1
|
Zhang X, Wang X, Zhang W, Chen Q. Combined Application of Myo-Inositol and Corn Steep Liquor from Agricultural Waste Alleviate Salt Stress in Brassica rapa. PLANTS (BASEL, SWITZERLAND) 2023; 12:4110. [PMID: 38140437 PMCID: PMC10748129 DOI: 10.3390/plants12244110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Salinity poses a significant threat to plant growth through induction of osmotic and ionic stress and disruption of nutrient absorption. Biostimulants derived from agricultural waste offer a sustainable solution to alleviate salt-induced damage to plants and contribute to a circular and sustainable economy. In this study, we applied a combination of myo-inositol and corn steep liquor from waste sources to seedling cabbage (Brassica rapa subsp. pekinensis) and investigated their effects on plant growth under NaCl-simulated salt stress. Different concentrations of myo-inositol and corn steep liquor were applied to the roots, revealing that 150 mM NaCl significantly inhibited the growth and physiological metabolism of cabbage seedlings. Substrate application of myo-inositol, corn steep liquor, and their combination materials increased biomass, photosynthetic pigments, soluble sugars, soluble proteins, and the contents of K+, Ca2+, and Mg2+ in cabbage under salt stress conditions, while reducing malondialdehyde, electrolyte leakage, Na+ content, and the ratios of Na+/K+, Na+/Ca2+, and Na+/Mg2+. Therefore, root application of myo-inositol, corn steep liquor, and myo-inositol-corn steep liquor combination materials enhanced photosynthesis and enhanced cabbage salt stress resistance by maintaining cell osmotic and ion balance. The most pronounced positive effects were observed in the treatment with 0.1 mL L-1 corn steep liquor +288 mg L-1 myo-inositol. This study provides a theoretical basis and technical guidance for the combined utilization of myo-inositol and corn steep liquor to boost early growth and salt resistance in crops.
Collapse
Affiliation(s)
- Xinjun Zhang
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (X.Z.); (X.W.); (Q.C.)
| | - Xian Wang
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (X.Z.); (X.W.); (Q.C.)
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Qing Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (X.Z.); (X.W.); (Q.C.)
| |
Collapse
|
2
|
Long J, Dong M, Wang C, Miao Y. Effects of drought and salt stress on seed germination and seedling growth of Elymus nutans. PeerJ 2023; 11:e15968. [PMID: 37641594 PMCID: PMC10460566 DOI: 10.7717/peerj.15968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Drought and soil salinization are global environmental issues, and Elymus nutans play an important role in vegetation restoration in arid and saline environments due to their excellent stress resistance. In the process of vegetation restoration, the stage from germination to seedling growth of forage is crucial. This experiment studied the effects of PEG-6000 simulated drought stress and NaCl simulated salinization stress on the germination of E. nutans seeds, and explored the growth of forage seedlings from sowing to 28 days under drought and salinization stress conditions. The results showed that under the same environmental water potential, there were significant differences in responses of seed germination, seedling growth, organic carbon, total nitrogen and total phosphorus of above-ground and underground parts of E. nutans to drought stress and salinization stress. Using the membership function method to comprehensively evaluate the seed germination and seedling indicators of E. nutans, it was found that under the same environmental water potential, E. nutans was more severely affected by drought stress during both the seed germination and seedling growth stages. E. nutans showed better salt tolerance than drought resistance.
Collapse
Affiliation(s)
- Jianting Long
- Tibet Agricultural and Animal Husbandry University, Tibet, China
| | - Mengjie Dong
- Tibet Agricultural and Animal Husbandry University, Tibet, China
| | - Chuanqi Wang
- Tibet Agricultural and Animal Husbandry University, Tibet, China
| | - Yanjun Miao
- Tibet Agricultural and Animal Husbandry University, Tibet, China
| |
Collapse
|
3
|
Fahadi Hoveizeh N, Gholami R, Zahedi SM, Gholami H, Carillo P. Effects of Harvesting Time on Fruit Development Process and Oil Content of Selected Iranian and Foreign Olive Cultivars under Subtropical Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2737. [PMID: 37514351 PMCID: PMC10385431 DOI: 10.3390/plants12142737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Climate change and rising global average temperatures across the year may strongly affect olive fruits' development process and their oil yield and quality. There is therefore an urgency to take immediate actions to characterize the wide variability of cultivars in order to identify those with a stable response to high temperatures, particularly in areas like the west of Iran, which is characterized by a warm summer continental climate. The objective of this study is to investigate the process of fruit development and oil accumulation in response to high summer temperature conditions in a set of four Iranian olive cultivars (Shengeh, Roughani, Zard Aliabad, and Dezful) in comparison with four foreign olive cultivars (Konservolia, Sevillana, Manzanilla, and Mission) in seven various harvesting times (20 July, 5 and 20 August, 5 and 20 September, 6 and 21 October). The obtained results evidence a significant positive correlation between fruit dry matter and oil content. High temperatures reduced the oil and dry matter accumulation in the second half of the summer, with severe thermal conditions adversely affecting oil synthesis. Paramount variations were observed among the cultivars regarding oil accumulation, dry matter, and pomological attributes. All of them showed the highest oil content at the last harvest. Among all analyzed varieties, Roughani showed the highest tolerance and adaptive capacity to high temperatures as it accumulated the greatest amount of dry matter as well as oil content in all of the harvesting times, demonstrating a positive correlation between these two traits. Although Shengeh showed the lowest oil content on a dry and fresh weight basis at the first harvesting time, this cultivar generally presented higher fruit development attributes than the other cultivars, highlighting that it benefits from a high temperature.
