the latest research progress in the application of microneedles in tumor drug delivery. This article also discusses the current challenges and improvement strategies in the use of microneedles for tumor drug delivery.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
10
|
Boppana SH, Kutikuppala LVS, Sharma S, C M, Rangari G, Misra AK, Kandi V, Mishra S, Singh PK, Rabaan AA, Mohapatra RK, Kudrat‐E‐Zahan M. Current approaches in smart nano-inspired drug delivery: A narrative review. Health Sci Rep 2024; 7:e2065. [PMID: 38660006 PMCID: PMC11040566 DOI: 10.1002/hsr2.2065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/13/2023] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
Background and Aim The traditional drug delivery approach involves systemic administration of a drug that could be nonspecific in targeting, low on efficacy, and with severe side-effects. To address such challenges, the field of smart drug delivery has emerged aiming at designing and developing delivery systems that can target specific cells, tissues, and organs and have minimal off-target side-effects. Methods A literature search was done to collate papers and reports about the currently available various strategies for smart nano-inspired drug delivery. The databases searched were PubMed, Scopus, and Google Scholar. Based on selection criteria, the most pertinent and recent items were included. Results Smart drug delivery is a cutting-edge revolutionary intervention in modern medicines to ensure effective and safe administration of therapeutics to target sites. These hold great promise for targeted and controlled delivery of therapeutic agents to improve the efficacy with reduced side-effects as compared to the conventional drug delivery approaches. Current smart drug delivery approaches include nanoparticles, liposomes, micelles, and hydrogels, each with its own advantages and limitations. The success of these delivery systems lies in engineering and designing them, and optimizing their pharmacokinetics and pharmacodynamics properties. Conclusion Development of drug delivery systems that can get beyond various physiological and clinical barriers, as observed in conventionally administered chemotherapeutics, has been possible through recent advancements. Using multifunctional targeting methodologies, smart drug delivery tries to localize therapy to the target location, reduces cytotoxicity, and improves the therapeutic index. Rapid advancements in research and development in smart drug delivery provide wider and more promising avenues to guarantee a better healthcare system, improve patient outcomes, and achieve higher levels of effective medical interventions like personalized medicine.
Collapse
Affiliation(s)
- Sri Harsha Boppana
- Department of Anesthesia and Critical CareJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | | | - Sushil Sharma
- Department of PharmacologyAll India Institute of Medical Sciences (AIIMS)MangalagiriAndhra PradeshIndia
| | - Madhavrao C
- Department of PharmacologyAll India Institute of Medical Sciences (AIIMS)MangalagiriAndhra PradeshIndia
| | - Gaurav Rangari
- Department of PharmacologyAll India Institute of Medical Sciences (AIIMS)MangalagiriAndhra PradeshIndia
| | - Arup Kumar Misra
- Department of PharmacologyAll India Institute of Medical Sciences (AIIMS)MangalagiriAndhra PradeshIndia
| | - Venkataramana Kandi
- Department of MicrobiologyPrathima Institute of Medical SciencesKarimnagarTelanganaIndia
| | - Snehasish Mishra
- School of Biotechnology, Campus‐11KIIT Deemed‐to‐be‐UniversityBhubaneswarOdishaIndia
| | - Puneet Kumar Singh
- School of Biotechnology, Campus‐11KIIT Deemed‐to‐be‐UniversityBhubaneswarOdishaIndia
| | - Ali A. Rabaan
- Molecular Diagnostic LaboratoryJohns Hopkins Aramco HealthcareDhahranSaudi Arabia
- College of MedicineAlfaisal UniversityRiyadhSaudi Arabia
- Department of Public Health and NutritionThe University of HaripurHaripurPakistan
| | | | | |
Collapse
|
11
|
