1
|
Ocaña-Gallegos C, Liang M, McGinty E, Zhang Z, Murphy KM, Hauvermale AL. Preharvest Sprouting in Quinoa: A New Screening Method Adapted to Panicles and GWAS Components. PLANTS (BASEL, SWITZERLAND) 2024; 13:1297. [PMID: 38794368 PMCID: PMC11124833 DOI: 10.3390/plants13101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
The introduction of quinoa into new growing regions and environments is of interest to farmers, consumers, and stakeholders around the world. Many plant breeding programs have already started to adapt quinoa to the environmental and agronomic conditions of their local fields. Formal quinoa breeding efforts in Washington State started in 2010, led by Professor Kevin Murphy out of Washington State University. Preharvest sprouting appeared as the primary obstacle to increased production in the coastal regions of the Pacific Northwest. Preharvest sprouting (PHS) is the undesirable sprouting of seeds that occurs before harvest, is triggered by rain or humid conditions, and is responsible for yield losses and lower nutrition in cereal grains. PHS has been extensively studied in wheat, barley, and rice, but there are limited reports for quinoa, partly because it has only recently emerged as a problem. This study aimed to better understand PHS in quinoa by adapting a PHS screening method commonly used in cereals. This involved carrying out panicle-wetting tests and developing a scoring scale specific for panicles to quantify sprouting. Assessment of the trait was performed in a diversity panel (N = 336), and the resulting phenotypes were used to create PHS tolerance rankings and undertake a GWAS analysis (n = 279). Our findings indicate that PHS occurred at varying degrees across a subset of the quinoa germplasm tested and that it is possible to access PHS tolerance from natural sources. Ultimately, these genotypes can be used as parental lines in future breeding programs aiming to incorporate tolerance to PHS.
Collapse
Affiliation(s)
| | | | | | | | - Kevin M. Murphy
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA; (C.O.-G.); (M.L.); (E.M.); (Z.Z.)
| | - Amber L. Hauvermale
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA; (C.O.-G.); (M.L.); (E.M.); (Z.Z.)
| |
Collapse
|
2
|
Zhao X, Wang S, Guo F, Xia P. Genome-wide identification of polyamine metabolism and ethylene synthesis genes in Chenopodium quinoa Willd. and their responses to low-temperature stress. BMC Genomics 2024; 25:370. [PMID: 38627628 PMCID: PMC11020822 DOI: 10.1186/s12864-024-10265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Quinoa (Chenopodium quinoa Willd.) is valued for its nutritional richness. However, pre-harvest sprouting poses a significant threat to yield and grain quality. This study aims to enhance our understanding of pre-harvest sprouting mitigation strategies, specifically through delayed sowing and avoiding rainy seasons during quinoa maturation. The overarching goal is to identify cold-resistant varieties and unravel the molecular mechanisms behind the low-temperature response of quinoa. We employed bioinformatics and genomics tools for a comprehensive genome-wide analysis of polyamines (PAs) and ethylene synthesis gene families in quinoa under low-temperature stress. RESULTS This involved the identification of 37 PA biosynthesis and 30 PA catabolism genes, alongside 227 ethylene synthesis. Structural and phylogenetic analyses showcased conserved patterns, and subcellular localization predictions indicated diverse cellular distributions. The results indicate that the PA metabolism of quinoa is closely linked to ethylene synthesis, with multiple genes showing an upregulation in response to cold stress. However, differential expression within gene families suggests a nuanced regulatory network. CONCLUSIONS Overall, this study contributes valuable insights for the functional characterization of the PA metabolism and ethylene synthesis of quinoa, which emphasize their roles in plant low-temperature tolerance and providing a foundation for future research in this domain.