Collapse
Affiliation(s)
- Narjes Fahadi Hoveizeh
- Department of Horticultural Science, College of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-83151, Iran
| | - Rahmatollah Gholami
- Crop and Horticultural Science Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah 67145-1661, Iran
| | - Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh 83111-55181, Iran
| | - Hojattollah Gholami
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Kurdistan 66177-15175, Iran
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| |
Collapse
|
4
|
Effects of Arbuscular Mycorrhizal Fungus on Sodium and Chloride Ion Channels of Casuarina glauca under Salt Stress. Int J Mol Sci 2023; 24:ijms24043680. [PMID: 36835093 PMCID: PMC9966195 DOI: 10.3390/ijms24043680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Casuarina glauca is an important coastal protection forest species, which is exposed to high salt stress all year round. Arbuscular mycorrhizal fungi (AMF) can promote the growth and salt tolerance of C. glauca under salt stress. However, the effects of AMF on the distribution of Na+ and Cl- and the expression of related genes in C. glauca under salt stress need to be further explored. This study explored the effects of Rhizophagus irregularis on plant biomass, the distribution of Na+ and Cl-, and the expression of related genes in C. glauca under NaCl stress through pot simulation experiments. The results revealed that the mechanisms of Na+ and Cl- transport of C. glauca under NaCl stress were different. C. glauca took a salt accumulation approach to Na+, transferring Na+ from roots to shoots. Salt accumulation of Na+ promoted by AMF was associated with CgNHX7. The transport mechanism of C. glauca to Cl- might involve salt exclusion rather than salt accumulation, and Cl- was no longer transferred to shoots in large quantities but started to accumulate in roots. However, AMF alleviated Na+ and Cl- stress by similar mechanisms. AMF could promote salt dilution of C. glauca by increasing biomass and the content of K+, compartmentalizing Na+ and Cl- in vacuoles. These processes were associated with the expression of CgNHX1, CgNHX2-1, CgCLCD, CgCLCF, and CgCLCG. Our study will provide a theoretical basis for the application of AMF to improve salt tolerance in plants.
Collapse
|
5
|
Fusco GM, Carillo P, Nicastro R, Modarelli GC, Arena C, De Pascale S, Paradiso R. Vernalization Procedure of Tuberous Roots Affects Growth, Photosynthesis and Metabolic Profile of Ranunculus asiaticus L. PLANTS (BASEL, SWITZERLAND) 2023; 12:425. [PMID: 36771508 PMCID: PMC9920070 DOI: 10.3390/plants12030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
In Ranunculus asiaticus L., vernalization of propagation material is a common practice for the production scheduling of cut flowers, however little is known about the plant physiology and metabolism of this species as affected by cold treatments. We investigated the influence of two hybrids, MBO and MDR, and three preparation procedures of tuberous roots, only rehydration (control, C), and rehydration plus vernalization at 3.5 °C for 2 weeks (V2) and for 4 weeks (V4), on plant growth and flowering, leaf photosynthesis, and leaf metabolic profile in plants grown in pot in a cold greenhouse. Net photosynthesis (NP) was higher in MDR than in MBO. In the two genotypes, the NP did not change in V2 and increased in V4 compared to C in MBO, while was unaffected by vernalization in MDR. Quantum yield of PSII electron transport (ΦPSII), linear electron transport rate (ETR) and non-photochemical quenching (NPQ) did not differ in the two hybrids, whereas maximal PSII photochemical efficiency (Fv/Fm) was higher in MBO than in MDR. Fluorescence indexes were unaffected by the preparation procedure, except for ETR, which decreased in V2 compared to C and V4 in MDR. A significant interaction between genotype and preparation procedure was found in plant leaf area, which was reduced only in V4 in MBO, while decreased in both the vernalization procedures in MDR. In Control plants, flowering started in 65 days in MBO and 69 days in MDR. Compared to controls, both the vernalization treatments anticipated flowering in MDR, while they were detrimental or only slightly efficient in promoting flowering in MBO. Vernalization always reduced the quality of flower stems in both the hybrids.
