1
|
Fulvio F, Pieracci Y, Ascrizzi R, Bassolino L, Flamini G, Paris R. Insights into terpenes profiling and transcriptional analyses during flowering of different Cannabis sativa L. chemotypes. PHYTOCHEMISTRY 2024; 229:114294. [PMID: 39374748 DOI: 10.1016/j.phytochem.2024.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Terpenes, volatile compounds known for their aromatic and therapeutic properties, play a pivotal role in shaping the overall chemical profile of Cannabis sativa L. Their biosynthesis in planta occurs in trichomes and involves the 2-C-methyl-D-erythritol 4-phosphate (MEP) and the mevalonic acid (MVA) pathways, responsible for producing the substrates utilized by a family of enzymes, the terpene synthases (TPS), for terpene production. In this work, a comprehensive approach combining chemical analyses of the volatile compounds characterizing the aroma of the inflorescences three C. sativa genotypes collected at three stages of maturity and the transcriptional analyses of key genes involved in the terpene biosynthesis was adopted to study this pathway. The results revealed different terpene profiles among genotypes, which were characterized by peculiar compounds belonging to the sesqui- (CINBOL and Fibrante) or monoterpene (Ermo) categories. Both structural and putative regulatory genes were analysed by RT-qPCR, revealing distinct transcriptional profiles of Terpene Synthases, contributing to the diversity of mono and sesquiterpenes synthesized. Furthermore, the research delved into potential regulatory genes associated with trichome formation, a crucial factor influencing terpene accumulation. This integrated approach highlighted complex mechanisms governing terpene accumulation in cannabis, while also offering potential regulators putatively involved in this pathway.
Collapse
Affiliation(s)
- Flavia Fulvio
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), Via di Corticella 133, 40128, Bologna, Italy
| | - Ylenia Pieracci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Roberta Ascrizzi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health" (NUTRAFOOD), University of Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| | - Laura Bassolino
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), Via di Corticella 133, 40128, Bologna, Italy
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health" (NUTRAFOOD), University of Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| | - Roberta Paris
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), Via di Corticella 133, 40128, Bologna, Italy.
| |
Collapse
|
2
|
Hancock J, Livingston SJ, Samuels L. Building a biofactory: Constructing glandular trichomes in Cannabis sativa. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102549. [PMID: 38761520 DOI: 10.1016/j.pbi.2024.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 05/20/2024]
Abstract
Flowers of Cannabis sativa L. are densely covered with glandular trichomes containing cannabis resin that is used for medicinal and recreational purposes. The highly productive glandular trichomes have been described as 'biofactories.' In this review, we use this analogy to highlight recent advances in cannabis cell biology, metabolomics, and transcriptomics. The biofactory is built by epidermal outgrowths that differentiate into peltate-like glandular trichome heads, consisting of a disc of interconnected secretory cells with unique cellular structures. Cannabinoid and terpenoid products are warehoused in the extracellular storage cavity. Finally, multicellular stalks raise the glandular heads above the epidermis, giving cannabis flower their frosty appearance.
Collapse
Affiliation(s)
- Jessica Hancock
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Samuel J Livingston
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Lacey Samuels
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
3
|
Huang X, Chen W, Zhao Y, Chen J, Ouyang Y, Li M, Gu Y, Wu Q, Cai S, Guo F, Zhu P, Ao D, You S, Vasseur L, Liu Y. Deep learning-based quantification and transcriptomic profiling reveal a methyl jasmonate-mediated glandular trichome formation pathway in Cannabis sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1155-1173. [PMID: 38332528 DOI: 10.1111/tpj.16663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Cannabis glandular trichomes (GTs) are economically and biotechnologically important structures that have a remarkable morphology and capacity to produce, store, and secrete diverse classes of secondary metabolites. However, our understanding of the developmental changes and the underlying molecular processes involved in cannabis GT development is limited. In this study, we developed Cannabis Glandular Trichome Detection Model (CGTDM), a deep learning-based model capable of differentiating and quantifying three types of cannabis GTs with a high degree of efficiency and accuracy. By profiling at eight different time points, we captured dynamic changes in gene expression, phenotypes, and metabolic processes associated with GT development. By integrating weighted gene co-expression network analysis with CGTDM measurements, we established correlations between phenotypic variations in GT traits and the global transcriptome profiles across the developmental gradient. Notably, we identified a module containing methyl jasmonate (MeJA)-responsive genes that significantly correlated with stalked GT density and cannabinoid content during development, suggesting the existence of a MeJA-mediated GT formation pathway. Our findings were further supported by the successful promotion of GT development in cannabis through exogenous MeJA treatment. Importantly, we have identified CsMYC4 as a key transcription factor that positively regulates GT formation via MeJA signaling in cannabis. These findings provide novel tools for GT detection and counting, as well as valuable information for understanding the molecular regulatory mechanism of GT formation, which has the potential to facilitate the molecular breeding, targeted engineering, informed harvest timing, and manipulation of cannabinoid production.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Chen
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuqing Zhao
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingjing Chen
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuzeng Ouyang
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Minxuan Li
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu Gu
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qinqin Wu
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sen Cai
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Foqin Guo
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Panpan Zhu
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Deyong Ao
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shijun You
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liette Vasseur
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Yuanyuan Liu
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
4
|
Wang Q, Zhao X, Jiang Y, Jin B, Wang L. Functions of Representative Terpenoids and Their Biosynthesis Mechanisms in Medicinal Plants. Biomolecules 2023; 13:1725. [PMID: 38136596 PMCID: PMC10741589 DOI: 10.3390/biom13121725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Terpenoids are the broadest and richest group of chemicals obtained from plants. These plant-derived terpenoids have been extensively utilized in various industries, including food and pharmaceuticals. Several specific terpenoids have been identified and isolated from medicinal plants, emphasizing the diversity of biosynthesis and specific functionality of terpenoids. With advances in the technology of sequencing, the genomes of certain important medicinal plants have been assembled. This has improved our knowledge of the biosynthesis and regulatory molecular functions of terpenoids with medicinal functions. In this review, we introduce several notable medicinal plants that produce distinct terpenoids (e.g., Cannabis sativa, Artemisia annua, Salvia miltiorrhiza, Ginkgo biloba, and Taxus media). We summarize the specialized roles of these terpenoids in plant-environment interactions as well as their significance in the pharmaceutical and food industries. Additionally, we highlight recent findings in the fields of molecular regulation mechanisms involved in these distinct terpenoids biosynthesis, and propose future opportunities in terpenoid research, including biology seeding, and genetic engineering in medicinal plants.