Collapse
Affiliation(s)
- Xiaoxue Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201, Kunming, China
| | - Shiyu Wang
- College of Horticulture and Landscape, Yunnan Agricultural University, 650201, Kunming, China
| | - Fenggen Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, 650201, Kunming, China.
| | - Pan Xia
- College of Agronomy and Biotechnology, Yunnan Agricultural University, 650201, Kunming, China
| |
Collapse
|
3
|
Yan F, Wei T, Yang C, Yang Y, Luo Z, Jiang Y. Combined Analysis of Untargeted Metabolomics and Transcriptomics Revealed Seed Germination and Seedling Establishment in Zelkova schneideriana. Genes (Basel) 2024; 15:488. [PMID: 38674422 PMCID: PMC11050531 DOI: 10.3390/genes15040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Zelkova schneideriana Hand.-Mazz is a valuable ornamental tree and timber source, whose seedling breeding and large-scale cultivation are restricted by low seed germination and seedling rates. The regulatory mechanisms underlying seed germination and seedling establishment in Z. schneideriana remain unknown. This study conducted metabolomic and transcriptomic analyses of seed germination and seedling establishment in Z. schneideriana. Regular expression of genes and metabolite levels has been observed in plant hormone signal transduction, starch and sucrose metabolism, linoleic acid metabolism, and phenylpropanoid biosynthesis. The reduction in abscisic acid during seed germination may lead to seed release from dormancy. After the seed is released from dormancy, the metabolic levels of auxin, cytokinins, brassinolide, and various sugars are elevated, and they are consumed in large quantities during the seedling establishment stage. Linoleic acid metabolism is gradually activated during seedling establishment. Transcriptome analysis showed that a large number of genes in different metabolic pathways are upregulated during plant establishment, and material metabolism may be accelerated during seedling establishment. Genes regulating carbohydrate metabolism are altered during seed germination and seedling establishment, which may have altered the efficiency of carbohydrate utilization. In addition, the syntheses of lignin monomers and cellulose have different characteristics at different stages. These results provide new insights into the complex mechanisms underlying seed germination and seedling establishment in Z. schneideriana and other woody plants.
Collapse
Affiliation(s)
- Fengxia Yan
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Academy of Forestry, Guiyang 550005, China; (F.Y.); (Y.Y.); (Y.J.)
| | - Tangmei Wei
- Xingyi Forestry Bureau, Qianxinan Prefecture Guizhou, Guiyang 562400, China;
| | - Chao Yang
- Institute for Forest Resources and Environment, Guizhou University, Guiyang 550025, China;
| | - Yanbing Yang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Academy of Forestry, Guiyang 550005, China; (F.Y.); (Y.Y.); (Y.J.)
| | - Zaiqi Luo
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Academy of Forestry, Guiyang 550005, China; (F.Y.); (Y.Y.); (Y.J.)
| | - Yunli Jiang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Academy of Forestry, Guiyang 550005, China; (F.Y.); (Y.Y.); (Y.J.)
| |
Collapse
|
4
|
Zeng F, Zheng C, Ge W, Gao Y, Pan X, Ye X, Wu X, Sun Y. Regulatory function of the endogenous hormone in the germination process of quinoa seeds. FRONTIERS IN PLANT SCIENCE 2024; 14:1322986. [PMID: 38259945 PMCID: PMC10801742 DOI: 10.3389/fpls.2023.1322986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024]
Abstract
The economic and health significance of quinoa is steadily growing on a global scale. Nevertheless, the primary obstacle to achieving high yields in quinoa cultivation is pre-harvest sprouting (PHS), which is intricately linked to seed dormancy. However, there exists a dearth of research concerning the regulatory mechanisms governing PHS. The regulation of seed germination by various plant hormones has been extensively studied. Consequently, understanding the mechanisms underlying the role of endogenous hormones in the germination process of quinoa seeds and developing strategies to mitigate PHS in quinoa cultivation are of significant research importance. This study employed the HPLC-ESI-MS/MS internal standard and ELISA method to quantify 8 endogenous hormones. The investigation of gene expression changes before and after germination was conducted using RNA-seq analysis, leading to the discovery of 280 differentially expressed genes associated with the regulatory pathway of endogenous hormones. Additionally, a correlation analysis of 99 genes with significant differences identified 14 potential genes that may act as crucial "transportation hubs" in hormonal interactions. Through the performance of an analysis on the modifications in hormone composition and the expression of associated regulatory genes, we posit a prediction that implies the presence of a negative feedback regulatory mechanism of endogenous hormones during the germination of quinoa seeds. This mechanism is potentially influenced by the unique structure of quinoa seeds. To shed light on the involvement of endogenous hormones in the process of quinoa seed germination, we have established a regulatory network. This study aims to offer innovative perspectives on the breeding of quinoa varieties that exhibit resistance to PHS, as well as strategies for preventing PHS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yanxia Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
