1
|
Gilbertson L, Puchta H, Slotkin RK. The future of genome editing in plants. NATURE PLANTS 2025:10.1038/s41477-025-01956-4. [PMID: 40169873 DOI: 10.1038/s41477-025-01956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025]
Abstract
The future of genome editing in plants differs from how it is used today. For both research and product development, we need to think beyond the creation of simple single-nucleotide polymorphisms and short deletions in genes. We believe that the future of genome editing in plants involves mimicking the natural evolutionary processes that have shaped plant genomes and been the target of artificial selection during crop domestication and improvement. This includes programming large structural variations (insertions, duplications, deletions, inversions and translocations) and controlling plant recombination and endogenous transposable elements that naturally reshape plant genomes. The key is that genome editing will be used to reshape plant genomes in a manner that could have happened naturally, but now these changes can be directed rapidly in the laboratory.
Collapse
Affiliation(s)
| | - Holger Puchta
- Department of Molecular Biology, Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, MO, USA.
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
2
|
Shohael AM, Kelly J, Venkataraman S, Hefferon K. Unlocking Opportunities and Overcoming Challenges in Genetically Engineered Biofortification. Nutrients 2025; 17:518. [PMID: 39940376 PMCID: PMC11821181 DOI: 10.3390/nu17030518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Micronutrient deficiencies affect over three billion people globally; there is a particularly severe problem with iron and zinc nutrition in developing countries. While several strategies exist to combat these deficiencies, biofortification has emerged as a powerful and sustainable approach to enhance the nutritional value of staple crops. This review examines recent advances in crop biofortification and their potential to address global nutritional challenges. We present successful case studies including iron-enriched cassava, nutrient-enhanced tomatoes, and omega-3-fortified oilseed crops, demonstrating the diverse possibilities for improving nutritional outcomes. The integration of novel plant-based protein production techniques has further expanded opportunities for sustainable nutrition. However, significant challenges remain, including complex environmental interactions, regulatory considerations, and sociocultural barriers to adoption. Economic analyses suggest biofortification offers substantial return on investment, with every dollar invested generating up to seventeen dollars in benefits through reduced disease burden. As global food security challenges intensify due to climate change, biofortified crops represent a crucial tool for improving nutritional outcomes, particularly in low- and middle-income countries. We conclude by examining emerging opportunities and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Abdullah Mohammad Shohael
- Cell Genetics and Plant Biotechnology Lab, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka 1342, Bangladesh;
| | - Jojo Kelly
- School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14850, USA
| | | | - Kathleen Hefferon
- Department of Microbiology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
3
|
Uranga M, Martín-Hernández AM, De Storme N, Pasin F. CRISPR-Cas systems and applications for crop bioengineering. Front Bioeng Biotechnol 2024; 12:1483857. [PMID: 39479297 PMCID: PMC11521923 DOI: 10.3389/fbioe.2024.1483857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
CRISPR-Cas technologies contribute to enhancing our understanding of plant gene functions, and to the precise breeding of crop traits. Here, we review the latest progress in plant genome editing, focusing on emerging CRISPR-Cas systems, DNA-free delivery methods, and advanced editing approaches. By illustrating CRISPR-Cas applications for improving crop performance and food quality, we highlight the potential of genome-edited crops to contribute to sustainable agriculture and food security.
Collapse
Affiliation(s)
- Mireia Uranga
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Nico De Storme
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Valencia, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
4
|
Polidoros A, Nianiou-Obeidat I, Tsakirpaloglou N, Petrou N, Deligiannidou E, Makri NM. Genome-Editing Products Line up for the Market: Will Europe Harvest the Benefits from Science and Innovation? Genes (Basel) 2024; 15:1014. [PMID: 39202374 PMCID: PMC11353485 DOI: 10.3390/genes15081014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technologies have revolutionized genome editing, significantly advancing the improvement of cultivated crop species. This review provides an overview of genome-edited crops that have either reached the market or received the necessary approvals but are not yet available to consumers. We analyze various genome-editing studies to understand the distribution of different genome-editing systems, the types of site-directed nucleases employed, and the geographical spread of these studies, with a specific focus on global and European contexts. Additionally, we examine the target crops involved. The review also outlines the multiple steps required for the legal acceptance of genome-edited crops within European jurisdictions. We conclude with suggestions for the future prospects of genome-editing research in Europe, aiming to streamline the approval process and enhance the development and adoption of genome-edited crops.
