1
|
Ling LZ, Zhang YG, Yang LM, Zhang SD. The complete chloroplast genome of Dryas octopetala var. asiatica (Dryadoideae, Rosaceae) and phylogenetic analysis. Mitochondrial DNA B Resour 2024; 9:1185-1189. [PMID: 39247498 PMCID: PMC11378668 DOI: 10.1080/23802359.2024.2399928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
Dryas octopetala L. var. asiatica (Nakai) Nakai 1918 is a dwarf shrub that mainly grow in alpine and arctic zones of the Northern Hemisphere, representing an endemic variety in Asia. In the present study, the complete chloroplast (cp) genome of D. octopetala var. asiatica was first characterized and used for its phylogenetic analysis. The cp genome span 158,271 bp with an overall GC content of 36.5%. A total of 129 genes were identified, including 84 protein-coding genes (PCGs), 37 tRNA genes, and 8 rRNA genes. In addition, repetitive sequences and microsatellites were detected within this species. Phylogenetic analysis involving 39 cp genomes from Rosaceae family indicated that D. octopetala var. asiatica was sister to the clade of Amygdaloideae. This study contributes fundamental insights into the cp genome of Dryas octopetala var. asiatica, which will have expanded its use in photosynthesis and evolutionary study.
Collapse
Affiliation(s)
- Li-Zhen Ling
- Key Laboratory for Specialty Agricultural Germplasm Resources Development and Utilization of Guizhou Province, Liupanshui Normal University, Liupanshui, China
| | - Yong-Gang Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Li-Min Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Shu-Dong Zhang
- Key Laboratory for Specialty Agricultural Germplasm Resources Development and Utilization of Guizhou Province, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
2
|
Ling L, Zhang S, Yang T. Analysis of Codon Usage Bias in Chloroplast Genomes of Dryas octopetala var. asiatica (Rosaceae). Genes (Basel) 2024; 15:899. [PMID: 39062678 PMCID: PMC11275609 DOI: 10.3390/genes15070899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Dryas octopetala var. asiatica, a dwarf shrub belonging to the Rosaceae family and native to Asia, exhibits notable plasticity in photosynthesis in response to temperature variations. However, the codon usage patterns and factors influencing them in the chloroplast genome of this species have not yet been documented. This study sequenced and assembled the complete genome of D. octopetala var. asiatica. The annotated genes in the chloroplast genome were analyzed for codon composition through multivariate statistical methods including a neutrality plot, a parity rule 2 (PR2) bias plot, and an effective number of codons (ENC) plot using CodonW 1.4.2 software. The results indicated that the mean GC content of 53 CDSs was 38.08%, with the average GC content at the third codon base position being 27.80%, suggesting a preference for A/U(T) at the third codon position in chloroplast genes. Additionally, the chloroplast genes exhibited a weak overall codon usage bias (CUB) based on ENC values and other indicators. Correlation analysis showed a significant negative correlation between ENC value and GC2, an extremely positive correlation with GC3, but no correlation with GC1 content. These findings highlight the importance of the codon composition at the third position in influencing codon usage bias. Furthermore, our analysis indicated that the CUB of the chloroplast genome of D. octopetala var. asiatica was primarily influenced by natural selection and other factors. Finally, this study identified UCA, CCU, GCU, AAU, GAU, and GGU as the optimal codons. These results offer a foundational understanding for genetic modification and evolutionary dynamics of the chloroplast genome of D. octopetala var. asiatica.