5
|
McGinty EM, Craine EB, Miller ND, Ocana-Gallegos C, Spalding EP, Murphy KM, Hauvermale AL. Evaluating relationships between seed morphological traits and seed dormancy in Chenopodium quinoa Willd. FRONTIERS IN PLANT SCIENCE 2023; 14:1161165. [PMID: 37929178 PMCID: PMC10623317 DOI: 10.3389/fpls.2023.1161165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Introduction Quinoa is a high-value, nutritious crop that performs well in variable environments, marginal soils, and in diverse crop rotations. Quinoa's many attributes make it an ideal crop for supporting human health in global communities and economies. To date, quinoa research has largely focused on traits in adult plants important for enhancing plant phenotypic plasticity, abiotic stress, disease resistance, and yield. Fewer studies have evaluated quinoa seed dormancy and suggest that most modern quinoa varieties have weak or no seed dormancy, and a narrow window of seed viability post-harvest. In other crops, diminished seed dormancy is a major risk factor for preharvest sprouting (PHS; germination on the panicle due to rain prior to harvest) and may also pose a similar risk for quinoa. Methods This study (1) developed a dormancy screening assay to characterize seed dormancy strength in a large collection of quinoa varieties, (2) investigated if morphological variables including seed coat color, seed coat thickness, seed shape including eccentricity which evaluates the roundness or flatness of a seed, and other agronomic traits like crude protein content and seed moisture, contribute to quinoa seed dormancy, and (3) evaluated the use of a phenetic modeling approach to explore relationships between seed morphology and seed dormancy. Results Dormancy screening indicated seed dormancy ranges in quinoa varieties from none to strong dormancy. Further, phenetic modeling approaches indicate that seed coat thickness and eccentricity are important morphological variables that impact quinoa seed dormancy strength. Conclusions While dormancy screening and phenetic modeling approaches do not provide a direct solution to preventing PHS in quinoa, they do provide new tools for identifying dormant varieties as well as morphological variables contributing to seed dormancy.
Collapse
Affiliation(s)
- Emma M. McGinty
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | | | - Nathan D. Miller
- Department of Botany, University of Wisconsin, Madison, WI, United States
| | - Cristina Ocana-Gallegos
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Edgar P. Spalding
- Department of Botany, University of Wisconsin, Madison, WI, United States
| | - Kevin M. Murphy
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Amber L. Hauvermale
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
6
|
Pan C, Zhou Y, Yao L, Yu L, Qiao Z, Tang M, Wei F. Amomum tsaoko DRM1 regulate seed germination and improve heat tolerance in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 286:154007. [PMID: 37209458 DOI: 10.1016/j.jplph.2023.154007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Seed dormancy and germination are critical to medicinal plant reproduction. Dormancy-associated gene (DRM1) has been involved in the regulation of dormancy in Arabidopsis meristematic tissues or organs. However, research on molecular functions and regulations of DRM1 in Amomum tsaoko, an important medicinal plant, is rare. In this study, the DRM1 was isolated from embryos of A. tsaoko, and the results of protein subcellular localization in Arabidopsis protoplast indicated that DRM1 was mainly nucleus and cytoplasm. Expression analysis showed that DRM1 especially exhibited the highest transcript level in dormant seed and short-time stratification while displaying a high response of hormone and abiotic stress. Further investigation showed that ectopic expression of DRM1 in Arabidopsis exhibited delayed seed germination and germination capability to high temperatures. Additionally, DRM1 transgenic Arabidopsis exhibited increased tolerance to heat stress by enhancing antioxidative capacities and regulating stress-associated genes (AtHsp25.3-P, AtHsp18.2-CI, AtHsp70B, AtHsp101, AtGolS1, AtMBF1c, AtHsfA2, AtHsfB1 and AtHsfB2). Overall, our results reveal the role of DRM1 in seed germination and abiotic stress response.