Collapse
Affiliation(s)
- Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Rosalinda Nicastro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | | | - Carmen Arena
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Roberta Paradiso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| |
Collapse
|
6
|
Hlongwane MM, Mohammed M, Mokgalaka NS, Dakora FD. The Potential of Rhizobacteria to Mitigate Abiotic Stress in Lessertia frutescens. PLANTS (BASEL, SWITZERLAND) 2023; 12:196. [PMID: 36616325 PMCID: PMC9824651 DOI: 10.3390/plants12010196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Lessertia frutescens is a multipurpose medicinal plant indigenous to South Africa. The curative ability of the medicinal plant is attributed to its rich phytochemical composition, including amino acids, triterpenoids, and flavonoids. A literature review of some of the phytochemical compounds, particularly amino acids, in L. frutescens shows a steady decrease in concentration over the years. The reduction of the phytochemical compounds and diminishing biological activities may be attributed to drought and salt stress, which South Africa has been grappling with over the years. Canavanine, a phytochemical which is associated with the anticancer activity of L. frutescens, reduced slightly when the plant was subjected to salt stress. Like other legumes, L. frutescens forms a symbiotic relationship with plant-growth-promoting rhizobacteria, which facilitate plant growth and development. Studies employing commercial plant-growth-promoting rhizobacteria to enhance growth and biological activities in L. frutescens have been successfully carried out. Furthermore, alleviation of drought and salt stress in medicinal plants through inoculation with plant growth-promoting-rhizobacteria is well documented and effective. Therefore, this review seeks to highlight the potential of plant-growth-promoting rhizobacteria to alleviate the effect of salt and drought in Lessertia frutescens.
Collapse
Affiliation(s)
- Mokgadi M. Hlongwane
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| | - Mustapha Mohammed
- Department of Crop Science, University for Development Studies, Tamale P.O. Box TL1882, Ghana
| | - Ntebogeng S. Mokgalaka
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
- Mamelodi Campus, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Felix D. Dakora
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
7
|
Fusco GM, Burato A, Pentangelo A, Cardarelli M, Nicastro R, Carillo P, Parisi M. Can Microbial Consortium Applications Affect Yield and Quality of Conventionally Managed Processing Tomato? PLANTS (BASEL, SWITZERLAND) 2022; 12:14. [PMID: 36616143 PMCID: PMC9824734 DOI: 10.3390/plants12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Three commercial microbial-based biostimulants containing fungi (arbuscular mycorrhizae and Trichoderma spp.) and other microrganisms (plant growth-promoting bacteria and yeasts) were applied on a processing tomato crop in a two-year field experiment in southern Italy. The effects of the growing season and the microorganism-based treatments on the yield, technological traits and functional quality of the tomato fruits were assessed. The year of cultivation affected yield (with a lower fruit weight, higher marketable to total yield ratio and higher percentage of total defective fruits in 2020) and technological components (higher dry matter, titratable acidity, total soluble solids content in 2020). During the first year of the trial, the consortia-based treatments enhanced the soluble solids content (+10.02%) compared to the untreated tomato plants. The sucrose and lycopene content were affected both by the microbial treatments and the growing season (greater values found in 2021 with respect to 2020). The year factor also significantly affected the metabolite content, except for tyrosine, essential (EAA) and branched-chain amino acids (BCAAs). Over the two years of the field trial, FID-consortium enhanced the content of proteins (+53.71%), alanine (+16.55%), aspartic acid (+31.13%), γ-aminobutyric acid (GABA) (+76.51%), glutamine (+55.17%), glycine (+28.13%), monoethanolamine (MEA) (+19.57%), total amino acids (TAA) (+33.55), EAA (+32.56%) and BCAAs (+45.10%) compared to the control. Our findings highlighted the valuable effect of the FID microbial inoculant in boosting several primary metabolites (proteins and amino acids) in the fruits of the processing tomato crop grown under southern Italian environmental conditions, although no effect on the yield and its components was appreciated.
Collapse
Affiliation(s)
- Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Andrea Burato
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Alfonso Pentangelo
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Mariateresa Cardarelli
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Rosalinda Nicastro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Mario Parisi
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| |
Collapse
|
8
|
Gholami R, Fahadi Hoveizeh N, Zahedi SM, Gholami H, Carillo P. Effect of three water-regimes on morpho-physiological, biochemical and yield responses of local and foreign olive cultivars under field conditions. BMC PLANT BIOLOGY 2022; 22:477. [PMID: 36203130 PMCID: PMC9540738 DOI: 10.1186/s12870-022-03855-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Drought stress is among the most serious threats jeopardizing the economic yield of crop plants in Iran. In particular, in response to withholding irrigation, the reduction in performance and quality of a precious plant such as the olive tree is remarkable. Therefore, the selection of cultivars that are resistant or tolerant to drought has been recognized as one of the most effective long-term strategies for sustainably alleviating the adverse effects of this stress. In this view, our study evaluated the response of 8 olive cultivars including 4 elite native cultivars (Zard Aliabad, Roughani, Dezful, and Shengeh) and 4 foreign cultivars (Manzanilla, Sevillana, Konservolia, and Mission) to water shortage in the Dallaho Olive Research station of Sarpole-Zahab in Kermanshah province in 2020. Olive trees underwent 3 levels of irrigation treatment including 100% full irrigation (control), 75%, and 50% deficit irrigation. RESULTS Based on the results, 50% deficit irrigation decreased both growth and pomological traits, but determined the highest dry matter percentage. As the severity of drought stress increased, with an accumulation of sodium and malondialdehyde, an incremental increase in osmolytes was observed, as well as an enhancement of the activity of antioxidant enzymes (peroxidase and catalase). In contrast, full irrigation led to an increase in photosynthetic pigments, calcium, and potassium. Dezful and Konservolia cultivars revealed a significantly higher growth rate, correlated in the former to higher levels of chlorophyll, compatible compounds, total phenolic content, relative water content, potassium to sodium ratio, catalase, and peroxidase activities compared with other cultivars. Konservolia showed the best yield parameters under 75% and 100% irrigation regimes, correlated to higher chlorophyll, potassium, and total phenolic content (in particular at 75% ET). CONCLUSIONS Generally, the selection of more resilient or tolerant cultivars to sustain water scarcity stress is a widely operative solution to extend rainfed orchards in semi-arid environments. Our study showed that Dezful and Konservolia had the best adaptive mechanisms to cope with the detrimental effects of drought stress.
