1
|
Jadoon L, Gul A, Fatima H, Babar MM. Nano-elicitation and hydroponics: a synergism to enhance plant productivity and secondary metabolism. PLANTA 2024; 259:80. [PMID: 38436711 DOI: 10.1007/s00425-024-04353-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
MAIN CONCLUSION This review has explored the importance of using a synergistic approach of nano-elicitation and hydroponics to improve plant growth and metabolite production. Furthermore, it emphasizes the significance of green nanotechnology and eco-friendly practices while utilizing this approach to promote the development of a sustainable agriculture system. Nano-elicitation stimulates metabolic processes in plants using nanoparticles (NPs) as elicitors. The stimulation of these biochemical processes can enhance plant yield and productivity, along with the production of secondary metabolites. Nanoparticles have garnered the attention of scientific community because of their unique characteristics, such as incredibly small size and large surface-to-volume ratio, which make them effective elicitors. Hydroponic systems, which optimize growing conditions to increase plant production, are typically used to study the effect of elicitors. By integrating these two approaches, the qualitative and quantitative output of plants can be increased while employing minimal resources. As the global demand for high-quality crops and bioactive compounds surges, embracing this synergistic approach alongside sustainable farming practices can pave the way for resilient agricultural systems, ensuring food security and fostering an eco-friendly environment.
Collapse
Affiliation(s)
- Linta Jadoon
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Hunaiza Fatima
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, 44000, Pakistan.
| |
Collapse
|
2
|
Sembada AA, Lenggoro IW. Transport of Nanoparticles into Plants and Their Detection Methods. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:131. [PMID: 38251096 PMCID: PMC10819755 DOI: 10.3390/nano14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Nanoparticle transport into plants is an evolving field of research with diverse applications in agriculture and biotechnology. This article provides an overview of the challenges and prospects associated with the transport of nanoparticles in plants, focusing on delivery methods and the detection of nanoparticles within plant tissues. Passive and assisted delivery methods, including the use of roots and leaves as introduction sites, are discussed, along with their respective advantages and limitations. The barriers encountered in nanoparticle delivery to plants are highlighted, emphasizing the need for innovative approaches (e.g., the stem as a new recognition site) to optimize transport efficiency. In recent years, research efforts have intensified, leading to an evendeeper understanding of the intricate mechanisms governing the interaction of nanomaterials with plant tissues and cells. Investigations into the uptake pathways and translocation mechanisms within plants have revealed nuanced responses to different types of nanoparticles. Additionally, this article delves into the importance of detection methods for studying nanoparticle localization and quantification within plant tissues. Various techniques are presented as valuable tools for comprehensively understanding nanoparticle-plant interactions. The reliance on multiple detection methods for data validation is emphasized to enhance the reliability of the research findings. The future outlooks of this field are explored, including the potential use of alternative introduction sites, such as stems, and the continued development of nanoparticle formulations that improve adhesion and penetration. By addressing these challenges and fostering multidisciplinary research, the field of nanoparticle transport in plants is poised to make significant contributions to sustainable agriculture and environmental management.
Collapse
Affiliation(s)
- Anca Awal Sembada
- Department of Applied Physics and Chemical Engineering, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung 40132, Indonesia
| | - I. Wuled Lenggoro
- Department of Applied Physics and Chemical Engineering, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| |
Collapse
|
3
|
Rai PK, Song H, Kim KH. Nanoparticles modulate heavy-metal and arsenic stress in food crops: Hormesis for food security/safety and public health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166064. [PMID: 37544460 DOI: 10.1016/j.scitotenv.2023.166064] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Heavy metal and arsenic (HM-As) contamination at the soil-food crop interface is a threat to food security/safety and public health worldwide. The potential ecotoxicological effects of HM-As on food crops can perturb normal physiological, biochemical, and molecular processes. To protect food safety and human health, nanoparticles (NPs) can be applied to seed priming and soil amendment, as 'manifestation of hormesis' to modulate HM-As-induced oxidative stress in edible crops. This review provides a comprehensive overview of NPs-mediated alleviation of HM-As stress in food crops and resulting hormetic effects. The underlying biochemical and molecular mechanisms in the amelioration of HM-As-induced oxidative stress is delineated by covering the various aspects of the interaction of NPs (e.g., magnetic particles, silicon, metal oxides, selenium, and carbon nanotubes) with plant microbes, phytohormone, signaling molecules, and plant-growth bioregulators (e.g., salicylic acid and melatonin). With biotechnical advances (such as clustered regularly interspaced short palindromic repeats (CRISPR) gene editing and omics), the efficacy of NPs and associated hormesis has been augmented to produce "pollution-safe designer cultivars" in HM-As-stressed agriculture systems. Future research into nanoscale technological innovations should thus be directed toward achieving food security, sustainable development goals, and human well-being, with the aid of HM-As stress resilient food crops.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Hocheol Song