Collapse
Affiliation(s)
| | - Shudong Zhang
- Key Laboratory for Specialty Agricultural Germplasm Resources Development and Utilization of Guizhou Province, Liupanshui Normal University, Liupanshui 553004, China; (L.L.); (T.Y.)
| | | |
Collapse
|
3
|
Hai X, Shangguan Z, Peng C, Deng L. Leaf trait responses to global change factors in terrestrial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165572. [PMID: 37454860 DOI: 10.1016/j.scitotenv.2023.165572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Global change influences plant growth by affecting plant morphology and physiology. However, the effects of global change factors vary based on the climate gradient. Here, we established a global database of leaf traits from 192 experiments on elevated CO2 concentrations (eCO2), drought, N deposition, and warming. The results showed that the leaf mass per area (LMA) significantly increased under eCO2 and drought conditions but decreased with N deposition, whereas eCO2 levels and drought conditions reduced stomatal conductance and increased and decreased photosynthetic rates, respectively. Leaf dark respiration (Rd) increased in response to global change, excluding N deposition. Leaf N concentrations declined with eCO2 but increased with N deposition. Leaf area increased with eCO2, N deposition, and warming but decreased with drought. Leaf thickness increased with eCO2 but decreased with warming. eCO2 and N deposition enhanced plant water-use efficiency (WUE), eCO2 and warming increased photosynthetic N-use efficiency (PNUE), while N fertilization reduced PNUE significantly. eCO2 produced a positive relationship between WUE and PNUE, which were limited under drought but increased in areas with high humidity and high temperature. Trade-offs were observed between WUE and PNUE under drought, N deposition, and warming. These findings suggest that the effects of global change factors on plants can be altered by complex environmental changes; moreover, diverse plant water and nutrient strategy responses can be interpreted against the background of their functional traits.
Collapse
Affiliation(s)
- Xuying Hai
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhouping Shangguan
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Changhui Peng
- Center of CEF/ESCER, Department of Biological Science, University of Quebec at Montreal, Montreal H3C 3P8, Canada
| | - Lei Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; Key Laboratory of low-carbon green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
4
|
Kupper P, Tullus A, Rohula-Okunev G. Night-time water relations and gas exchange in cut shoots of five boreal dwarf shrub species: impact of soil water availability. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1193-1203. [PMID: 37829697 PMCID: PMC10564692 DOI: 10.1007/s12298-023-01350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 10/14/2023]
Abstract
Recent findings suggest that drought may affect plants' daytime and night-time stomatal regulation differently. However, knowledge of night-time stomatal behaviour in dwarf shrubs growing in boreal ecosystems is lacking. We sampled cut shoots from dwarf shrub species to elucidate their capacity to transpire at night and the effect of drought on stomatal regulation. The shoots' water relations and gas exchange were measured under controlled conditions in a growth chamber. The studied species demonstrated considerable differences in their diurnal water use. The night-time water use percentage of daytime water use (NWU) reached up to 90% in Andromeda polifolia and Vaccinium uliginosum. In Rhododendron tomentosum, Vaccinium myrtillus and Chamaedaphne calyculata, the NWU was 62, 27 and 26%, respectively. The shoots of C. calyculata showed a significant increase (P < 0.001) in the transpiration rate (E) during the night. However, in R. tomentosum, a decrease (P < 0.05) in nightly E was observed. The shoot conductance (g) at the end of the night was lower than daytime g in all studied species, but the difference was not significant for V. uliginosum. Across the species, NWU was negatively related (P < 0.001) to the soil volumetric water content (SWC) in the plant habitat. However, daytime E and g were positively related (P < 0.05) to the habitat SWC. Only in V. myrtillus was night-time E higher (P < 0.05) in dry conditions than in wet conditions. Our results demonstrate high variability in diurnal water relations in dwarf shrubs, which can keep stomata open in the dark even when drought limits daytime g and E.
