1
|
Mondéjar-López M, García-Simarro MP, Navarro-Simarro P, Gómez-Gómez L, Ahrazem O, Niza E. A review on the encapsulation of "eco-friendly" compounds in natural polymer-based nanoparticles as next generation nano-agrochemicals for sustainable agriculture and crop management. Int J Biol Macromol 2024; 280:136030. [PMID: 39332563 DOI: 10.1016/j.ijbiomac.2024.136030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Crop management techniques and sustainable agriculture offer a comprehensive farming method that incorporates social, economic, and ecological factors. Sustainable agriculture places a high priority on soil health, water efficiency, and biodiversity conservation in order to develop resilient and regenerative food systems that can feed both the current and future generations. Our goal in this review is to give a thorough overview of current developments in the use of polysaccharides as raw materials for the encapsulation of natural chemicals in nanoparticles as novel crop protection products. The search for recent research articles and latest reviews has been carried out through pubmed, google scholar, BASE as search engines. Offer cutting-edge solutions for sustainable crop management that satisfy the demands of an expanding population, comply with changing legal frameworks, and address environmental issues by encasing natural compounds inside polysaccharide-based nanoparticles. A variety of natural substances, such as essential oils, plant extracts, antimicrobials compounds and miRNA, can be included in these nanoparticles. These materials have many advantages, such as biocompatibility, biodegradability and controlled release of active compounds. Thanks to their action mechanism, they are able to mediate hormone signaling and gene expression in different plant physiological aspects, as well as enhance their tolerance to abiotic stress conditions. Sustainable agriculture can be supported by this type of treatments, correctly developing food safety through the production of non-toxic nanoparticles, low-cost industrial scale-up and the use of biodegradable materials. Polysaccharide-based nanoparticles have a wide range of uses in agriculture: they improve crop yields, encourage "eco-friendly" farming methods and can decrease the concentrations of active ingredient used, providing an accurate and affective dosage without damaging further species, as well as avoiding treatment resistance risks. These nanoparticles can also reduce the negative effects of chemical fertilizers and pesticides, contributing to the environmentally friendly agricultural development. Furthermore, the application of polysaccharide-based nanoparticles is consistent with the expanding trend of green and sustainable agriculture.
Collapse
Affiliation(s)
- María Mondéjar-López
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Maria Paz García-Simarro
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Naplatec S.L, Calle Mayor 36, 02001 Albacete, Spain
| | - Pablo Navarro-Simarro
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Facultad de Farmacia, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, C/ José María Sánchez Ibáñez s/n, 02008 Albacete, Spain
| | - Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Enrique Niza
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Facultad de Farmacia, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, C/ José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| |
Collapse
|
2
|
Hernández-Guzmán C, Hernández-Montiel LG, Velázquez-Lizarraga AE, Ríos-González LJ, Huerta-Ochoa S, Cervantes-Güicho VDJ, Morales-Martínez TK, Mejía-Ruíz CH, Reyes AG. Enhanced Antioxidant, Antifungal, and Herbicidal Activities through Bioconversion of Diosgenin by Yarrowia lipolytica P01a. PLANTS (BASEL, SWITZERLAND) 2024; 13:2629. [PMID: 39339605 PMCID: PMC11434977 DOI: 10.3390/plants13182629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
This study explores the bioconversion of diosgenin by Yarrowia lipolytica P01a, focusing on enhancing the antioxidant, antifungal, and herbicidal activities of the resulting extracts. The bioconversion process, involving glycosylation and hydroxylation, produced significant amounts of protodioscin and soyasaponin I. The extracts showed superior antioxidant activity, with up to 97.02% inhibition of ABTS· radicals and 33.30% inhibition of DPPH· radicals at 1000 mg L-1 of diosgenin. Antifungal assays revealed strong inhibitory effects against Botrytis cinerea, Alternaria sp., and Aspergillus niger, with maximum inhibition rates of 67.34%, 35.63%, and 65.53%, respectively. Additionally, the herbicidal activity of the bioconverted extracts was comparable to commercial herbicides, achieving 100% inhibition of seed germination in both monocotyledonous and dicotyledonous plants. These findings suggest that the Y. lipolytica P01a-mediated bioconversion of diosgenin could provide a sustainable and eco-friendly alternative for developing natural biofungicides and bioherbicides.