Collapse
Affiliation(s)
- Alexios Polidoros
- Laboratory of Genetics and Plant Breeding, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.N.-O.); (N.T.); (N.P.); (E.D.); (N.-M.M.)
| | | | | | | | | | | |
Collapse
|
5
|
Cis-editing for all. Nat Biotechnol 2024; 42:821. [PMID: 38844547 DOI: 10.1038/s41587-024-02299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
|
6
|
Vondracek K, Altpeter F, Liu T, Lee S. Advances in genomics and genome editing for improving strawberry ( Fragaria ×ananassa). Front Genet 2024; 15:1382445. [PMID: 38706796 PMCID: PMC11066249 DOI: 10.3389/fgene.2024.1382445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
The cultivated strawberry, Fragaria ×ananassa, is a recently domesticated fruit species of economic interest worldwide. As such, there is significant interest in continuous varietal improvement. Genomics-assisted improvement, including the use of DNA markers and genomic selection have facilitated significant improvements of numerous key traits during strawberry breeding. CRISPR/Cas-mediated genome editing allows targeted mutations and precision nucleotide substitutions in the target genome, revolutionizing functional genomics and crop improvement. Genome editing is beginning to gain traction in the more challenging polyploid crops, including allo-octoploid strawberry. The release of high-quality reference genomes and comprehensive subgenome-specific genotyping and gene expression profiling data in octoploid strawberry will lead to a surge in trait discovery and modification by using CRISPR/Cas. Genome editing has already been successfully applied for modification of several strawberry genes, including anthocyanin content, fruit firmness and tolerance to post-harvest disease. However, reports on many other important breeding characteristics associated with fruit quality and production are still lacking, indicating a need for streamlined genome editing approaches and tools in Fragaria ×ananassa. In this review, we present an overview of the latest advancements in knowledge and breeding efforts involving CRISPR/Cas genome editing for the enhancement of strawberry varieties. Furthermore, we explore potential applications of this technology for improving other Rosaceous plant species.
Collapse
Affiliation(s)
- Kaitlyn Vondracek
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma, FL, United States
- University of Florida, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Fredy Altpeter
- University of Florida, Agronomy Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Tie Liu
- University of Florida, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Seonghee Lee
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma, FL, United States
| |
Collapse
|
7
|
Kerr SC, Shehnaz S, Paudel L, Manivannan MS, Shaw LM, Johnson A, Velasquez JTJ, Tanurdžić M, Cazzonelli CI, Varkonyi-Gasic E, Prentis PJ. Advancing tree genomics to future proof next generation orchard production. FRONTIERS IN PLANT SCIENCE 2024; 14:1321555. [PMID: 38312357 PMCID: PMC10834703 DOI: 10.3389/fpls.2023.1321555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024]
Abstract
The challenges facing tree orchard production in the coming years will be largely driven by changes in the climate affecting the sustainability of farming practices in specific geographical regions. Identifying key traits that enable tree crops to modify their growth to varying environmental conditions and taking advantage of new crop improvement opportunities and technologies will ensure the tree crop industry remains viable and profitable into the future. In this review article we 1) outline climate and sustainability challenges relevant to horticultural tree crop industries, 2) describe key tree crop traits targeted for improvement in agroecosystem productivity and resilience to environmental change, and 3) discuss existing and emerging genomic technologies that provide opportunities for industries to future proof the next generation of orchards.