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea; Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
4
|
Bhattacharya S, Gupta S, Saha J. Nanoparticles regulate redox metabolism in plants during abiotic stress within hormetic boundaries. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:850-869. [PMID: 37757867 DOI: 10.1071/fp23068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Abiotic stress management remains under scrutiny because of the unpredictable nature of climate, which undergoes abrupt alterations. Population pressure, loss of cultivable lands, environmental pollution and other anthropogenic disturbances add to the problem and grossly hinder ongoing management strategies. This has driven increasing effort to find better performing, eco-friendly and reliable alternatives that can contribute to sustainable agricultural practices to manage abiotic stress. Nanotechnology and its implementation in agriculture have emerged as a promising option to cater to the problem of abiotic stress. Induction of reactive oxygen species (ROS) is an inevitable phenomenon linked to stress. Nanoparticles (NPs) perform dual actions in regulating ROS biology. The bidirectional roles of NPs in modulating ROS generation and/or ROS detoxification is tightly coupled within the hormetic boundaries. Nonetheless, how these NPs control the ROS metabolism within hormetic limits demands extensive investigation. This review focuses on the details of ROS metabolism under normal versus stressed conditions. It shall elaborate on the types, modes and process of uptake and translocation of NPs. The molecular dissection of the role of NPs in controlling transcriptomic expressions and modulating molecular crosstalks with other growth regulators, ions, reactive nitrogen species and other signalling molecules shall also be detailed. Throughout, this review aims to summarise the potential roles and regulation of NPs and consider how they can be used for green synthesis within a sustainable agricultural industry.
Collapse
Affiliation(s)
- Saswati Bhattacharya
- Department of Botany, Dr. A.P.J. Abdul Kalam Government College, New Town, Rajarhat, India
| | - Sumanti Gupta
- Department of Botany, Rabindra Mahavidyalaya, Champadanga, Hooghly, West Bengal, India
| | - Jayita Saha
- Department of Botany, Rabindra Mahavidyalaya, Champadanga, Hooghly, West Bengal, India
| |
Collapse
|
5
|
Kaiaty AM, Salib FA, El-Gameel SM, Abdel Massieh ES, Hussien AM, Kamel MS. Emerging alternatives to traditional anthelmintics: the in vitro antiparasitic activity of silver and selenium nanoparticles, and pomegranate (Punica granatum) peel extract against Haemonchus contortus. Trop Anim Health Prod 2023; 55:317. [PMID: 37737938 PMCID: PMC10516797 DOI: 10.1007/s11250-023-03722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Haemonchus contortus (H. contortus) is one of the most prevalent gastrointestinal nematodes, causing health problems and economic losses in ruminants. Nanotechnology holds great promise as a field of science, with potential applications in veterinary medicine. This study investigated the in vitro anthelmintic activity of silver nanoparticles (AgNPs), selenium nanoparticles (SeNPs), and pomegranate peel extract (Punica granatum; PPE) on different stages of H. contortus: eggs, larvae, and adults. The in vitro anthelmintic efficacy was evaluated using the egg hatching inhibition assay (EHA), the third larval stage paralysis assay (LPA), and the adult worm motility inhibition assay (WMI). Six dilutions of PPE were utilized for EHA, LPA, and WMI, ranging from 0.25 to 6 mg/ml. AgNPs dilutions ranged from 0.00001 to 1.0 μg/ml for EHA and LPA and 1 to 25 μg/ml for WMI. SeNPs were utilized at dilutions of 1, 5, 10, and 15 μg/ml for EHA, LPA, and WMI. The results showed that the lowest concentration of AgNPs, SeNPs, and PPE significantly inhibited egg hatching. To further assess larvicidal activity, AgNPs at the highest concentration of 1 μg/ml induced a strong larvicidal effect, as did SeNPs at the lowest concentration. On the contrary, PPE displayed a significant larvicidal effect at 1 mg/ml compared to the control. The percentage mortality of adult H. contortus was measured as follows (mortality (%) = the number of dead adult H. contortus/total number of adult H. contortus per test × 100). The death of the adult H. contortus was determined by the absence of motility. Adult H. contortus mortality percentage was also significantly affected by all three agents when compared to the control. The AgNPs, SeNPs, and PPE have effective antiparasitic activity on gastrointestinal parasitic nematodes. These results provide evidence of the excellent antiparasitic properties of AgNPs, SeNPs, and PPE, demonstrating their effectiveness in controlling eggs, larvae, and adult H. contortus in vitro.