Collapse
Affiliation(s)
- Christian Hernández-Guzmán
- Unidad Iztapalapa, Departamento de Biotecnología, Universidad Autónoma Metropolitana, México City 02128, Mexico
| | - Luis G Hernández-Montiel
- Centro de Investigaciones Biológicas del Noroeste, Programa de Agricultura en Zonas Áridas, Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Mexico
| | | | - Leopoldo J Ríos-González
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Sergio Huerta-Ochoa
- Unidad Iztapalapa, Departamento de Biotecnología, Universidad Autónoma Metropolitana, México City 02128, Mexico
| | | | | | - Claudio H Mejía-Ruíz
- Centro de Investigaciones Biológicas del Noroeste, Programa de Agricultura en Zonas Áridas, Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Mexico
| | - Ana G Reyes
- Centro de Investigaciones Biológicas del Noroeste, Programa de Agricultura en Zonas Áridas, Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Mexico
| |
Collapse
|
3
|
Ghoshal D, Dixit M, Narayanan N, Mandal A, Saini P, Banerjee T, Singh N, Kumar A, Gupta S. Persistence and degradation of tembotrione in loamy soil: Effect of various organic amendments, moisture regimes and temperatures. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:611-623. [PMID: 39285648 DOI: 10.1080/03601234.2024.2403865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
In the present study, persistence and degradation of tembotrione, a triketone herbicide, was studied in loamy soil collected from maize field. Effects of organic amendments, moistures and temperatures on tembotrione dissipation were evaluated. Soil samples were processed according to the modified QuEChERS involving dichloromethane solvent and MgSO4 without PSA. Analysis using LC-MS/MS showed >95% recoveries of tembotrione its two metabolites TCMBA and M5 from fortified soils. Tembotrione residues dissipated with time and 85.55 to 98.53% dissipation was found on 90th day under different treatments. Tembotrione dissipation increased with temperature and moisture content of the soil. Among organic amendments, highest dissipation was observed in vermicompost amended soil. Minimum and maximum half-lives of tembotrione were recorded under 35 °C (15.7 days) and air-dry (33 days) conditions, respectively. Residues of tembotrione declined with time while that of TCMBA increased steadily up to 10-45th day in different treatments and declined thereafter. Residues of M5 were not detected in our experiments. Tembotrione persistence was negatively correlated with the organic carbon (%), moisture regimes, and temperature. A good correlation between soil microbial biomass carbon and degradation was found. A two-way ANOVA indicated significant differences between the treatments at 95% confidence level (p < 0.05).
Collapse
Affiliation(s)
- Debabrata Ghoshal
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- The Graduate School, IARI, New Delhi, India
| | - Mahima Dixit
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| | - Neethu Narayanan
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Abhishek Mandal
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | - Priya Saini
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tirthankar Banerjee
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neera Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aman Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suman Gupta
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
4
|
Milićević J, Petrović S, Tošić S, Vrecl M, Arsić B. Recent Computer-Aided Studies on Herbicides: A Short Review. Chem Biodivers 2024; 21:e202400531. [PMID: 38948948 DOI: 10.1002/cbdv.202400531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Current industrial herbicides have a negative impact on the environment and have widespread resistance, so computational studies on their properties, elimination, and overcoming resistance can be helpful. On the other hand, developing new herbicides, especially bioherbicides, is slow and costly. Therefore, computational studies that guide the design and search for new herbicides that exist in various plant sources, can alleviate the pain associated with the many obstacles. This review summarizes for the first time the most recent studies on both aspects of herbicides over 10 years.