Collapse
Affiliation(s)
| | | | | | | | - Li Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Q.W.); (X.Z.); (Y.J.); (B.J.)
| |
Collapse
|
5
|
Xie Z, Mi Y, Kong L, Gao M, Chen S, Chen W, Meng X, Sun W, Chen S, Xu Z. Cannabis sativa: origin and history, glandular trichome development, and cannabinoid biosynthesis. HORTICULTURE RESEARCH 2023; 10:uhad150. [PMID: 37691962 PMCID: PMC10485653 DOI: 10.1093/hr/uhad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023]
Abstract
Is Cannabis a boon or bane? Cannabis sativa has long been a versatile crop for fiber extraction (industrial hemp), traditional Chinese medicine (hemp seeds), and recreational drugs (marijuana). Cannabis faced global prohibition in the twentieth century because of the psychoactive properties of ∆9-tetrahydrocannabinol; however, recently, the perspective has changed with the recognition of additional therapeutic values, particularly the pharmacological potential of cannabidiol. A comprehensive understanding of the underlying mechanism of cannabinoid biosynthesis is necessary to cultivate and promote globally the medicinal application of Cannabis resources. Here, we comprehensively review the historical usage of Cannabis, biosynthesis of trichome-specific cannabinoids, regulatory network of trichome development, and synthetic biology of cannabinoids. This review provides valuable insights into the efficient biosynthesis and green production of cannabinoids, and the development and utilization of novel Cannabis varieties.
Collapse
Affiliation(s)
- Ziyan Xie
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yaolei Mi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lingzhe Kong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Maolun Gao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shanshan Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Sun
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhichao Xu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
6
|
Jiang Z, Zhou P, Shao Y, Zhang Q, Yue W, Qu C, Wu Q. Applying quantitative spatial phenotypes analysis to the investigation of peltate glandular trichomes development pattern in Perilla frutescens. PLANT METHODS 2023; 19:88. [PMID: 37626389 PMCID: PMC10464211 DOI: 10.1186/s13007-023-01072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Glandular trichomes, often referred to as "phytochemical factories", plays a crucial role in plant growth and metabolism. As the site for secretion and storage, the development of glandular trichomes is related to the dynamic biosynthesis of specialised metabolites. The study aims to explore the relationship between spatial phenotype and dynamic metabolism of glandular trichomes, and establish a novel approach for the exploration and study of the regulatory mechanism governing the development of glandular trichomes. RESULTS In this study, we proposed a technical route based on the relative deviation value to distinguish the peltate glandular trichomes (PGTs) from the background tissues and extract their spatial phenotype. By defining glandular trichome developmental stages based on the leaf vein growth axis, we found that young PGTs were densely distributed near the proximal end of growth axis of the leaf veins, where perillaketone, a primary metabolite of PGTs, is predominantly accumulated. Conversely, mature PGTs are typically found near the distal end of the mid-vein growth axis and the lateral end of the secondary vein growth axis, where the accumulation rate of isoegomaketone and egomaketone exceeds that of perillaketone in PGTs. We further identified spatial phenotypic parameters, Lsum and d, as independent variables to construct a linear regression model that illustrates the relationship between the spatial phenotypes and metabolite content of PGTs, including perillaketone (R2 = 0.698), egomaketone (R2 = 0.593), isoegomaketone (R2 = 0.662) and the sum of the amount (R2 = 0.773). CONCLUSIONS This model proved that the development of PGTs was correlated with the growth of the entire leaf, and the development stage of PGTs can be identifined by spatial phenotypes based on the leaf veins. In conclusion, the findings of this study enhance our understanding of correlation between spatial phenotype and development of glandular trichomes and offer a new approach to explore and study the regulatory mechanism of glandular trichome development.
Collapse
Affiliation(s)
- Zheng Jiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Peina Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongfang Shao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qianqian Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Yue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cheng Qu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qinan Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China.
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, 210023, China.
| |
Collapse
|