Collapse
Affiliation(s)
- Rahmatollah Gholami
- Crop and Horticultural Science Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran.
| | - Narjes Fahadi Hoveizeh
- Department of Horticultural Science, College of Agriculture, Shahid Chamran University of Ahwaz, Ahwaz, Iran
| | - Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Hojattollah Gholami
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Kurdistan, Iran
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy.
| |
Collapse
|
9
|
Carillo P, Pannico A, Cirillo C, Ciriello M, Colla G, Cardarelli M, De Pascale S, Rouphael Y. Protein Hydrolysates from Animal or Vegetal Sources Affect Morpho-Physiological Traits, Ornamental Quality, Mineral Composition, and Shelf-Life of Chrysanthemum in a Distinctive Manner. PLANTS 2022; 11:plants11172321. [PMID: 36079702 PMCID: PMC9460061 DOI: 10.3390/plants11172321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
Protein hydrolysates (PHs) are a prominent category of plant biostimulants, mainly constituted of amino acids, oligopeptides and polypeptides, obtained by partial hydrolysis of animal or plant protein sources. Despite scientific evidence supporting the biostimulant action of PHs on vegetables, the morphological, physiological, and shelf-life performances underlying the PH action on cut flowers are still poorly explored. Accordingly, the aim of this research is to assess the effects of three commercial biostimulants, one animal PH (PH A, Hicure®) and two plant PHs (PH V1, Trainer® and PH V2, Vegamin©), on two chrysanthemum (Chrysanthemum morifolium) cultivars (Pinacolada and Radost). In both cultivars, only the plant-derived PH (V1 and V2) treatments recorded significantly higher fresh plant biomass than the control (on average +18%, in both cultivars). The foliar application of the vegetal-derived PHs but not the animal one, particularly in Pinacolada, improved the status of plants, stimulating stem elongation and the apical flower diameter. In Pinacolada, applications with PH V1 resulted in a significant increase in nitrate and P concentration in leaves and Ca content in flowers compared with the control (+43%, +27%, and +28% for nitrate, P, and Ca, respectively). In Radost, PH A and PH V2 applications caused a significant reduction in nitrate concentration in both leaves and flowers compared with the control. One week after harvest, in both cultivars, PH A applications caused flower stems to wilt faster than the control. In contrast, plants treated with PH V1 revealed significantly slower flower stem senescence compared to the control. Flower wilting during vase life was correlated to a decrease in the K-to-Na ratio in flowers due to an inability to transport K to the flowers from the leaves rather than an increase in Na in the flowers themselves.
Collapse
Affiliation(s)
- Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Chiara Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Mariateresa Cardarelli
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Correspondence:
| |
Collapse
|
10
|
Tian J, Pang Y, Yuan W, Peng J, Zhao Z. Growth and nitrogen metabolism in Sophora japonica (L.) as affected by salinity under different nitrogen forms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111347. [PMID: 35700842 DOI: 10.1016/j.plantsci.2022.111347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Sophora japonica is a leguminous tree species native to China. To explore the nitrogen (N) source preference and its impact on stress tolerance, a hydroponic experiment was designed in which S. japonica seedlings were supplied with sole ammonium (NH4+) or sole nitrate (NO3-) nutrition under 75 mM NaCl-induced salt stress. The growth and N metabolism performance were investigated. In the absence of NaCl, plants fed NH4+ showed better root growth than those fed NO3-, but there was no difference in aerial part growth. Salinity inhibited the root growth of NH4+-fed plants and the shoot growth of NO3--fed plants, while the total N accumulation was suppressed under either N form. Specifically, in NH4+-fed plants, salinity significantly increased the net photosynthetic rate, root NH4+ content and root antioxidant enzyme activities. Higher nitrate reductase (NR) activities but lower glutamate synthetase (GS) activities were observed in both leaves and roots. Leaf AMT1.1 and AMT2.1a in NH4+-fed plants positively reacted to salt stress, whereas the expression of four AMTs was reduced or remained unchanged in roots. In contrast, salinity suppressed the net photosynthetic rate, antioxidant enzyme activities, and GS activity in the leaves of NO3--fed plants. Upregulation of NPF1.2, NPF2.11, NPF4.6 and NPF7.3, as well as unaltered NR activity, caused higher NO3- content in the leaves. Moreover, NR and glutamate synthase (GOGAT) activities together with the transcription of most NRTs were promoted by salinity in the roots of NO3--fed plants. Additionally, compared to those treated with NH4+, in response to salinity, NO3--treated seedlings showed more intensive repression of the net photosynthetic rate, chlorophyll content, and both shoot and root growth. Overall, these results suggest that S. japonica plants grew better in NH4+ medium than in NO3- medium, and the different N metabolism responses improved S. japonica tolerance to salinity with NH4+ application. This study provides new insights for understanding the mechanism of salt tolerance, breeding resistant varieties of S. japonica, and developing scientific fertilization management strategies during the seedling cultivation period.