Collapse
Affiliation(s)
- Jelena Milićević
- Laboratory for Bioinformatics and Computational Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11351, Vinča, Belgrade, Republic of Serbia
| | - Stefan Petrović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18106, Niš, Republic of Serbia
| | - Snežana Tošić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18106, Niš, Republic of Serbia
| | - Milka Vrecl
- Institute for Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva ulica 60, 1000, Ljubljana, Slovenia
| | - Biljana Arsić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18106, Niš, Republic of Serbia
| |
Collapse
|
5
|
Lukina E, Gomzhina M, Dalinova A, Dubovik V, Gordina E, Bozhkova S, Smirnov S, Berestetskiy A. Reappraisal of Didymella macrostoma causing white tip disease of Canada thistle as a new species, Didymella baileyae, sp. nov., and bioactivity of its major metabolites. Mycologia 2024:1-26. [PMID: 39178348 DOI: 10.1080/00275514.2024.2367470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/10/2024] [Indexed: 08/25/2024]
Abstract
Bioherbicides are expected to be a supplement to integrated pest management, assisting in the control of problematic weed species. For instance, bioherbicides (Phoma and BioPhoma) were recently registered in Canada and the USA for the control of some perennial dicotyledonous weeds in lawns. These products are based on strains of the fungus Didymella macrostoma (syn. Phoma macrostoma) that causes white tip disease (WTD) in Canada thistle (Cirsium arvense). In this study, WTD was reported for the first time in the Russian Federation. Analysis of the internal transcribed spacer (ITS) region of nuc rDNA and secondary metabolite profiling confirmed the identity of Russian WTD isolates to Canadian biocontrol strains identified as D. macrostoma. Multilocus phylogenetic analysis based on sequencing of the ITS region, partial large subunit nuc rDNA region (28S), RNA polymerase II second largest subunit gene (rpb2), and partial β-tubulin gene (tub2) has differentiated the WTD isolates from C. arvense and D. macrostoma isolates from other plant hosts. Based on phylogenetic, morphological, and chemotaxonomic features, these WTD isolates were described as a new species named Didymella baileyae, sp. nov. This study also demonstrated the low pathogenicity of the ex-type D. baileyae isolate VIZR 1.53 to C. arvense seedlings and its asymptomatic development in the leaves of aboveground shoots. The organic extracts from mycelium and culture filtrate of D. baileyae, as well as macrocidin A and macrocidin Z, displayed phytotoxicity both to C. arvense leaves and seedlings. Macrocidin A was only detected in the naturally infected leaf tissues of C. arvense showing WTD symptoms. Macrocidins A and Z demonstrated low antimicrobial and cytotoxic activities, exhibiting no entomotoxic properties. The data obtained within this study on the pathogenicity and metabolites of D. baileyae may be important for the rational evaluation of its prospects as a biocontrol agent.
Collapse
Affiliation(s)
- Elizaveta Lukina
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, Saint Petersburg 196608, Russia
| | - Maria Gomzhina
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, Pushkin, Saint Petersburg 196608, Russia
| | - Anna Dalinova
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, Saint Petersburg 196608, Russia
| | - Vsevolod Dubovik
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, Saint Petersburg 196608, Russia
| | - Ekaterina Gordina
- Department of Wound Infection Prevention and Treatment, Vreden National Medical Research Center of Traumatology and Orthopedics, Saint Petersburg 195427, Russia
| | - Svetlana Bozhkova
- Department of Wound Infection Prevention and Treatment, Vreden National Medical Research Center of Traumatology and Orthopedics, Saint Petersburg 195427, Russia
| | - Sergey Smirnov
- Magnetic Resonance Research Centre, St. Petersburg State University, Saint Petersburg 198504, Russia
| | - Alexander Berestetskiy
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, Saint Petersburg 196608, Russia
| |
Collapse
|
6
|
Dmitrieva VA, Tyutereva EV, Voitsekhovskaja OV. What can reactive oxygen species (ROS) tell us about the action mechanism of herbicides and other phytotoxins? Free Radic Biol Med 2024; 220:92-110. [PMID: 38663829 DOI: 10.1016/j.freeradbiomed.2024.04.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Reactive oxygen species (ROS) are formed in plant cells continuously. When ROS production exceeds the antioxidant capacity of the cells, oxidative stress develops which causes damage of cell components and may even lead to the induction of programmed cell death (PCD). The levels of ROS production increase upon abiotic stress, but also during pathogen attack in response to elicitors, and upon application of toxic compounds such as synthetic herbicides or natural phytotoxins. The commercial value of many synthetic herbicides is based on weed death as result of oxidative stress, and for a number of them, the site and the mechanism of ROS production have been characterized. This review summarizes the current knowledge on ROS production in plants subjected to different groups of synthetic herbicides and natural phytotoxins. We suggest that the use of ROS-specific fluorescent probes and of ROS-specific marker genes can provide important information on the mechanism of action of these toxins. Furthermore, we propose that, apart from oxidative damage, elicitation of ROS-induced PCD is emerging as one of the important processes underlying the action of herbicides and phytotoxins.