Collapse
Affiliation(s)
- Ahmed M Kaiaty
- General Organization for Veterinary Services, Giza, Egypt
| | - Fayez A Salib
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt
| | - Sohila M El-Gameel
- Parasitology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt
| | - Emil S Abdel Massieh
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt
| | - Ahmed M Hussien
- Toxicology & Forensic Medicine Department, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt
| | - Mohamed S Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt.
| |
Collapse
|
6
|
Cessur A, Albayrak İ, Demirci T, Göktürk Baydar N. Silver and salicylic acid-chitosan nanoparticles alter indole alkaloid production and gene expression in root and shoot cultures of Isatis tinctoria and Isatis ermenekensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107977. [PMID: 37639984 DOI: 10.1016/j.plaphy.2023.107977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Isatis spp. are well-known for their industrial significance due to natural sources of indigotin and indirubin, important indole alkaloids, used in the dye and pharmaceutical industries. In this study, silver nanoparticles (AgNP) and salicylic acid-chitosan nanoparticles (SA-CNP) were synthesized and applied to enhance the production of indigotin and indirubin in shoot and root cultures of Isatis tinctoria and Isatis ermenekensis. Different doses of AgNP and SA-CNP were administered to three-week-old shoot and root cultures, and the effects were assessed at 12, 24, and 48 h. The harvested samples were analyzed to quantify indigotin and indirubin levels. Furthermore, the expression levels of It-TSA and CYP79B2 genes, known to be involved in indole alkaloid biosynthesis, were determined. In I. tinctoria roots, the highest levels of indigotin and indirubin were observed after applying 150 mg L-1 of SA-CNP for 48 h while in I. ermenekensis shoots, indigotin and indirubin reached the maximum levels with the application of 8 mg L-1 AgNP for 48 h. NP application had no remarkable effects on the accumulation of indigotin and indirubin in I. tinctoria shoots and I. ermenekensis roots compared to controls. Additionally, shoot cultures demonstrated superior indirubin production, which significantly increased with AgNP applications. The gene expression analysis also exhibited significant correlations with the changes in indigotin and indirubin levels. The findings of this study lay the groundwork for enhancing in vitro production of indigotin and indirubin in Isatis species through NP applications, and for developing high-capacity production strategies by determining optimal dosages in scale-up studies.
Collapse
Affiliation(s)
- Alper Cessur
- Department of Agricultural Biotechnology, Faculty of Agriculture, Isparta University of Applied Sciences, 32270, Isparta, Turkey
| | - İlknur Albayrak
- Department of Agricultural Biotechnology, Faculty of Agriculture, Isparta University of Applied Sciences, 32270, Isparta, Turkey
| | - Tunahan Demirci
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Süleyman Demirel University, 32260, Isparta, Turkey.
| | - Nilgün Göktürk Baydar
- Department of Agricultural Biotechnology, Faculty of Agriculture, Isparta University of Applied Sciences, 32270, Isparta, Turkey
| |
Collapse
|
7
|
Biosynthesized Ag nanoparticles on urea-based periodic mesoporous organosilica enhance galegine content in Galega. Appl Microbiol Biotechnol 2023; 107:1589-1608. [PMID: 36738339 DOI: 10.1007/s00253-023-12414-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
The biological approach for synthesizing nanoparticles (NPs) using plant extracts is an efficient alternative to conventional physicochemical methods. Galegine, isolated from Galega (Galega officinalis L.), has anti-diabetic properties. In the present study, silver nanoparticles (AgNPs) loaded onto urea-based periodic mesoporous organosilica (AgNPs/Ur-PMO) were bio-synthesized using G. officinalis leaf extract. The synthesized NPs were characterized and confirmed via analysis methods. Different concentrations of biosynthesized AgNPs/Ur-PMO nanoparticles (0, 1, 5, 10, and 20 mg L-1) were used as elicitors in cell suspension culture (CSC) of G. officinalis. The callus cells from hypocotyl explants were treated at their logarithmic growth phase (8th d) and were collected at time intervals of 24, 72, 120, and 168 h. The viability and growth of cells were reduced (by 17% and 35%, respectively) at higher concentrations and longer treatments of AgNPs/Ur-PMO; however, the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) were increased (1.23 and 3.01 fold, respectively in comparison with the control average). The highest total phenolic (2.43 mg g-1 dry weight) and flavonoid (2.22 mg g-1 dry weight) contents were obtained 168 h after treatment with 10 mg L-1 AgNPs/Ur-PMO. An increasing tendency in the antioxidant enzyme activities was also observed in all the elicitor concentrations. Treatment with AgNPs/Ur-PMO (in particular 5 mg L-1 for 120 h) significantly enhanced the galegine content (up to 17.42 mg g-1) about 1.80 fold compared with the control. The results suggest that AgNPs/Ur-PMO can be used as an effective elicitor for enhancing galegine production in the CSC of G. officinalis. KEY POINTS: • The green biosynthesis of AgNPs/Ur-PMO was done using G. officinalis leaf extract • Its toxicity as an elicitor increased with increasing concentration and treatment time • AgNPs/Ur-PMO significantly increased the antioxidant capacity and galegine content.