Collapse
Affiliation(s)
- Jing Tian
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China; Research Center for the Conservation and Breeding Engineering of Ancient Trees, Yangling 712100, Shaanxi, China.
| | - Yue Pang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Wenshan Yuan
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China; Research Center for the Conservation and Breeding Engineering of Ancient Trees, Yangling 712100, Shaanxi, China.
| | - Jieying Peng
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Zhong Zhao
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China; Research Center for the Conservation and Breeding Engineering of Ancient Trees, Yangling 712100, Shaanxi, China.
| |
Collapse
|
11
|
Photosynthetic Responses, Growth, Production, and Tolerance of Traditional Varieties of Cowpea under Salt Stress. PLANTS 2022; 11:plants11141863. [PMID: 35890497 PMCID: PMC9320130 DOI: 10.3390/plants11141863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
Highlights Abstract Cowpea is the main subsistence crop—protein source—for the Brazilian semi-arid region. The use of salt-stress-tolerant varieties can improve crop yields. We evaluated the effect of irrigation with brackish water on the growth, photosynthetic responses, production, and tolerance of fifteen traditional varieties of cowpea. The experiment was conducted in randomized blocks, in a 15 × 2 factorial scheme, composed of 15 traditional varieties of cowpea and two salinity levels of irrigation water (0.5 and 4.5 dS m−1), with five replicates. Plants were grown in pots containing 10 dm3 of soil for 80 days. The reduction in the photosynthetic rate of cowpea varieties occurs mainly due to the decrease in stomatal conductance caused by salt stress. Salt stress increased the electron transport rate and photochemical quenching of cowpea varieties, but stress-tolerant varieties increased the CO2 assimilation rate and instantaneous carboxylation efficiency. The Ceará, Costela de Vaca, Pingo de Ouro, Ovo de Peru, and Sempre Verde varieties are tolerant to salt stress. Salt stress decreases 26% of the production of tolerant varieties to salt stress and 54% of susceptible varieties. The present findings show the existence of variability for saline stress tolerance in traditional varieties of cowpea and that Ceará, Costela de Vaca, Pingo de Ouro, and Ovo de Peru varieties are more suitable for crops irrigated with saline water.
Collapse
|
12
|
Cold Treatment Modulates Changes in Primary Metabolites and Flowering of Cut Flower Tulip Hybrids. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tulip is one of the most important bulbous genera in the world’s floriculture. It is known that cold exposure of bulbs before planting is required to break the bulb dormancy and to promote the plant’s flowering. Preparation procedures performed by breeders differ in the duration and the thermal level, and the choice of the procedure depends on the genotype’s sensitivity to temperature; however, little is known about the metabolic responses underlying the different behaviours of the numerous commercial hybrids. We evaluated the influence of two bulb-preparation procedures, 15–18 weeks at 5 ÷ 9 °C, and 9–14 weeks at 2 ÷ 5 °C, in two hybrids of tulip (Tulipa gesneriana L.), ‘Royal Virgin’ and ‘Ad Rem’, grown hydroponically in a floating system. Tulip plants of the two hybrids responded differently to bulb exposure to low temperatures in terms of early flowering, as this was unaffected by the preparation procedure in ‘Royal Virgin’ (27.1 days from transplanting, on average), while it was earlier after treatment at higher temperatures compared with lower temperatures in ‘Ad Rem’ (24.1 vs. 26.7 days at 5 °C vs. at 9 °C). This different flowering earliness may be related to the diverse metabolic responses enacted by the bulbs for cold acclimation that depended on hybrid x thermal treatment. Plant leaf area and flower stem characteristics were similar in the hybrids and were unaffected by the bulb-preparation procedure.
Collapse
|
13
|
Hessini K. Nitrogen form differently modulates growth, metabolite profile, and antioxidant and nitrogen metabolism activities in roots of Spartina alterniflora in response to increasing salinity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 174:35-42. [PMID: 35121483 DOI: 10.1016/j.plaphy.2022.01.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Sodium tolerance and nitrogen-source preferences are two of the most fascinating and ecologically important areas in plant physiology. Spartina alterniflora is a highly salt-tolerant species and appears to prefer ammonium (NH4+) over nitrate (NO3-) as an inorganic N source, presenting a suite of aboveground physiological and biochemical mechanisms that allows growth in saline environments. Here, we tested the interactive effects of salinity (0, 200, 500 mM NaCl) and nitrogen source (NO3-, NH4+, NH4NO3) on some physiological and biochemical parameters of S. alterniflora at the root level. After three months of treatments, plants were harvested to determine root growth parameters and total amino acids, proline, total soluble sugars, sucrose, and root enzyme activity. The control (0 mM NaCl) had the highest root growth rate in the medium containing only ammonium and the lowest in the medium containing only nitrate. Except for NO3--fed plants, the 200 mM NaCl treatment generally had less root growth than the control. Under high salinity, NH4+-fed plants had better root growth than NO3--fed plants. In the absence of salinity, NH4+-fed plants had higher superoxide dismutase, ascorbate peroxidase, glutathione reductase, and guaiacol peroxidase activities than NO3--fed plants. Salinity generally promoted the activity of the principal antioxidant enzymes, more so in NH4+-fed plants. Nitrogen metabolism was characterized by higher constitutive levels of glutamate dehydrogenase (GDH) activity under ammonia nutrition, accompanied by elevated total amino acids levels in roots. The advantage of ammonium nutrition for S. alterniflora under salinity was connected to high amino acid accumulation and antioxidant enzyme activities, together with low H2O2 concentration and increased GDH activity. Ammonium improved root performance of S. alterniflora, especially under saline conditions, and may improve root antioxidant capacity and N-assimilating enzyme activities, and adjust osmotically to salinity by accumulating amino acids.