Collapse
Affiliation(s)
- Valeria A Dmitrieva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia; Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Saint Petersburg, 196608, Russia
| | - Elena V Tyutereva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia.
| |
Collapse
|
7
|
Kos J, Jampilek J. Editorial of Special Issue "Current Trends in Chemistry Towards Biology". Int J Mol Sci 2024; 25:7307. [PMID: 39000415 PMCID: PMC11242065 DOI: 10.3390/ijms25137307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
One of the definitions of chemical biology is that it is a scientific discipline spanning the fields of chemistry, biology, and physics; it primarily involves the application of chemical techniques, tools, analyses, and often compounds (also known as chemical probes), which are produced through synthetic chemistry, in order to study and manipulate biological systems [...].
Collapse
Affiliation(s)
- Jiri Kos
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
8
|
Kumar N, Singh H, Giri K, Kumar A, Joshi A, Yadav S, Singh R, Bisht S, Kumari R, Jeena N, Khairakpam R, Mishra G. Physiological and molecular insights into the allelopathic effects on agroecosystems under changing environmental conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:417-433. [PMID: 38633277 PMCID: PMC11018569 DOI: 10.1007/s12298-024-01440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/12/2024] [Accepted: 03/16/2024] [Indexed: 04/19/2024]
Abstract
Allelopathy is a natural phenomenon of competing and interfering with other plants or microbial growth by synthesizing and releasing the bioactive compounds of plant or microbial origin known as allelochemicals. This is a sub-discipline of chemical ecology concerned with the effects of bioactive compounds produced by plants or microorganisms on the growth, development and distribution of other plants and microorganisms in natural communities or agricultural systems. Allelochemicals have a direct or indirect harmful effect on one plant by others, especially on the development, survivability, growth, and reproduction of species through the production of chemical inhibitors released into the environment. Cultivation systems that take advantage of allelopathic plants' stimulatory/inhibitory effects on plant growth and development while avoiding allelopathic autotoxicity is critical for long-term agricultural development. Allelopathy is one element that defines plant relationships and is involved in weed management, crop protection, and microbial contact. Besides, the allelopathic phenomenon has also been reported in the forest ecosystem; however, its presence depends on the forest type and the surrounding environment. In the present article, major aspects addressed are (1) literature review on the impacts of allelopathy in agroecosystems and underpinning the research gaps, (2) chemical, physiological, and ecological mechanisms of allelopathy, (3) genetic manipulations, plant defense, economic benefits, fate, prospects and challenges of allelopathy. The literature search and consolidation efforts in this article shall pave the way for future research on the potential application of allelopathic interactions across various ecosystems.
Collapse
Affiliation(s)
- Narendra Kumar
- Forest Research Institute, Dehradun, 248006 India
- Present Address: College of Agriculture, Central Agriculture University (I), Kyrdemkulai, Meghalaya, India
| | - Hukum Singh
- Forest Research Institute, Dehradun, 248006 India
| | - Krishna Giri
- Indian Council of Forestry Research and Education, Dehradun, 248006 India
| | - Amit Kumar
- Department of Forestry, North Eastern Hill University, Tura Campus, Tura, 794002 India
| | - Amit Joshi
- Department of Biochemistry, Kalinga University, Naya-Raipur, Chhattisgarh 492101 India
| | | | - Ranjeet Singh
- G.B. Pant National Institute of Himalayan Environment, Itanagar, Arunchal Pradesh, India
| | - Sarita Bisht
- Forest Research Institute, Dehradun, 248006 India
| | - Rama Kumari
- Forest Research Institute, Dehradun, 248006 India
| | - Neha Jeena
- Department of Microbiology, Central University, Rajasthan, 305817 India
| | - Rowndel Khairakpam
- School of Agriculture, Graphic Era Hill University, Dehradun, 248001 India
| | - Gaurav Mishra
- Indian Council of Forestry Research and Education, Dehradun, 248006 India
| |
Collapse
|
9
|