Collapse
|
8
|
Sánchez-Ramos M, Marquina-Bahena S, Alvarez L, Bernabé-Antonio A, Cabañas-García E, Román-Guerrero A, Cruz-Sosa F. Obtaining 2,3-Dihydrobenzofuran and 3-Epilupeol from Ageratina pichinchensis (Kunth) R.King & Ho.Rob. Cell Cultures Grown in Shake Flasks under Photoperiod and Darkness, and Its Scale-Up to an Airlift Bioreactor for Enhanced Production. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020578. [PMID: 36677637 PMCID: PMC9865622 DOI: 10.3390/molecules28020578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
Ageratina pichinchensis (Kunth) R.King & Ho.Rob. is a plant used in traditional Mexican medicine, and some biotechnological studies have shown that its calluses and cell suspension cultures can produce important anti-inflammatory compounds. In this study, we established a cell culture of A. pichinchensis in a 2 L airlift bioreactor and evaluated the production of the anti-inflammatory compounds 2,3-dihydrobenzofuran (1) and 3-epilupeol (2). The maximum biomass production (11.90 ± 2.48 g/L) was reached at 11 days of culture and cell viability was between 80% and 90%. Among kinetic parameters, the specific growth rate (µ) was 0.2216 days-1 and doubling time (td) was 3.13 days. Gas chromatography coupled with mass spectrometry (GC-MS) analysis of extracts showed the maximum production of compound 1 (903.02 ± 41.06 µg/g extract) and compound 2 (561.63 ± 10.63 µg/g extract) at 7 and 14 days, respectively. This study stands out for the significant production of 2,3-dihydrobenzofuran and 3-epilupeol and by the significant reduction in production time compared to callus and cell suspension cultures, previously reported. To date, these compounds have not been found in the wild plant, i.e., its production has only been reported in cell cultures of A. pichinchensis. Therefore, plant cell cultured in an airlift reactor can be an alternative for the improved production of these anti-inflammatory compounds.
Collapse
Affiliation(s)
- Mariana Sánchez-Ramos
- Department of Biotechnology, Metropolitan Autonomous University-Iztapalapa Campus, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Mexico City 09310, Distrito Federal, Mexico
- Correspondence: (M.S.-R.); (F.C.-S.)
| | - Silvia Marquina-Bahena
- Chemical Research Center-IICBA, Autonomous University of the State of Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Laura Alvarez
- Chemical Research Center-IICBA, Autonomous University of the State of Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Antonio Bernabé-Antonio
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, Mexico
| | - Emmanuel Cabañas-García
- Scientific and Technological Studies Center No. 18, National Polytechnic Institute, Blvd. del Bote 202 Cerro del Gato, Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Zacatecas, Mexico
| | - Angélica Román-Guerrero
- Department of Biotechnology, Metropolitan Autonomous University-Iztapalapa Campus, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Mexico City 09310, Distrito Federal, Mexico
| | - Francisco Cruz-Sosa
- Department of Biotechnology, Metropolitan Autonomous University-Iztapalapa Campus, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Mexico City 09310, Distrito Federal, Mexico
- Correspondence: (M.S.-R.); (F.C.-S.)
| |
Collapse
|
9
|
Tian Y, Luo J, Wang H, Zaki HEM, Yu S, Wang X, Ahmed T, Shahid MS, Yan C, Chen J, Li B. Bioinspired Green Synthesis of Silver Nanoparticles Using Three Plant Extracts and Their Antibacterial Activity against Rice Bacterial Leaf Blight Pathogen Xanthomonas oryzae pv. oryzae. PLANTS (BASEL, SWITZERLAND) 2022; 11:2892. [PMID: 36365347 PMCID: PMC9654092 DOI: 10.3390/plants11212892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 06/02/2023]
Abstract
Rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is responsible for a significant reduction in rice production. Due to the small impact on the environment, biogenic nanomaterials are regarded as a new type of antibacterial agent. In this research, three colloids of silver nanoparticles (AgNPs) were synthesized with different biological materials such as Arctium lappa fruit, Solanum melongena leaves, and Taraxacum mongolicum leaves, and called Al-AgNPs, Sm-AgNPs and Tm-AgNPs, respectively. The appearance of brown colloids and the UV-Visible spectroscopy analysis proved the successful synthesis of the three colloids of AgNPs. Moreover, FTIR and XRD analysis revealed the formation of AgNPs structure. The SEM and TEM analysis indicated that the average diameters of the three synthesized spherical AgNPs were 20.18 nm, 21.00 nm, and 40.08 nm, respectively. The three botanical AgNPs had the strongest bacteriostatic against Xoo strain C2 at 20 μg/mL with the inhibition zone of 16.5 mm, 14.5 mm, and 12.4 mm, while bacterial numbers in a liquid broth (measured by OD600) decreased by 72.10%, 68.19%, and 65.60%, respectively. Results showed that the three AgNPs could inhibit biofilm formation and swarming motility of Xoo. The ultrastructural observation showed that Al-AgNPs adhered to the surface of bacteria and broke the bacteria. Overall, the three synthetic AgNPs could be used to inhibit the pathogen Xoo of rice bacterial leaf blight.