Collapse
Affiliation(s)
- Kamel Hessini
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
14
|
Al-Mushhin AAM, Qari SH, Fakhr MA, Alnusairi GSH, Alnusaire TS, ALrashidi AA, Latef AAHA, Ali OM, Khan AA, Soliman MH. Exogenous Myo-Inositol Alleviates Salt Stress by Enhancing Antioxidants and Membrane Stability via the Upregulation of Stress Responsive Genes in Chenopodium quinoa L. PLANTS (BASEL, SWITZERLAND) 2021; 10:2416. [PMID: 34834781 PMCID: PMC8623490 DOI: 10.3390/plants10112416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 05/15/2023]
Abstract
Myo-inositol has gained a central position in plants due to its vital role in physiology and biochemistry. This experimental work assessed the effects of salinity stress and foliar application of myo-inositol (MYO) on growth, chlorophyll content, photosynthesis, antioxidant system, osmolyte accumulation, and gene expression in quinoa (Chenopodium quinoa L. var. Giza1). Our results show that salinity stress significantly decreased growth parameters such as plant height, fresh and dry weights of shoot and root, leaf area, number of leaves, chlorophyll content, net photosynthesis, stomatal conductance, transpiration, and Fv/Fm, with a more pronounced effect at higher NaCl concentrations. However, the exogenous application of MYO increased the growth and photosynthesis traits and alleviated the stress to a considerable extent. Salinity also significantly reduced the water potential and water use efficiency in plants under saline regime; however, exogenous application of myo-inositol coped with this issue. MYO significantly reduced the accumulation of hydrogen peroxide, superoxide, reduced lipid peroxidation, and electrolyte leakage concomitant with an increase in the membrane stability index. Exogenous application of MYO up-regulated the antioxidant enzymes' activities and the contents of ascorbate and glutathione, contributing to membrane stability and reduced oxidative damage. The damaging effects of salinity stress on quinoa were further mitigated by increased accumulation of osmolytes such as proline, glycine betaine, free amino acids, and soluble sugars in MYO-treated seedlings. The expression pattern of OSM34, NHX1, SOS1A, SOS1B, BADH, TIP2, NSY, and SDR genes increased significantly due to the application of MYO under both stressed and non-stressed conditions. Our results support the conclusion that exogenous MYO alleviates salt stress by involving antioxidants, enhancing plant growth attributes and membrane stability, and reducing oxidative damage to plants.
Collapse
Affiliation(s)
- Amina A. M. Al-Mushhin
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Sameer H. Qari
- Biology Department, Al-Jumum University College, Umm Al-Qura University, Mecca 21955, Saudi Arabia;
| | - Marwa A. Fakhr
- Botany Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt;
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Application (SRTA-city), New Borg El-Arab City 21934, Egypt
| | - Ghalia S. H. Alnusairi
- Department of Biology, College of Science, Jouf University, Sakaka 2014, Saudi Arabia; (G.S.H.A.); (T.S.A.)
| | - Taghreed S. Alnusaire
- Department of Biology, College of Science, Jouf University, Sakaka 2014, Saudi Arabia; (G.S.H.A.); (T.S.A.)
| | - Ayshah Aysh ALrashidi
- Department of Biology, Faculty of Science, University of Hail, Hail 81411, Saudi Arabia;
| | | | - Omar M. Ali
- Department of Chemistry, Turabah University College, Turabah Branch, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amir Abdullah Khan
- Department of Plant Biology and Ecology, Nankai University, Tianjin 300071, China
| | - Mona H. Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu 46429, Saudi Arabia
| |
Collapse
|
15
|
Kang YI, Choi YJ, Lee YR, Seo KH, Suh JN, Lee HR. Cut Flower Characteristics and Growth Traits under Salt Stress in Lily Cultivars. PLANTS 2021; 10:plants10071435. [PMID: 34371643 PMCID: PMC8309348 DOI: 10.3390/plants10071435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/28/2022]
Abstract
Salt stress is a major constraint of crop productivity because it reduces yield and limits the expansion of agriculture. This study investigated salt tolerance in 26 cultivars of cut lilies (Lilium hybrids) by examining the effect of salt stress on the growth and morphological characteristics of flowers and leaves and their physiological properties (chlorophyll a fluorescence). Salt stress significantly affected the growth and development of cut lilies. Canonical discriminant analysis indicates that the middle leaf width, number of flowers, first flower diameter, petal width, and chlorophyll a fluorescence were correlated with salt stress, whereas plant height, the middle leaf length, days to flowering, and sepal width were less affected by the stress. The cultivars examined were divided into three groups: Group 1 included the salt-sensitive cultivars, which failed to develop normal flowers; Group 2 included cultivars sensitive to salt stress but tolerant to osmotic stress; and Group 3 was the salt-tolerant group, which developed commercially valuable flowers. In conclusion, the cultivars contained a variable range of cut flower characteristics and growth traits that can be employed for lily breeding programs and as material for molecular mechanisms and signaling networks under salt stress.