Liu J, Guo B, Zhong S, Shi Y, Li Z, Yu Z, Hao Z, Zhang L, Li F, Wang Y, Li Y. Novel Evodiamine-Based Sulfonamide Derivatives as Potent Insecticide Candidates Targeting Insect Ryanodine Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1292-1301. [PMID: 38178001 DOI: 10.1021/acs.jafc.3c05680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Pests represent an important impediment to efficient agricultural production and pose a threat to global food security. On the basis of our prior research focused on identifying insecticidal leads targeting insect ryanodine receptors (RyRs), we aimed to identify evodiamine scaffold-based novel insecticides. Thus, a variety of evodiamine-based derivatives were designed, synthesized, and assessed for their insecticidal activity against the larvae of Mythimna separata (M. separata) and Plutella xylostella (P. xylostella). The preliminary bioassay results revealed that more than half of the target compounds exhibited superior activity compared to evodiamine, matrine, and rotenone against M. separata. Among these, compound 21m displayed the most potent larvicidal efficiency, with a remarkable mortality rate of 93.3% at 2.5 mg/L, a substantial improvement over evodiamine (10.0% at 10 mg/L), matrine (10.0% at 200 mg/L), and rotenone (30.0% at 200 mg/L). In the case of P. xylostella, compounds 21m and 21o displayed heightened larvicidal activity, boasting LC50 values of 9.37 × 10-2 and 0.13 mg/L, respectively, surpassing that of evodiamine (13.41 mg/L), matrine (291.78 mg/L), and rotenone (18.39 mg/L). A structure-activity relationship analysis unveiled that evodiamine-based derivatives featuring a cyclopropyl sulfonyl group at the nitrogen atom of the B ring and a fluorine atom in the E ring exhibited more potent larvicidal effects. This finding was substantiated by calcium imaging experiments and molecular docking, which suggested that 21m could target insect RyRs, including resistant mutant RyRs of P. xylostella (G4946E and I4790M), with higher affinity than chlorantraniliprole (CHL). Additionally, cytotoxicity assays highlighted that the potent compounds 21i, 21m, and 21o displayed favorable selectivity and low toxicity toward nontarget organisms. Consequently, compound 21m emerges as a promising candidate for further development as an insecticide targeting insect RyRs.
Collapse
Affiliation(s)
- Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Bingyan Guo
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Siying Zhong
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Yabing Shi
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Zhengping Li
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Zhenwu Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zesheng Hao
- Key Laboratory for Chemical Pesticide of Shandong Province, Shandong Academy of Pesticide Sciences, Jinan 250100, P. R. China
| | - Li Zhang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Fengyun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P. R. China
| | - Yuanhong Wang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, P. R. China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
10
|
Salvatore MM, Russo MT, Meyer S, Tuzi A, Della Greca M, Masi M, Andolfi A. Screening of Secondary Metabolites Produced by Nigrospora sphaerica Associated with the Invasive Weed Cenchrus ciliaris Reveals Two New Structurally Related Compounds. Molecules 2024; 29:438. [PMID: 38257350 PMCID: PMC10818434 DOI: 10.3390/molecules29020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
In the search for new alternative biocontrol strategies, phytopathogenic fungi could represent a new frontier for weed management. In this respect, as part of our ongoing work aiming at using fungal pathogens as an alternative to common herbicides, the foliar pathogen Nigrospora sphaerica has been evaluated to control buffelgrass (Cenchrus ciliaris). In particular, in this work, the isolation and structural elucidation of two new biosynthetically related metabolites, named nigrosphaeritriol (3-(hydroxymethyl)-2-methylpentane-1,4-diol) and nigrosphaerilactol (3-(1-hydroxyethyl)-4-methyltetrahydrofuran-2-ol), from the phytotoxic culture filtrate extract were described, along with the identification of several known metabolites. Moreover, the absolute stereochemistry of (3R,4S,5S)-nigrosphaerilactone, previously reported as (3S,4R,5R)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone, was determined for the first time by X-ray diffraction analysis. Considering their structural relationship, the determination of the absolute stereochemistry of nigrosphaerilactone allowed us to hypothesize the absolute stereochemistry of nigrosphaeritriol and nigrosphaerilactol.