Collapse
Affiliation(s)
- Chunliu Pan
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Yunyi Zhou
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Lixiang Yao
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Liying Yu
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Zhu Qiao
- Guangxi Medicinal Resources Conservation and Genetic Improvement Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, 530023, Nanning, China.
| | - Meiqiong Tang
- Guangxi Medicinal Resources Conservation and Genetic Improvement Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, 530023, Nanning, China.
| | - Fan Wei
- Guangxi Medicinal Resources Conservation and Genetic Improvement Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, 530023, Nanning, China.
| |
Collapse
|
7
|
Pulvento C, Bazile D. Worldwide Evaluations of Quinoa-Biodiversity and Food Security under Climate Change Pressures: Advances and Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:868. [PMID: 36840215 PMCID: PMC9959060 DOI: 10.3390/plants12040868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Quinoa (Chenopodium quinoa Willd [...].
Collapse
Affiliation(s)
- Cataldo Pulvento
- Department of Soil, Plant and Food Science (DISSPA) University of Bari, 70121 Bari, Italy
| | - Didier Bazile
- CIRAD, UMR SENS, F-34398 Montpellier, France
- SENS, Univ Montpellier, CIRAD, F-34398 Montpellier, France
| |
Collapse
|
8
|
Impact of climate perturbations on seeds and seed quality for global agriculture. Biochem J 2023; 480:177-196. [PMID: 36749123 DOI: 10.1042/bcj20220246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
In agriculture, seeds are the most basic and vital input on which croplands productivity depends. These implies a good starting material, good production lines and good storage options. High-quality seed lots must be free of pests and pathogens and contain a required degree of genetic purity. Seeds need also to be stored in good condition between harvest and later sowing, to insure later on the field a good plant density and higher crop yield. In general, these parameters are already widely accepted and considered in many countries where advanced technologies evaluate them. However, the more and more frequently devastating climate changes observed around the world has put seed quality under threat, and current seeds may not be adapted to hazardous and unpredictable conditions. Climate-related factors such as temperature and water availability directly affect seed development and later germination. For these reasons, investigating seed quality in response to climate changes is a step to propose new crop varieties and practices that will bring solutions for our future.
Collapse
|
9
|
Nalbandian E, Pietrysiak E, Murphy KM, Ganjyal GM. Different breeding lines of quinoa significantly influence the quality of baked cookies and cooked grains. J Food Sci 2022; 87:5225-5239. [DOI: 10.1111/1750-3841.16354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Affiliation(s)
| | - Ewa Pietrysiak
- School of Food Science Washington State University Pullman Washington USA
| | - Kevin M. Murphy
- Department of Crop and Soil Sciences Washington State University Pullman Washington USA
| | - Girish M. Ganjyal
- School of Food Science Washington State University Pullman Washington USA
| |
Collapse
|
10
|
Granado-Rodríguez S, Maestro-Gaitán I, Matías J, Rodríguez MJ, Calvo P, Hernández LE, Bolaños L, Reguera M. Changes in nutritional quality-related traits of quinoa seeds under different storage conditions. Front Nutr 2022; 9:995250. [PMID: 36324620 PMCID: PMC9620721 DOI: 10.3389/fnut.2022.995250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Within the context of climate change and its impact on global food security, seed storage has become key, as it ensures long-term food and next-season seed preservation. Aiming at evaluating quality-related changes in quinoa seeds over storage time, different storage temperatures (–20, 4, 12, 25, and 37°C) and humidity conditions (use of silica gel or not) were studied and different seed nutritional parameters were evaluated at different points during a year of storage. Also, to determine if these variations could be conditioned by the genotype used, two quinoa cultivars were compared. The results proved that quinoa seed quality is highly dependent on the storage temperature but is not consistently affected by the use of silica gel if the seed moisture content (SMC) is kept between 5 and 12%. Furthermore, quality can be maintained and even improved by keeping SMC lower than 12% and storage temperatures low (4°C). Under these conditions (at 4°C in hermetic packaging with or without silica gel), and after 12 months of storage, there was an increase in amino acids like isoleucine, serine, arginine, glycine, and glutamic acid and in seed viability and germination. On the contrary, quinoa seeds stored at 37°C showed an accumulation of reactive oxygen species (ROS) which was related to a lower antioxidant capacity and a reduction in the contents of essential amino acids like isoleucine, lysine, histidine, and threonine, resulting in a delayed and reduced germination capacity, and, therefore, lower seed quality. Besides, quality-related differences appeared between cultivars highlighting differences linked to the genotype. Overall, this work demonstrates that optimal storage temperatures and SMC can preserve or even improve quinoa seed nutritional quality, which in turn can impact food safety and agriculture.