Collapse
Affiliation(s)
- Ye Tian
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China
| | - Hui Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur 411, Oman
| | - Shanhong Yu
- Taizhou Academy of Agricultural Sciences, Taizhou 317000, China
| | - Xiao Wang
- Ningbo Jiangbei District Agricultural Technology Extension Service Station, Ningbo 315033, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-khod 123, Oman
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Biogenic Synthesis of Silver Nanoparticles Using Catharanthus roseus and Its Cytotoxicity Effect on Vero Cell Lines. Molecules 2022; 27:molecules27196191. [PMID: 36234756 PMCID: PMC9572191 DOI: 10.3390/molecules27196191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Type 2 diabetes mellitus (DM2) is a chronic and sometimes fatal condition which affects people all over the world. Nanotherapeutics have shown tremendous potential to combat chronic diseases—including DM2—as they enhance the overall impact of drugs on biological systems. Greenly synthesized silver nanoparticles (AgNPs) from Catharanthus roseus methanolic extract (C. AgNPs) were examined primarily for their cytotoxic and antidiabetic effects. Methods: Characterization of C. AgNPs was performed by UV−vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and atomic force microscopy (AFM). The C. AgNPs were trialed on Vero cell line and afterwards on an animal model (rats). Results: The C. AgNPs showed standard structural and functional characterization as revealed by FTIR and XRD analyses. The zetapotential analysis indicated stability while EDX analysis confirmed the formation of composite capping with Ag metal. The cytotoxic effect (IC50) of C. AgNPs on Vero cell lines was found to be 568 g/mL. The animal model analyses further revealed a significant difference in water intake, food intake, body weight, urine volume, and urine sugar of tested rats after treatment with aqueous extract of C. AgNPs. Moreover, five groups of rats including control and diabetic groups (NC1, PC2, DG1, DG2, and DG3) were investigated for their blood glucose and glycemic control analysis. Conclusions: The C. AgNPs exhibited positive potential on the Vero cell line as well as on experimental rats. The lipid profile in all the diabetic groups (DG1-3) were significantly increased compared with both of the control groups (p < 0.05). The present study revealed the significance of C. AgNPs in nanotherapeutics.
Collapse
|
11
|
Perfluorobutanoic Acid (PFBA) Induces a Non-Enzymatic Oxidative Stress Response in Soybean (Glycine max L. Merr.). Int J Mol Sci 2022; 23:ijms23179934. [PMID: 36077331 PMCID: PMC9456126 DOI: 10.3390/ijms23179934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/20/2022] Open
Abstract
Short-chain perfluoroalkyl substances (PFAS) are generally considered to be of less environmental concern than long-chain analogues due to their comparatively shorter half-lives in biological systems. Perfluorobutanoic acid (PFBA) is a short-chain PFAS with the most root–shoot transfer factor of all PFAS. We investigated the impact of extended exposure of soybean plants to irrigation water containing environmentally relevant (100 pg–100 ng/L) to high (100 µg–1 mg/L) concentrations of PFBA using phenotypical observation, biochemical characterization, and transcriptomic analysis. The results showed a non-monotonous developmental response from the plants, with maximum stimulation and inhibition at 100 ng/L and 1 mg/L, respectively. Higher reactive oxygen species and low levels of superoxide dismutase (SOD) and catalase (CAT) activity were observed in all treatment groups. However transcriptomic analysis did not demonstrate differential expression of SOD and CAT coding genes, whereas non-enzymatic response genes and pathways were enriched in both groups (100 ng/L and 1 mg/L) with glycine betaine dehydrogenase showing the highest expression. About 18% of similarly downregulated genes in both groups are involved in the ethylene signaling pathway. The circadian rhythm pathway was the only differentially regulated pathway between both groups. We conclude that, similar to long chain PFAS, PFBA induced stress in soybean plants and that the observed hormetic stimulation at 100 ng/L represents an overcompensation response, via the circadian rhythm pathway, to the induced stress.
Collapse
|
12
|
Perveen S, Safdar N, Yasmin A, Bibi Y. DAT and PRX1 gene expression modulates vincristine production in Catharanthus roseus L. propagates using Cu, Fe and Zn nano structures. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111264. [PMID: 35643614 DOI: 10.1016/j.plantsci.2022.111264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/19/2022] [Indexed: 06/15/2023]
Abstract
Underlying mechanism of nanostructures upon monoterpene induction in Catharanthus roseus has not been explored yet. In the current study, Copper, Iron and Zinc nanoparticles were biosynthesized by Eriobotrya japonica seed extract and capped with reduced glutathione. Biosynthesized nanoparticles and their capped analogues were characterized by UV-visible spectrophotometer, FTIR, XRD and SEM. Selected concentration of nanostructures were used in plant tissue culture media which instigated the production of alkaloids, tannins and flavonoids without significantly affecting the growth index of propagated calli and shoots cultures of C. roseus. Accelerated vincristine production was noticed in propagated calli and shoots under copper and zinc nanostress (1645-1865 μg/ml respectively) with the least effect by iron nanostructure. Highest concentration of calcium was recorded in in vitro shoots under capped (3.42 mg/ml ± 7.16) and uncapped (4.41 mg/ml ± 20.44) Zn nanoparticles compared to control (2.82 mg/ml ± 13.41). Real time PCR depicts nano-zinc mediated increased expression of DAT and PRX1 genes of TIA pathway. Significant correlation among PRX1/DAT gene expression with vincristine production and calcium accumulation in the presence of nanostress validate by PCA. This study paved way the opportunities of metal biogenic nanomaterials as an ideal drug modulator in plant tissue culture studies.