Dawud H, Edelstein-Pardo N, Mulamukkil K, Amir RJ, Abu Ammar A. Hydrogel Microneedles with Programmed Mesophase Transitions for Controlled Drug Delivery. ACS APPLIED BIO MATERIALS 2024; 7:1682-1693. [PMID: 38335540 PMCID: PMC10951948 DOI: 10.1021/acsabm.3c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Microneedle-based drug delivery offers an attractive and minimally invasive administration route to deliver therapeutic agents through the skin by bypassing the stratum corneum, the main skin barrier. Recently, hydrogel-based microneedles have gained prominence for their exceptional ability to precisely control the release of their drug cargo. In this study, we investigated the feasibility of fabricating microneedles from triblock amphiphiles with linear poly(ethylene glycol) (PEG) as the hydrophilic middle block and two dendritic side-blocks with enzyme-cleavable hydrophobic end-groups. Due to the poor formation and brittleness of microneedles made from the neat amphiphile, we added a sodium alginate base layer and tested different polymeric excipients to enhance the mechanical strength of the microneedles. Following optimization, microneedles based on triblock amphiphiles were successfully fabricated and exhibited favorable insertion efficiency and low height reduction percentage when tested in Parafilm as a skin-simulant model. When tested against static forces ranging from 50 to 1000 g (4.9-98 mN/needle), the microneedles showed adequate mechanical strength with no fractures or broken segments. In buffer solution, the solid microneedles swelled into a hydrogel within about 30 s, followed by their rapid disintegration into small hydrogel particles. These hydrogel particles could undergo slow enzymatic degradation to soluble polymers. In vitro release study of dexamethasone (DEX), as a steroid model drug, showed first-order drug release, with 90% released within 6 days. Eventually, DEX-loaded MNs were subjected to an insertion test using chicken skin and showed full penetration. This study demonstrates the feasibility of programming hydrogel-forming microneedles to undergo several mesophase transitions and their potential application as a delivery system for self-administration, increased patient compliance, improved efficacy, and sustained drug release.
Collapse
Affiliation(s)
- Hala Dawud
- Department
of Pharmaceutical Engineering, Azrieli College
of Engineering Jerusalem, Jerusalem 9103501, Israel
| | - Nicole Edelstein-Pardo
- School
of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Keerthana Mulamukkil
- School
of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Roey J. Amir
- School
of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
- ADAMA
Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Aiman Abu Ammar
- Department
of Pharmaceutical Engineering, Azrieli College
of Engineering Jerusalem, Jerusalem 9103501, Israel
| |
Collapse
|
12
|
Bader N, Abu Ammar A. Incorporating surfactants into PCL microneedles for sustained release of a hydrophilic model drug. Int J Pharm 2024; 652:123826. [PMID: 38253267 DOI: 10.1016/j.ijpharm.2024.123826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/29/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Polymeric microneedles (MNs) are widely used for sustained drug release due to their distinct advantages over other types of MNs. Poly-ε-caprolactone (PCL) stands out as a biodegradable and biocompatible hydrophobic polymer commonly employed in drug delivery applications. This study explores the impact of surfactants on the encapsulation and release rate of a model hydrophilic drug, minoxidil (MXD), from PCL MNs. Three nonionic surfactants, Tween 80, Span 60, and polyethylene glycol (PEG), were integrated into PCL MNs at varying concentrations. Compared to the other types of surfactants, PEG-containing PCL MNs exhibit enhanced insertion capabilities into a skin-simulant parafilm model and increased mechanical strength, suggesting facile penetration into the stratum corneum. Furthermore, MXD-PEG MNs show the highest encapsulation efficiency and are further characterized using FTIR, DSC and XRD. Their mechanical strength against different static forces was measured. The MNs exhibit a sustained release pattern over 20 days. Eventually, MXD-PEG MNs were subjected to penetration testing using chicken skin and required minimal insertion forces with no observed MN failure during experimentation even after compression with the maximum force applied (32 N per patch). Taken together, the present work demonstrates the feasibility of incorporating nonionic surfactants like PEG into the tips of hydrophobic PCL MNs for sustained delivery of a model hydrophilic drug. This formulation strategy can be used to improve patient compliance by allowing self-administration and achieving prolonged drug release.