Collapse
Affiliation(s)
| | | | - Javier Matías
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Agrarian Research Institute “La Orden-Valdesequera” of Extremadura, Guadajira, Spain
| | - María José Rodríguez
- Technological Institute of Food and Agriculture of Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Guadajira, Spain
| | - Patricia Calvo
- Technological Institute of Food and Agriculture of Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Guadajira, Spain
| | | | - Luis Bolaños
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Reguera
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
- *Correspondence: Maria Reguera,
| |
Collapse
|
11
|
Hao Y, Hong Y, Guo H, Qin P, Huang A, Yang X, Ren G. Transcriptomic and metabolomic landscape of quinoa during seed germination. BMC PLANT BIOLOGY 2022; 22:237. [PMID: 35538406 PMCID: PMC9088103 DOI: 10.1186/s12870-022-03621-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Quinoa (Chenopodium quinoa), a dicotyledonous species native to Andean region, is an emerging crop worldwide nowadays due to its high nutritional value and resistance to extreme abiotic stresses. Although it is well known that seed germination is an important and multiple physiological process, the network regulation of quinoa seed germination is largely unknown. RESULTS Here, we performed transcriptomic study in five stages during transition from quinoa dry seed to seedling. Together with the GC-MS based metabolome analysis, we found that seed metabolism is reprogrammed with significant alteration of multiple phytohormones (especially abscisic acid) and other nutrients during the elongation of radicels. Cell-wall remodeling is another main active process happening in the early period of quinoa seed germination. Photosynthesis was fully activated at the final stage, promoting the biosynthesis of amino acids and protein to allow seedling growth. The multi-omics analysis revealed global changes in metabolic pathways and phenotype during quinoa seed germination. CONCLUSION The transcriptomic and metabolomic landscape depicted here pave ways for further gene function elucidation and quinoa development in the future.
Collapse
Affiliation(s)
- Yuqiong Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing, 100081, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Yechun Hong
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Huimin Guo
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Peiyou Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing, 100081, China
| | - Ancheng Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Xiushi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| | - Guixing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing, 100081, China.
- College of Pharmacy and Biological Engineering, Chengdu University, No. 1 Shilling Road, Chenglo Avenue, Longquan District, Chengdu, 610106, China.
| |
Collapse
|
12
|
Seed Dormancy and Pre-Harvest Sprouting in Rice-An Updated Overview. Int J Mol Sci 2021; 22:ijms222111804. [PMID: 34769234 PMCID: PMC8583970 DOI: 10.3390/ijms222111804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Pre-harvest sprouting is a critical phenomenon involving the germination of seeds in the mother plant before harvest under relative humid conditions and reduced dormancy. As it results in reduced grain yield and quality, it is a common problem for the farmers who have cultivated the rice and wheat across the globe. Crop yields need to be steadily increased to improve the people’s ability to adapt to risks as the world’s population grows and natural disasters become more frequent. To improve the quality of grain and to avoid pre-harvest sprouting, a clear understanding of the crops should be known with the use of molecular omics approaches. Meanwhile, pre-harvest sprouting is a complicated phenomenon, especially in rice, and physiological, hormonal, and genetic changes should be monitored, which can be modified by high-throughput metabolic engineering techniques. The integration of these data allows the creation of tailored breeding lines suitable for various demands and regions, and it is crucial for increasing the crop yields and economic benefits. In this review, we have provided an overview of seed dormancy and its regulation, the major causes of pre-harvest sprouting, and also unraveled the novel avenues to battle pre-harvest sprouting in cereals with special reference to rice using genomics and transcriptomic approaches.