Collapse
Affiliation(s)
- Yun-Im Kang
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea; (Y.J.C.); (Y.R.L.); (K.H.S.); (J.-N.S.)
- Correspondence: ; Tel.: +82-63-238-6820
| | - Youn Jung Choi
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea; (Y.J.C.); (Y.R.L.); (K.H.S.); (J.-N.S.)
| | - Young Ran Lee
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea; (Y.J.C.); (Y.R.L.); (K.H.S.); (J.-N.S.)
| | - Kyung Hye Seo
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea; (Y.J.C.); (Y.R.L.); (K.H.S.); (J.-N.S.)
| | - Jung-Nam Suh
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea; (Y.J.C.); (Y.R.L.); (K.H.S.); (J.-N.S.)
| | - Hye-Rim Lee
- Agricultural Bigdata Division, Rural Development Administration, Wanju 54875, Korea;
| |
Collapse
|
16
|
Ondrasek G, Rengel Z, Maurović N, Kondres N, Filipović V, Savić R, Blagojević B, Tanaskovik V, Gergichevich CM, Romić D. Growth and Element Uptake by Salt-Sensitive Crops under Combined NaCl and Cd Stresses. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10061202. [PMID: 34204700 PMCID: PMC8231652 DOI: 10.3390/plants10061202] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
To test an assumption that organic soil can ameliorate nutritional disorders associated with metal and salinity stresses, we exposed salt-sensitive strawberry and lettuce to four salinity (0-60 mM NaCl) and three contamination (0.3-5 mg Cd/kg) rates in peat (pHH2O = 5.5). The results showed that, even at 20 mM NaCl, salinity stress exerted a dominant effect on rhizosphere biogeochemistry and physiological processes, inducing leaf-edge burns, chlorosis/necrosis, reducing vegetative growth in crops; at ≥40 mM, NaCl mortality was induced in strawberry. Signifiacntly decreased K/Na, Ca/Na and Mg/Na concentration ratios with raising salinity were confirmed in all tissues. The combined CdxNaCl stresses (vs. control) increased leaf Cd accumulation (up to 42-fold in lettuce and 23-fold in strawberry), whereas NaCl salinity increased the accumulation of Zn (>1.5-fold) and Cu (up to 1.2-fold) in leaves. Lettuce accumulated the toxic Cd concentration (up to 12.6 mg/kg) in leaves, suggesting the strong root-to-shoot transport of Cd. In strawberry Cd, concentration was similar (and sub-toxic) in fruits and leaves, 2.28 and 1.86 mg/kg, respectively, suggesting lower Cd root-to-shoot translocation, and similar Cd mobility in the xylem and phloem. Additionally, the accumulation of Cd in strawberry fruits was exacerbated at high NaCl exposure (60 mM) compared with lower NaCl concentrations. Thus, in salinized, slightly acidic and organically rich rhizosphere, pronounced organo- and/or chloro-complexation likely shifted metal biogeochemistry toward increased mobility and phytoavailability (with metal adsorption restricted due to Na+ oversaturation of the caton exchange complex in the substrate), confirming the importance of quality water and soils in avoiding abiotic stresses and producing non-contaminated food.
Collapse
Affiliation(s)
- Gabrijel Ondrasek
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (N.M.); (N.K.); (V.F.); (D.R.)
| | - Zed Rengel
- School of Earth and Environment, University of Western Australia, Perth 6009, Australia;
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia
| | - Nada Maurović
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (N.M.); (N.K.); (V.F.); (D.R.)
| | - Nada Kondres
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (N.M.); (N.K.); (V.F.); (D.R.)
| | - Vilim Filipović
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (N.M.); (N.K.); (V.F.); (D.R.)
| | - Radovan Savić
- Department of Water Management, Faculty of Agriculture, University of Novi Sad, 21102 Novi Sad, Serbia; (R.S.); (B.B.)
| | - Boško Blagojević
- Department of Water Management, Faculty of Agriculture, University of Novi Sad, 21102 Novi Sad, Serbia; (R.S.); (B.B.)
| | - Vjekoslav Tanaskovik
- Faculty of Agricultural Sciences and Food, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia;
| | - Cristian Meriño Gergichevich
- Departamento de Producción Agropecuaria, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 1145, Chile;
| | - Davor Romić
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (N.M.); (N.K.); (V.F.); (D.R.)