Collapse
Affiliation(s)
- Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.T.R.); (A.T.); (M.D.G.); (A.A.)
| | - Maria Teresa Russo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.T.R.); (A.T.); (M.D.G.); (A.A.)
| | - Susan Meyer
- Department of Geosciences, Southern Utah University, Cedar City, UT 84721, USA;
| | - Angela Tuzi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.T.R.); (A.T.); (M.D.G.); (A.A.)
| | - Marina Della Greca
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.T.R.); (A.T.); (M.D.G.); (A.A.)
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.T.R.); (A.T.); (M.D.G.); (A.A.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.T.R.); (A.T.); (M.D.G.); (A.A.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
11
|
Vieira G, Sette LD, de Angelis DA, Sass DC. Antifungal activity of cyclopaldic acid from Antarctic Penicillium against phytopathogenic fungi. 3 Biotech 2023; 13:374. [PMID: 37860288 PMCID: PMC10581961 DOI: 10.1007/s13205-023-03792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
Plant pathogens cause great economic losses in agriculture. To reduce damage, chemical pesticides have been frequently used, but these compounds in addition to causing risks to the environment and health, its continuous use has given rise to resistant phytopathogens, threatening the efficiency of control methods. One alternative for such a problem is the use of natural products with high antifungal activity and low toxicity. Here, we present the production, isolation, and identification of cyclopaldic acid, a bioactive compound produced by Penicillium sp. CRM 1540, a fungal strain isolated from Antarctic marine sediment. The crude extract was fractionated by reversed-phase chromatography and yielded 40 fractions, from which fraction F17 was selected. We used 1D and 2D Nuclear Magnetic Resonance analysis in DMSO-d6 and CDCl3, together with mass spectrometry, to identify the compound as cyclopaldic acid C11H10O6 (238 Da). The pure compound was evaluated for antimicrobial activity against phytopathogenic fungi of global agricultural importance, namely: Macrophomina phaseolina, Rhizoctonia solani, and Sclerotinia sclerotiorum. The antifungal assay revealed the potential of cyclopaldic acid, produced by Penicillium sp. CRM 1540, as a leading molecule against M. phaseolina and R. solani, with more than 90% of growth inhibition after 96h of contact with the fungal cells using 100 µg mL-1, and more than 70% using 50 µg mL-1. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03792-9.
Collapse
Affiliation(s)
- Gabrielle Vieira
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University Campus Rio Claro, Av. 24-A, 1515, Rio Claro, São Paulo 13506-900 Brazil
| | - Lara Durães Sette
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University Campus Rio Claro, Av. 24-A, 1515, Rio Claro, São Paulo 13506-900 Brazil
| | - Derlene Attili de Angelis
- Division of Microbial Resources, CPQBA, University of Campinas, Cidade Universitária “Zeferino Vaz”, Campinas, São Paulo 13083-970 Brazil
| | - Daiane Cristina Sass
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University Campus Rio Claro, Av. 24-A, 1515, Rio Claro, São Paulo 13506-900 Brazil
| |
Collapse
|
12
|
Siciliano A, Zorrilla JG, Saviano L, Cimmino A, Guida M, Masi M, Meyer S. Insights into the Ecotoxicology of Radicinin and (10 S,11 S)-(-)- epi-Pyriculol, Fungal Metabolites with Potential Application for Buffelgrass ( Cenchrus ciliaris) Biocontrol. Toxins (Basel) 2023; 15:405. [PMID: 37368705 DOI: 10.3390/toxins15060405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Buffelgrass (Cenchrus ciliaris L.) is an invasive C4 perennial grass species that substantially reduces native plant diversity of the Sonoran Desert through fire promotion and resource competition. Broad-spectrum herbicides are essentially used for its control, but they have a negative environmental and ecological impact. Recently, phytotoxicity on C. ciliaris has been discovered for two metabolites produced in vitro by the phytopathogenic fungi Cochliobolus australiensis and Pyricularia grisea. They were identified as (10S,11S)-(-)-epi-pyriculol and radicinin and resulted in being potential candidates for the development of bioherbicides for buffelgrass biocontrol. They have already shown promising results, but their ecotoxicological profiles and degradability have been poorly investigated. In this study, ecotoxicological tests against representative organisms from aquatic ecosystems (Aliivibrio fischeri bacterium, Raphidocelis subcapitata alga, and Daphnia magna crustacean) revealed relatively low toxicity for these compounds, supporting further studies for their practical application. The stability of these metabolites in International Organization for Standardization (ISO) 8692:2012 culture medium under different temperatures and light conditions was also evaluated, revealing that 98.90% of radicinin degraded after 3 days in sunlight. Significant degradation percentages (59.51-73.82%) were also obtained at room temperature, 30 °C or under ultraviolet (254 nm) light exposure. On the other hand, (10S,11S)-epi-pyriculol showed more stability under all the aforementioned conditions (49.26-65.32%). The sunlight treatment was also shown to be most effective for the degradation of this metabolite. These results suggest that radicinin could provide rapid degradability when used in agrochemical formulations, whereas (10S,11S)-epi-pyriculol stands as a notably more stable compound.