Collapse
|
13
|
Stanschewski CS, Rey E, Fiene G, Craine EB, Wellman G, Melino VJ, S. R. Patiranage D, Johansen K, Schmöckel SM, Bertero D, Oakey H, Colque-Little C, Afzal I, Raubach S, Miller N, Streich J, Amby DB, Emrani N, Warmington M, Mousa MAA, Wu D, Jacobson D, Andreasen C, Jung C, Murphy K, Bazile D, Tester M. Quinoa Phenotyping Methodologies: An International Consensus. PLANTS (BASEL, SWITZERLAND) 2021; 10:1759. [PMID: 34579292 PMCID: PMC8472428 DOI: 10.3390/plants10091759] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022]
Abstract
Quinoa is a crop originating in the Andes but grown more widely and with the genetic potential for significant further expansion. Due to the phenotypic plasticity of quinoa, varieties need to be assessed across years and multiple locations. To improve comparability among field trials across the globe and to facilitate collaborations, components of the trials need to be kept consistent, including the type and methods of data collected. Here, an internationally open-access framework for phenotyping a wide range of quinoa features is proposed to facilitate the systematic agronomic, physiological and genetic characterization of quinoa for crop adaptation and improvement. Mature plant phenotyping is a central aspect of this paper, including detailed descriptions and the provision of phenotyping cards to facilitate consistency in data collection. High-throughput methods for multi-temporal phenotyping based on remote sensing technologies are described. Tools for higher-throughput post-harvest phenotyping of seeds are presented. A guideline for approaching quinoa field trials including the collection of environmental data and designing layouts with statistical robustness is suggested. To move towards developing resources for quinoa in line with major cereal crops, a database was created. The Quinoa Germinate Platform will serve as a central repository of data for quinoa researchers globally.
Collapse
Affiliation(s)
- Clara S. Stanschewski
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (C.S.S.); (E.R.); (G.F.); (G.W.); (V.J.M.); (D.S.R.P.)
| | - Elodie Rey
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (C.S.S.); (E.R.); (G.F.); (G.W.); (V.J.M.); (D.S.R.P.)
| | - Gabriele Fiene
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (C.S.S.); (E.R.); (G.F.); (G.W.); (V.J.M.); (D.S.R.P.)
| | - Evan B. Craine
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA; (E.B.C.); (K.M.)
| | - Gordon Wellman
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (C.S.S.); (E.R.); (G.F.); (G.W.); (V.J.M.); (D.S.R.P.)
| | - Vanessa J. Melino
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (C.S.S.); (E.R.); (G.F.); (G.W.); (V.J.M.); (D.S.R.P.)
| | - Dilan S. R. Patiranage
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (C.S.S.); (E.R.); (G.F.); (G.W.); (V.J.M.); (D.S.R.P.)
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany; (N.E.); (C.J.)
| | - Kasper Johansen
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Sandra M. Schmöckel
- Department Physiology of Yield Stability, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Daniel Bertero
- Department of Plant Production, School of Agriculture, University of Buenos Aires, Buenos Aires C1417DSE, Argentina;
| | - Helena Oakey
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Carla Colque-Little
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-2630 Taastrup, Denmark; (C.C.-L.); (D.B.A.); (C.A.)
| | - Irfan Afzal
- Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Sebastian Raubach
- Department of Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee AB15 8QH, UK;
| | - Nathan Miller
- Department of Botany, University of Wisconsin, 430 Lincoln Dr, Madison, WI 53706, USA;
| | - Jared Streich
- Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (J.S.); (D.J.)
| | - Daniel Buchvaldt Amby
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-2630 Taastrup, Denmark; (C.C.-L.); (D.B.A.); (C.A.)
| | - Nazgol Emrani
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany; (N.E.); (C.J.)
| | - Mark Warmington
- Department of Primary Industries and Regional Development, Agriculture and Food, Kununurra, WA 6743, Australia;
| | - Magdi A. A. Mousa
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Vegetables, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - David Wu
- Shanxi Jiaqi Agri-Tech Co., Ltd., Taiyuan 030006, China;
| | - Daniel Jacobson
- Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (J.S.); (D.J.)
| | - Christian Andreasen
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-2630 Taastrup, Denmark; (C.C.-L.); (D.B.A.); (C.A.)
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany; (N.E.); (C.J.)
| | - Kevin Murphy
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA; (E.B.C.); (K.M.)
| | - Didier Bazile
- CIRAD, UMR SENS, 34398 Montpellier, France;
- SENS, CIRAD, IRD, University Paul Valery Montpellier 3, 34090 Montpellier, France
| | - Mark Tester
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (C.S.S.); (E.R.); (G.F.); (G.W.); (V.J.M.); (D.S.R.P.)
| | | |
Collapse
|