Collapse
Affiliation(s)
- Nadeen Bader
- Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem 9103501, Israel
| | - Aiman Abu Ammar
- Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem 9103501, Israel.
| |
Collapse
|
13
|
Chang Z, Wu Y, Hu P, Jiang J, Quan G, Wu C, Pan X, Huang Z. The Necessity to Investigate In Vivo Fate of Nanoparticle-Loaded Dissolving Microneedles. Pharmaceutics 2024; 16:286. [PMID: 38399340 PMCID: PMC10892231 DOI: 10.3390/pharmaceutics16020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Transdermal drug delivery systems are rapidly gaining prominence and have found widespread application in the treatment of numerous diseases. However, they encounter the challenge of a low transdermal absorption rate. Microneedles can overcome the stratum corneum barrier to enhance the transdermal absorption rate. Among various types of microneedles, nanoparticle-loaded dissolving microneedles (DMNs) present a unique combination of advantages, leveraging the strengths of DMNs (high payload, good mechanical properties, and easy fabrication) and nanocarriers (satisfactory solubilization capacity and a controlled release profile). Consequently, they hold considerable clinical application potential in the precision medicine era. Despite this promise, no nanoparticle-loaded DMN products have been approved thus far. The lack of understanding regarding their in vivo fate represents a critical bottleneck impeding the clinical translation of relevant products. This review aims to elucidate the current research status of the in vivo fate of nanoparticle-loaded DMNs and elaborate the necessity to investigate the in vivo fate of nanoparticle-loaded DMNs from diverse aspects. Furthermore, it offers insights into potential entry points for research into the in vivo fate of nanoparticle-loaded DMNs, aiming to foster further advancements in this field.
Collapse
Affiliation(s)
- Ziyao Chang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (Z.C.); (Y.W.); (X.P.)
| | - Yuhuan Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (Z.C.); (Y.W.); (X.P.)
| | - Ping Hu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.H.); (G.Q.); (C.W.)
| | - Junhuang Jiang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.H.); (G.Q.); (C.W.)
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.H.); (G.Q.); (C.W.)
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.H.); (G.Q.); (C.W.)
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (Z.C.); (Y.W.); (X.P.)
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.H.); (G.Q.); (C.W.)
| |
Collapse
|
14
|
Mardikasari SA, Katona G, Sipos B, Ambrus R, Csóka I. Preparation and Optimization of Bovine Serum Albumin Nanoparticles as a Promising Gelling System for Enhanced Nasal Drug Administration. Gels 2023; 9:896. [PMID: 37998986 PMCID: PMC10670644 DOI: 10.3390/gels9110896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
Bovine serum albumin (BSA) has been used extensively as a suitable carrier system for alternative drug delivery routes, such as nasal administration. However, the optimization of BSA nanoparticles with respect to their nasal applicability has not been widely studied. The present study focuses on the characterization of BSA nanoparticles prepared using the desolvation method, followed by a gelation process to facilitate intranasal drug delivery. The results demonstrated that the ratio of BSA and the desolvating agent, ethanol, played a critical role in the nanoparticle characteristics of the BSA nanogel matrices (BSA-NGs). Based on the gelling properties, the formulations of BSA-NG 2, BSA-NG 4, and BSA-NG 6 were selected for further investigation. The Raman spectra confirmed that there were no specific changes to the secondary structures of the BSA. The mucoadhesion studies revealed moderately high mucoadhesive properties, with a mucin binding efficiency (MBE) value of around 67%, allowing the dose to avoid elimination due to rapid mucociliary clearance of the nasal passage. Via studying the nexus of the carrier system, BSA-NGs loaded with dexamethasone as a model drug were prepared and evaluated by differential scanning calorimetry (DSC) and thermal gravimetry (TG), ascertaining that no ethanol remained in the samples after the freeze-drying process. Furthermore, the viscosity measurements exhibited moderate viscosity, which is suitable for nasal liquid preparations. The in vitro release studies performed with a simulated nasal electrolyte solution (SNES) medium showed 88.15-95.47% drug release within 4 h. In conclusion, BSA nanoparticle gelling matrices can offer potential, value-added drug delivery carriers for improved nasal drug administration.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (S.A.M.); (B.S.); (R.A.); (I.C.)
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (S.A.M.); (B.S.); (R.A.); (I.C.)
| | - Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (S.A.M.); (B.S.); (R.A.); (I.C.)