Collapse
Affiliation(s)
- Stephanie C Kerr
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Saiyara Shehnaz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lucky Paudel
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Mekaladevi S Manivannan
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Lindsay M Shaw
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda Johnson
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Jose Teodoro J Velasquez
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Miloš Tanurdžić
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Peter J Prentis
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
8
|
Liu G, He H, Wang P, Zhao X, Ren F. Glucoraphanin Accumulation via Glucoraphanin Synthesis Promotion during Broccoli Germination. Foods 2023; 13:41. [PMID: 38201069 PMCID: PMC10778628 DOI: 10.3390/foods13010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Glucoraphanin is an important glucosinolate which is widely distributed in Brassica vegetables and poses an anticancer effect to humans. Although researchers have paid a lot of attention to the changes in glucoraphanin concentration in seedlings of broccoli over 1-2 weeks, there has been little research focusing on the total whole-sprout glucoraphanin content within broccoli seedlings over 1-5 weeks. However, it is necessary to clarify the changes in total glucoraphanin content during the broccoli sprouting stage as broccoli seedlings are novel plant foods. This research explored glucoraphanin absolute accumulation and the biosynthesis mechanism in broccoli seedlings during a 5-week growth period. The results showed that glucoraphanin accumulation content was higher at week 4 than in the seeds. Moreover, the relative DL-methionine contents increased significantly after 3 weeks. Glucoraphanin synthetic gene expression levels were increased after 3 weeks, but the gene expressions of AOP3 (encoding 2-oxoglutarate-dependent dioxygenases) and MYR (encoding myrosinase) were significantly decreased. Furthermore, the 20 essential DEGs obtained can provide new insight into understanding the developmental regulation of broccoli seedlings. In addition, the results can also provide information on how to obtain higher glucoraphanin contents in broccoli sprouts.
Collapse
Affiliation(s)
- Guangmin Liu
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Hongju He
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Pengjie Wang
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Xirui Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
9
|
Kharbikar L, Konwarh R, Chakraborty M, Nandanwar S, Marathe A, Yele Y, Ghosh PK, Sanan-Mishra N, Singh AP. 3Bs of CRISPR-Cas mediated genome editing in plants: exploring the basics, bioinformatics and biosafety landscape. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1825-1850. [PMID: 38222286 PMCID: PMC10784264 DOI: 10.1007/s12298-023-01397-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/16/2024]
Abstract
The recent thrust in research has projected the type II clustered regularly interspaced short palindromic repeats and associated protein 9 (CRISPR-Cas9) system as an avant-garde plant genome editing tool. It facilitates the induction of site-specific double-stranded DNA cleavage by the RNA-guided DNA endonuclease (RGEN), Cas9. Elimination, addition, or alteration of sections in DNA sequence besides the creation of a knockout genotype (CRISPRko) is aided by the CRISPR-Cas9 system in its wild form (wtCas9). The inactivation of the nuclease domain generates a dead Cas9 (dCas9), which is capable of targeting genomic DNA without scissoring it. The dCas9 system can be engineered by fusing it with different effectors to facilitate transcriptional activation (CRISPRa) and transcriptional interference (CRISPRi). CRISPR-Cas thus holds tremendous prospects as a genome-manipulating stratagem for a wide gamut of crops. In this article, we present a brief on the fundamentals and the general workflow of the CRISPR-Cas system followed by an overview of the prospects of bioinformatics in propelling CRISPR-Cas research with a special thrust on the available databases and algorithms/web-accessible applications that have aided in increasing the usage and efficiency of editing. The article also provides an update on the current regulatory landscape in different countries on the CRISPR-Cas edited plants to emphasize the far-reaching impact of the genomic editing technology. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01397-3.
Collapse
Affiliation(s)
- Lalit Kharbikar
- ICAR - National Institute of Biotic Stress Management (NIBSM), Raipur, India
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Rocktotpal Konwarh
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Baba Kinaram Research Foundation (BKRF), Bramsthan, Mau, Uttar Pradesh India
| | - Monoswi Chakraborty
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Bengaluru, Karnataka India
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Shweta Nandanwar
- ICAR - National Institute of Biotic Stress Management (NIBSM), Raipur, India
| | - Ashish Marathe
- ICAR - National Institute of Biotic Stress Management (NIBSM), Raipur, India
| | - Yogesh Yele
- ICAR - National Institute of Biotic Stress Management (NIBSM), Raipur, India
| | - Probir Kumar Ghosh
- ICAR - National Institute of Biotic Stress Management (NIBSM), Raipur, India
| | - Neeti Sanan-Mishra
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Anand Pratap Singh
- Baba Kinaram Research Foundation (BKRF), Bramsthan, Mau, Uttar Pradesh India
| |
Collapse
|
10
|
Teplitski M, Touchman JW, Almenar E, Evanega S, Aust D, Yoshinaka M, Estes VL. Bio-based solutions for reducing loss and waste of fresh fruits and vegetables: an industry perspective. Curr Opin Biotechnol 2023; 83:102971. [PMID: 37541160 DOI: 10.1016/j.copbio.2023.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 08/06/2023]
Abstract
Reducing loss and waste of fresh produce requires a systems-wide approach, where supply chain, logistical, and cold chain considerations are balanced with plant breeding, biotechnological, biochemical, and bioinspired solutions. Even though bioengineered specialty crops got off to a rocky start, genetically modified nonbrowning apples and potatoes have been on the market for almost a decade, with bioengineered pineapples, tomatoes, and gene-edited leafy greens with novel taste and nutritional profiles entering the market this year. Traditional and modern breeding expand the toolset of solutions for alleviating labor concerns, extending shelf life, and developing a generally tastier product less likely to be wasted by consumers. Critical to the systems approach is ensuring shelf-life extensions are not 'swallowed' into the supply chain and passed on to consumers.