Collapse
Affiliation(s)
- Shaghufta Perveen
- Microbiology and Biotechnology Research lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Naila Safdar
- Microbiology and Biotechnology Research lab, Fatima Jinnah Women University, Rawalpindi, Pakistan.
| | - Azra Yasmin
- Microbiology and Biotechnology Research lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Yamin Bibi
- Department of Botany, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
13
|
Nasrallah AK, Atia MAM, Abd El-Maksoud RM, Kord MA, Fouad AS. Salt Priming as a Smart Approach to Mitigate Salt Stress in Faba Bean (Vicia faba L.). PLANTS 2022; 11:plants11121610. [PMID: 35736763 PMCID: PMC9228577 DOI: 10.3390/plants11121610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/24/2023]
Abstract
The present investigation aims to highlight the role of salt priming in mitigating salt stress on faba bean. In the absence of priming, the results reflected an increase in H2O2 generation and lipid peroxidation in plants subjected to 200 mM salt shock for one week, accompanied by a decline in growth, photosynthetic pigments, and yield. As a defense, the shocked plants showed enhancements in ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), peroxidase (POX), and superoxide dismutase (SOD) activities. Additionally, the salt shock plants revealed a significant increase in phenolics and proline content, as well as an increase in the expression levels of glutathione (GSH) metabolism-related genes (the L-ascorbate peroxidase (L-APX) gene, the spermidine synthase (SPS) gene, the leucyl aminopeptidase (LAP) gene, the aminopeptidase N (AP-N) gene, and the ribonucleo-side-diphosphate reductase subunit M1 (RDS-M) gene). On the other hand, priming with increasing concentrations of NaCl (50–150 mM) exhibited little significant reduction in some growth- and yield-related traits. However, it maintained a permanent alert of plant defense that enhanced the expression of GSH-related genes, proline accumulation, and antioxidant enzymes, establishing a solid defensive front line ameliorating osmotic and oxidative consequences of salt shock and its injurious effect on growth and yield.
Collapse
Affiliation(s)
- Amira K. Nasrallah
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (A.K.N.); (M.A.K.)
| | - Mohamed A. M. Atia
- Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt
- Correspondence: (M.A.M.A.); (A.S.F.); Tel.: +20-1000164922 (M.A.M.A.); +20-1203770992 (A.S.F.)
| | - Reem M. Abd El-Maksoud
- Nucleic Acid & Protein Chemistry Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Maimona A. Kord
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (A.K.N.); (M.A.K.)
| | - Ahmed S. Fouad
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (A.K.N.); (M.A.K.)
- Correspondence: (M.A.M.A.); (A.S.F.); Tel.: +20-1000164922 (M.A.M.A.); +20-1203770992 (A.S.F.)