| |
Collapse
|
17
|
Dell’Aversana E, Cirillo V, Van Oosten MJ, Di Stasio E, Saiano K, Woodrow P, Ciarmiello LF, Maggio A, Carillo P. Ascophyllum nodosum Based Extracts Counteract Salinity Stress in Tomato by Remodeling Leaf Nitrogen Metabolism. PLANTS 2021; 10:plants10061044. [PMID: 34064272 PMCID: PMC8224312 DOI: 10.3390/plants10061044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/25/2023]
Abstract
Biostimulants have rapidly and widely been adopted as growth enhancers and stress protectants in agriculture, however, due to the complex nature of these products, their mechanism of action is not clearly understood. By using two algal based commercial biostimulants in combination with the Solanum lycopersicum cv. MicroTom model system, we assessed how the modulation of nitrogen metabolites and potassium levels could contribute to mediate physiological mechanisms that are known to occur in response to salt/and or osmotic stress. Here we provide evidence that the reshaping of amino acid metabolism can work as a functional effector, coordinating ion homeostasis, osmotic adjustment and scavenging of reactive oxygen species under increased osmotic stress in MicroTom plant cells. The Superfifty biostimulant is responsible for a minor amino acid rich-phenotype and could represent an interesting instrument to untangle nitrogen metabolism dynamics in response to salinity and/or osmotic stress.
Collapse
Affiliation(s)
- Emilia Dell’Aversana
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
| | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (V.C.); (M.J.V.O.); (E.D.S.); (A.M.)
| | - Michael James Van Oosten
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (V.C.); (M.J.V.O.); (E.D.S.); (A.M.)
| | - Emilio Di Stasio
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (V.C.); (M.J.V.O.); (E.D.S.); (A.M.)
| | - Katya Saiano
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
| | - Pasqualina Woodrow
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
| | - Loredana Filomena Ciarmiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (V.C.); (M.J.V.O.); (E.D.S.); (A.M.)
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
- Correspondence: ; Tel.: +39-0823-274562
| |
Collapse
|
18
|
A Plant Based Modified Biostimulant (Copper Chlorophyllin), Mediates Defense Response in Arabidopsis thaliana under Salinity Stress. PLANTS 2021; 10:plants10040625. [PMID: 33806070 PMCID: PMC8064443 DOI: 10.3390/plants10040625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/10/2023]
Abstract
To date, managing salinity stress in agriculture relies heavily on development of salt tolerant plant varieties, a time-consuming process particularly challenging for many crops. Plant based biostimulants (PBs) that enhance plant defenses under stress can potentially address this drawback, as they are not crop specific and are easy to apply in the field. Unfortunately, limited knowledge about their modes of action makes it harder to utilize them on a broader scale. Understanding how PBs enhance plant defenses at cellular and molecular levels, is a prerequisite for the development of sustainable management practices utilizing biostimulants to improve crop health. In this study we elucidated the protective mechanism of copper chlorophyllin (Cu-chl), a PB, under salinity stress. Our results indicate that Cu-chl exerts protective effects primarily by decreasing oxidative stress through modulating cellular H2O2 levels. Cu-chl treated plants increased tolerance to oxidative stress imposed by an herbicide, methyl viologen dichloride hydrate as well, suggesting a protective role against various sources of reactive oxygen species (ROS). RNA-Seq analysis of Cu-chl treated Arabidopsis thaliana seedlings subjected to salt stress identified genes involved in ROS detoxification, and cellular growth.
Collapse
|
19
|
Martínez-Subirà M, Moralejo M, Puig E, Romero MP, Savin R, Romagosa I. Impact of Rising Temperature in the Deposition Patterns of Bioactive Compounds in Field Grown Food Barley Grains. PLANTS (BASEL, SWITZERLAND) 2021; 10:598. [PMID: 33810185 PMCID: PMC8004944 DOI: 10.3390/plants10030598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
High temperatures at the end of the season are frequent under Mediterranean conditions, affecting final grain quality. This study determined the deposition patterns throughout grain filling of dry matter, dietary fiber, phenolic compounds and antioxidant capacity for four barley genotypes under two contrasting temperatures. Deposition pattern for dietary fiber followed that of grain weight. Genotypic differences for duration were more significant than for rate. Anthocyanins followed a second-degree polynomial pattern, reaching a maximum before grain maturation. Free and bound phenols decreased as grain developed, suggesting that they are synthesized in early stages. Rate of bound phenols deposition was more sensitive to genotypic changes. Overall, antioxidant capacity decreased over time; the decay being less steep under stress for all genotypes. Heat stress negatively affected grain weight. It did not alter the profile of β-glucans and arabinoxylans deposition but positively changed the accumulation of some phenolic compounds, increasing the antioxidant capacity differentially across genotypes. These results support the growing of food barley in high-temperature stress-prone areas, as some bioactive compound and antioxidant capacity will increase, regardless of the smaller grain size. Moreover, if a market develops for food-barley ingredients, early harvesting of non-mature grain to maximize antioxidant capacity should be considered.
Collapse
Affiliation(s)
| | | | | | | | | | - Ignacio Romagosa
- AGROTECNIO-CERCA Center, University of Lleida, Av. Rovira Roure 191, 25198 Lleida, Spain; (M.M.-S.); (M.M.); (E.P.); (M.-P.R.); (R.S.)
| |
Collapse
|