Collapse
Affiliation(s)
- Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Jesús G Zorrilla
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
- Allelopathy Group, Department of Organic Chemistry, Facultad de Ciencias, Institute of Biomolecules (INBIO), University of Cadiz, C/Avenida República Saharaui, s/n, 11510 Puerto Real, Spain
| | - Lorenzo Saviano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | - Susan Meyer
- Shrub Sciences Laboratory, U.S. Forest Service Rocky Mountain Research Station, 369 North 100 West Suite 8, Cedar City, UT 84721, USA
| |
Collapse
|
13
|
Tyutereva EV, Dalinova AA, Demchenko KN, Dmitrieva VA, Dubovik VR, Lukinskiy YV, Mitina GV, Voitsekhovskaja OV, Berestetskiy A. Effects of Phytotoxic Nonenolides, Stagonolide A and Herbarumin I, on Physiological and Biochemical Processes in Leaves and Roots of Sensitive Plants. Toxins (Basel) 2023; 15:toxins15040234. [PMID: 37104172 PMCID: PMC10145764 DOI: 10.3390/toxins15040234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/18/2023] [Indexed: 04/28/2023] Open
Abstract
Phytotoxic macrolides attract attention as prototypes of new herbicides. However, their mechanisms of action (MOA) on plants have not yet been elucidated. This study addresses the effects of two ten-membered lactones, stagonolide A (STA) and herbarumin I (HBI) produced by the fungus Stagonospora cirsii, on Cirsium arvense, Arabidopsis thaliana and Allium cepa. Bioassay of STA and HBI on punctured leaf discs of C. arvense and A. thaliana was conducted at a concentration of 2 mg/mL to evaluate phenotypic responses, the content of pigments, electrolyte leakage from leaf discs, the level of reactive oxygen species, Hill reaction rate, and the relative rise in chlorophyll a fluorescence. The toxin treatments resulted in necrotic and bleached leaf lesions in the dark and in the light, respectively. In the light, HBI treatment caused the drop of carotenoids content in leaves on both plants. The electrolyte leakage caused by HBI was light-dependent, in contrast with that caused by STA. Both compounds induced light-independent peroxide generation in leaf cells but did not affect photosynthesis 6 h after treatment. STA (10 µg/mL) caused strong disorders in root cells of A. thaliana leading to the complete dissipation of the mitochondrial membrane potential one hour post treatment, as well as DNA fragmentation and disappearance of acidic vesicles in the division zone after 8 h; the effects of HBI (50 µg/mL) were much milder. Furthermore, STA was found to inhibit mitosis but did not affect the cytoskeleton in cells of root tips of A. cepa and C. arvense, respectively. Finally, STA was supposed to inhibit the intracellular vesicular traffic from the endoplasmic reticulum to the Golgi apparatus, thus interfering with mitosis. HBI is likely to have another main MOA, probably inhibiting the biosynthesis of carotenoids.
Collapse
Affiliation(s)
- Elena V Tyutereva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia
| | - Anna A Dalinova
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia
| | - Kirill N Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia
| | - Valeriya A Dmitrieva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia
| | - Vsevolod R Dubovik
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia
| | - Yuriy V Lukinskiy
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia
| | - Galina V Mitina
- Laboratory of Microbiological Plant Protection, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia
| | - Alexander Berestetskiy
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia
| |
Collapse
|