| |
Collapse
|
14
|
Nasim I, Shamly M, Jaju K, Vishnupriya V, Jabin Z. Antioxidant and anti-inflammatory activity of a nanoparticle based intracanal drugs. Bioinformation 2022; 18:450-454. [PMID: 36945225 PMCID: PMC10024780 DOI: 10.6026/97320630018450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022] Open
Abstract
The most common intracanal medication is calcium hydroxide. Its efficacy can be affected by a number of factors, including pH, serum proteins, collagen, and dentin. It's also ineffective against E. faecalis and fungus, lacks an anti-inflammatory component, and has mixed reviews when it comes to pain relief. Natural alternatives to synthetic intracanal medication are being researched at the moment. We evaluated the antioxidant and anti-inflammatory activity of green synthesized silver nanoparticle based intracanal medicaments. Silver nanoparticles integrated into calcium hydroxide and graphene oxide nanoparticles were the experimental groups and Calcium hydroxide served as the control. Antioxidant activity was determined using the DPPH and Nitric oxide assays, while anti-inflammatory activity was determined using the protein denaturation and Xanthine Oxidase Inhibition assays. Both experimental groups had higher antioxidant activity than the control group based on DPPH and Nitric oxide assays. Calcium hydroxide combined with silver nanoparticles demonstrated improved anti-inflammatory efficacy in a protein denaturation and Xanthine oxidase inhibition assay. Within the constraints of an in vitro study, it can be concluded that intracanal medicaments containing silver nanoparticles can be employed efficiently during root canal preparation. In comparison to standard calcium hydroxide-based intracanal medicaments, it has effective antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Iffat Nasim
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Marimuthu Shamly
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - KrishnaKanth Jaju
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Veeraraghavan Vishnupriya
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Zohra Jabin
- Divya Jyoti College of Dental Sciences, Modinagar, Uttar Pradesh, India
| |
Collapse
|
15
|
Chattha MU, Hassan MUU, Khan I, Nawaz M, Shah AN, Sattar A, Hashem M, Alamri S, Aslam MT, Alhaithloul HAS, Hassan MU, Qari SH. Hydrogen peroxide priming alleviates salinity induced toxic effect in maize by improving antioxidant defense system, ionic homeostasis, photosynthetic efficiency and hormonal crosstalk. Mol Biol Rep 2022; 49:5611-5624. [PMID: 35618939 DOI: 10.1007/s11033-022-07535-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Salinity stress (SS) is a serious detrimental factor for crop growth and productivity and its intensity it is continuously increasing which is posing serious threat to global food security. Hydrogen peroxide (H2O2) priming has emerged as an excellent strategy to mitigate the adverse impacts of SS. However, the role of H2O2 priming in mitigating the salinity induced toxicity is not fully explored. METHODS AND RESULTS Therefore, in this context the present study was conducted in complete randomized design (CRD) in factorial combination to determine the impact of H2O2 priming on germination, growth, physiological and biochemical traits, osmo-regulating compounds, hormonal balance and ionic homeostasis. The experiment was based on different levels of SS; control, 6 and 12 dS m-1 SS and priming treatments, control and H2O2 priming (2%). Salinity stress significantly reduced the growth, leaf water status (- 15.55%), calcium (Ca2+), potassium (K+) and magnesium (Mg2+) accumulation and increased malondialdehyde (MDA: + 29.95%), H2O2 (+ 21.48%) contents, osmo-regulating compounds (proline, soluble sugars), indole acetic acid (IAA), anti-oxidant activities (ascorbate peroxidase: APX, catalase: CAT, peroxidase: POD and ascorbic acid: AsA) and accumulation of sodium (Na+) and chloride (Cl-.). H2O2 priming effectively reduced the effects of SS on germination and growth and strengthen the anti-oxidant activities through reduced MDA (- 12.36%) and H2O2 (- 21.13%) and increasing leaf water status (16.90%), soluble protein (+ 71.32%), free amino acids (+ 26.41%), proline (+ 49.18%), soluble sugars (+ 71.02%), IAA (+ 57.59%) and gibberlic acid (GA) (+ 21.11%). Above all, H2O2 priming reduced the massive entry of noxious ions (Na+ and Cl-) while increased the entry of Ca2+, K+ and Mg2+ thus improved the plant performance under SS. CONCLUSION In conclusion H2O2 priming was proved beneficial for improving maize growth under SS thorough enhanced anti-oxidant activities, photosynthetic pigments, leaf water status, accumulation of osmo-regulating compounds, hormonal balance and ionic homeostasis.
Collapse
Affiliation(s)
| | - Muhammad Uzair Ul Hassan
- Department of Seed Science and Technology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Imran Khan
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Punjab, Pakistan.
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Punjab, Pakistan.
| | - Abdul Sattar
- College of Agriculture, Bahauddin Zakariya University, Multan Bahadur Sub Campus, Layyah, Punjab, 31200, Pakistan
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia.,Faculty of Science, Botany and Microbiology Department, Assiut University, Assiut, 71516, Egypt
| | - Saad Alamri
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | | | | | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Sameer H Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Mecca, 21955, Saudi Arabia
| |
Collapse
|
16
|
Nanotechnology in Plant Metabolite Improvement and in Animal Welfare. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020838] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plant tissue culture plays an important role in plant biotechnology due to its potential for massive production of improved crop varieties and high yield of important secondary metabolites. Several efforts have been made to ameliorate the effectiveness and production of plant tissue culture, using biotic and abiotic factors. Nowadays, the addition of nanoparticles as elicitors has, for instance, gained worldwide interest because of its success in microbial decontamination and enhancement of secondary metabolites. Nanoparticles are entities in the nanometric dimension range: they possess unique physicochemical properties. Among all nanoparticles, silver-nanoparticles (AgNPs) are well-known for their antimicrobial and hormetic effects, which in appropriate doses, led to the improvement of plant biomass as well as secondary metabolite accumulation. This review is focused on the evaluation of the integration of nanotechnology with plant tissue culture. The highlight is especially conveyed on secondary metabolite enhancement, effects on plant growth and biomass accumulation as well as their possible mechanism of action. In addition, some perspectives of the use of nanomaterials as potential therapeutic agents are also discussed. Thus, the information provided will be a good tool for future research in plant improvement and the large-scale production of important secondary metabolites. Elicitation of silver-nanoparticles, as well as nanomaterials, function as therapeutic agents for animal well-being is expected to play a major role in the process. However, nanosized supramolecular aggregates have received an increased resonance also in other fields of application such as animal welfare. Therefore, the concluding section of this contribution is dedicated to the description and possible potential and usage of different nanoparticles that have been the object of work and expertise also in our laboratories.