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (S.A.M.); (B.S.); (R.A.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (S.A.M.); (B.S.); (R.A.); (I.C.)
| |
Collapse
|
15
|
Niu J, Yuan M, Chen J, Wang L, Qi Y, Bai K, Fan Y, Gao P. L-Cysteine-Modified Transfersomes for Enhanced Epidermal Delivery of Podophyllotoxin. Molecules 2023; 28:5712. [PMID: 37570682 PMCID: PMC10420961 DOI: 10.3390/molecules28155712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The purpose of this study was to evaluate L-cysteine-modified transfersomes as the topical carrier for enhanced epidermal delivery of podophyllotoxin (POD). L-cysteine-deoxycholic acid (LC-DCA) conjugate was synthesized via an amidation reaction. POD-loaded L-cysteine-modified transfersomes (POD-LCTs) were prepared via a thin membrane dispersion method and characterized for their particle size, zeta potential, morphology, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and in vitro release. Subsequently, in vitro skin permeation and retention, fluorescence distribution in the skin, hematoxylin-eosin staining and in vivo skin irritation were studied. The POD-LCTs formed spherical shapes with a particle size of 172.5 ± 67.2 nm and a zeta potential of -31.3 ± 6.7 mV. Compared with the POD-Ts, the POD-LCTs provided significantly lower drug penetration through the porcine ear skin and significantly increased the skin retention (p < 0.05). Meaningfully, unlike the extensive distribution of the POD-loaded transfersomes (POD-Ts) throughout the skin tissue, the POD-LCTs were mainly located in the epidermis. Moreover, the POD-LCTs did not induce skin irritation. Therefore, the POD-LCTs provided an enhanced epidermal delivery and might be a promising carrier for the topical delivery of POD.
Collapse
Affiliation(s)
| | | | | | - Liye Wang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China; (J.N.); (M.Y.); (J.C.); (K.B.); (Y.F.)
| | | | | | | | | |
Collapse
|
16
|
Yim SG, Seong KY, Thamarappalli A, Lee H, Lee S, Lee S, Kim S, Yang SY. Fast-Embeddable Grooved Microneedles by Shear Actuation for Accurate Transdermal Drug Delivery. Pharmaceutics 2023; 15:1966. [PMID: 37514152 PMCID: PMC10385874 DOI: 10.3390/pharmaceutics15071966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Percutaneous drug delivery using microneedles (MNs) has been extensively exploited to increase the transdermal permeability of therapeutic drugs. However, it is difficult to control the precise dosage with existing MNs and they need to be attached for a long time, so a more simple and scalable method is required for accurate transdermal drug delivery. In this study, we developed grooved MNs that can be embedded into the skin by mechanical fracture following simple shear actuation. Grooved MNs are prepared from hyaluronic acid (HA), which is a highly biocompatible and biodegradable biopolymer. By adjusting the aspect ratio (length:diameter) of the MN and the position of the groove, the MN tip inserted into the skin can be easily broken by shear force. In addition, it was demonstrated that it is possible to deliver the desired amount of triamcinolone acetonide (TCA) for alopecia areata by controlling the position of the groove structure and the concentration of TCA loaded in the MN. It was also confirmed that the tip of the TCA MN can be accurately delivered into the skin with a high probability (98% or more) by fabricating an easy-to-operate applicator to provide adequate shear force. The grooved MN platform has proven to be able to load the desired amount of a drug and deliver it at the correct dose.
Collapse
Affiliation(s)
- Sang-Gu Yim
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
- SNVIA Co., Ltd., Hyowon Industry-Cooperation Building, Busan 46241, Republic of Korea
| | - Keum-Yong Seong
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Akash Thamarappalli
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Hyeseon Lee
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Seungsoo Lee
- SNVIA Co., Ltd., Hyowon Industry-Cooperation Building, Busan 46241, Republic of Korea
| | - Sanha Lee
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Semin Kim
- SNVIA Co., Ltd., Hyowon Industry-Cooperation Building, Busan 46241, Republic of Korea
| | - Seung-Yun Yang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|