Collapse
Affiliation(s)
- Max Teplitski
- International Fresh Produce Association, Washington, DC, USA.
| | | | - Eva Almenar
- School of Packaging, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | - Vonnie L Estes
- International Fresh Produce Association, Washington, DC, USA
| |
Collapse
|
11
|
Kuzma J, Grieger K, Cimadori I, Cummings CL, Loschin N, Wei W. Parameters, practices, and preferences for regulatory review of emerging biotechnology products in food and agriculture. Front Bioeng Biotechnol 2023; 11:1256388. [PMID: 37840660 PMCID: PMC10569304 DOI: 10.3389/fbioe.2023.1256388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
This paper evaluates the U.S. regulatory review of three emerging biotechnology products according to parameters, practices, and endpoints of assessments that are important to stakeholders and publics. First, we present a summary of the literature on variables that are important to non-expert publics in governing biotech products, including ethical, social, policy process, and risk and benefit parameters. Second, we draw from our USDA-funded project results that surveyed stakeholders with subject matter expertise about their attitudes towards important risk, benefit, sustainability, and societal impact parameters for assessing novel agrifood technologies, including biotech. Third, we evaluate the regulatory assessments of three food and agricultural biotechnology case studies that have been reviewed under U.S. regulatory agencies and laws of the Coordinated Framework for the Regulation of Biotechnology, including gene-edited soybeans, beef cattle, and mustard greens. Evaluation of the regulatory review process was based on parameters identified in steps 1 and 2 which were deemed important to both publics and stakeholders. Based on this review, we then propose several policy options for U.S. federal agencies to strengthen their oversight processes to better align with a broader range of parameters to support sustainable agrifood products that rely on novel technologies. These policy options include 1) those that would not require new institutions or legal foundations (such as conducting Environmental Impact Statements and/or requiring a minimal level of safety data), 2) those that would require a novel institutional or cross-institutional framework (such as developing a publicly-available website and/or performing holistic sustainability assessments), and 3) those that would require the agencies to have additional legal authorities (such as requiring agencies to review biotech products according to a minimal set of health, environmental, and socio-economic parameters). Overall, the results of this analysis will be important for guiding policy practice and formulation in the regulatory assessment of emerging biotechnology products that challenge existing legal and institutional frameworks.
Collapse
Affiliation(s)
- Jennifer Kuzma
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- School of Public and International Affairs, North Carolina State University, Raleigh, NC, United States
| | - Khara Grieger
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
- North Carolina Plant Science Initiative, North Carolina State University, Raleigh, NC, United States
| | - Ilaria Cimadori
- Yale School of the Environment, Yale University, New Haven, CT, United States
| | - Christopher L. Cummings
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Engineering Research and Development Center, United States Army Corps of Engineers, Vicksburg, MS, United States
- Gene Edited Foods Project, Iowa State University, Ames, IA, United States
| | - Nick Loschin
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
- North Carolina Plant Science Initiative, North Carolina State University, Raleigh, NC, United States
| | - Wei Wei
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
- North Carolina Plant Science Initiative, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
12
|
Xin Z. Mutagenesis in the Age of Next-Generation-Sequencing and Genome Editing. PLANTS (BASEL, SWITZERLAND) 2023; 12:3403. [PMID: 37836142 PMCID: PMC10574159 DOI: 10.3390/plants12193403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Mutagenesis is a proven, classical technique for inducing a broad spectrum of DNA variations and has led to the creation of thousands of improved varieties in many crop species [...].
Collapse
Affiliation(s)
- Zhanguo Xin
- Plant Stress and Germplasm Development Unit, USDA-ARS, 3810 4th Street, Lubbock, TX 79415, USA
| |
Collapse
|