Collapse
|
17
|
Composition of Zingiber officinale Roscoe (Ginger), Soil Properties and Soil Enzyme Activities Grown in Different Concentration of Mineral Fertilizers. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ginger is rich in different chemical compounds such as phenolic compounds, terpenes, polysaccharides, lipids, organic acids, minerals, and vitamins. The present study investigated the effect of mineral fertilizers on the content of mineral elements in the rhizomes of Zingiber officinale Roscoe, soil enzymes activity, and soil properties in Surkhandarya Region, Uzbekistan. To the best of our knowledge, the present study is the first in Uzbekistan to investigate the mineral elements of ginger rhizome inhabiting Termez district, Surkhandarya region. A Field experiment was conducted at the Surkhandarya experimental station research Institute. Four treatments have been studied (Control with no fertilizers (T-1), N75P50K50 kg/ha (T-2), N125P100K100 kg/ha (T-3) and N100P75K75 + B3Zn6Fe6 kg/ha (T-4)). Results showed that T-4 treatment significantly increased ginger rhizome K, Ca, P, Mg, Fe, Na, Mn, Zn, Si, Li, and V content as compared to all other treatments and control. T-3 treatment significantly increased Mo, Ga, and Ag content in comparison to other treatments. Soil enzymes showed a significant increase for all treatments against control, while T-4 treatment has recorded the highest enzyme activity in comparison to all other treatments in urease, invertase, and catalase content. Soil chemical properties have significantly changed for all treatments against the non-cultivated soil and the zero fertilizers plantation with variation among different treatments. Results showed that ginger root is rich in minerals and can be used as a great potential for nutritional supplements and soil enrichment. This study suggest that combination of macro-microelements have the potential to increase the content of mineral elements in the rhizomes of ginger in field conditions.
Collapse
|
18
|
El-Taher AM, Abd El-Raouf HS, Osman NA, Azoz SN, Omar MA, Elkelish A, Abd El-Hady MAM. Effect of Salt Stress and Foliar Application of Salicylic Acid on Morphological, Biochemical, Anatomical, and Productivity Characteristics of Cowpea ( Vigna unguiculata L.) Plants. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010115. [PMID: 35009118 PMCID: PMC8747403 DOI: 10.3390/plants11010115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 05/09/2023]
Abstract
The present study aimed to investigate the impact of salinity on vegetative growth, chemical constituents, and yields of cowpeas (Vigna unguiculata) and the possible benefits of salicylic acid (SA) on these plants after damage from salinity. To achieve these objectives, two pot experiments were carried out at the Faculty of Agriculture, Al-Azhar University, Egypt, during the two growing seasons of 2019 and 2020. The results revealed that salinity significantly decreased, and SA treatment substantially increased the plant height, number of compound leaves, number of internodes per plant, fresh weights of leaves and stems, productivity, photosynthetic pigments content, and concentrations of nitrogen (N), phosphorus (P), and potassium (K) of the cowpea plants compared with the control. The anatomical structure of stems and leaves of the plants were also investigated, and it was found that positive variations in the anatomical structure of the median portion of the main stems and blades of mature foliage leaves were detected in the stressed and SA-treated plants. In conclusion, SA treatment increased the salt stress tolerance of cowpea plants by improving the morphological and physiological attributes of the plants.
Collapse
Affiliation(s)
- Ahmed M. El-Taher
- Department of Agriculture Botany, Agriculture Faculty, Al-Azhar University, Cairo 11651, Egypt; (A.M.E.-T.); (H.S.A.E.-R.); (M.A.O.)
| | - Hany S. Abd El-Raouf
- Department of Agriculture Botany, Agriculture Faculty, Al-Azhar University, Cairo 11651, Egypt; (A.M.E.-T.); (H.S.A.E.-R.); (M.A.O.)
- Department of Biology, University College, Taif University, Taif 21944, Saudi Arabia
| | - Nahid A. Osman
- Department of Science and Technology, Ranya Collage, Taif University, Taif 21944, Saudi Arabia;
| | - Samah N. Azoz
- Agricultural Botany, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence:
| | - Magdy A. Omar
- Department of Agriculture Botany, Agriculture Faculty, Al-Azhar University, Cairo 11651, Egypt; (A.M.E.-T.); (H.S.A.E.-R.); (M.A.O.)
| | - Amr Elkelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Mahmoud A. M. Abd El-Hady
- Vegetables and Floriculture Department, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt;
| |
Collapse
|