Collapse
Affiliation(s)
- Priit Kupper
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Arvo Tullus
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Gristin Rohula-Okunev
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| |
Collapse
|
5
|
Solarte ME, Solarte Erazo Y, Ramírez Cupacán E, Enríquez Paz C, Melgarejo LM, Lasso E, Flexas J, Gulias J. Photosynthetic Traits of Páramo Plants Subjected to Short-Term Warming in OTC Chambers. PLANTS (BASEL, SWITZERLAND) 2022; 11:3110. [PMID: 36432839 PMCID: PMC9695496 DOI: 10.3390/plants11223110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Global warming and changes in land use are some of the main threats to high mountain species. Both can interact in ways not yet assessed. In this study, we evaluated the photosynthetic responses of six common páramo species within a warming experiment using open-top chambers (OTC) in conserved páramo areas with different land use histories. We did not find significant differences in the photochemical performance of the species as measured through Fv/Fm, ETR, and NPQ in response to passive warming, indicating that warmed plants are not stressed. However, NPQ values were higher in recovering areas, especially in the driest and warmest months. Leaf transpiration, stomatal conductance, and Ci were not affected by the OTC or the land use history. The photosynthetic capacity, maximum photosynthetic capacity, and carboxylation rate of RuBisCO increased in response to warming but only in the area with no anthropogenic intervention. These results suggest that species will respond differently to warming depending on the history of páramo use, and therefore not all páramo communities will respond equally to climate change. In disturbed sites with altered soil conditions, plants could have a lower breadth of physiological response to warming.
Collapse
Affiliation(s)
- María Elena Solarte
- Laboratorio de Ecofisiología Vegetal, Grupo de Investigación Biología de Páramos y Ecosistemas Andinos, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño, Pasto 52001, Colombia
| | - Yisela Solarte Erazo
- Laboratorio de Ecofisiología Vegetal, Grupo de Investigación Biología de Páramos y Ecosistemas Andinos, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño, Pasto 52001, Colombia
| | - Elizabeth Ramírez Cupacán
- Laboratorio de Ecofisiología Vegetal, Grupo de Investigación Biología de Páramos y Ecosistemas Andinos, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño, Pasto 52001, Colombia
| | - Camila Enríquez Paz
- Laboratorio de Ecofisiología Vegetal, Grupo de Investigación Biología de Páramos y Ecosistemas Andinos, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño, Pasto 52001, Colombia
| | - Luz Marina Melgarejo
- Laboratorio de Fisiología y Bioquímica Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Bogota 111321, Colombia
| | - Eloisa Lasso
- Grupo de Ecología y Fisiología Vegetal EcoFiv, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogota 111711, Colombia
| | - Jaume Flexas
- Grupo de Investigación en Biología Vegetal en Condiciones Mediterráneas, Departamento de Biología, Universitat de Les Illes Balears (UIB), 07122 Palma, Spain
| | - Javier Gulias
- Grupo de Investigación en Biología Vegetal en Condiciones Mediterráneas, Departamento de Biología, Universitat de Les Illes Balears (UIB), 07122 Palma, Spain
| |
Collapse
|
6
|
Zhou Y, Yang M, Tai Z, Jia J, Luan D, Ma X. Carbohydrates and secondary compounds of alpine tundra shrubs in relation to experimental warming. BMC PLANT BIOLOGY 2022; 22:482. [PMID: 36210454 PMCID: PMC9549620 DOI: 10.1186/s12870-022-03851-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND It is critical to understand the sensitivity, response direction and magnitude of carbohydrates and secondary compounds to warming for predicting the structure and function of the tundra ecosystem towards future climate change. RESULTS Open-top chambers (OTCs) were used to passively increase air and soil temperatures on Changbai Mountain alpine tundra. After seven years' continuous warming (+ 1.5 °C), the vegetation coverage, nonstructural carbohydrates (soluble sugars and starch) and secondary compounds (total phenols, flavonoids and triterpenes) of leaves and roots in three dominant dwarf shrubs, Dryas octopetala var. asiatica, Rhododendron confertissimum and Vaccinium uliginosum, were investigated during the growing season. Warming did not significantly affect the concentrations of carbohydrates but decreased total phenols for the three species. Carbohydrates and secondary compounds showed significantly seasonal pattern and species-specific variation. No significant trade-off or negative relationship between carbohydrates and secondary compounds was observed. Compared to Dr. octopetala var. asiatica, V. uliginosum allocated more carbon on secondary compounds. Warming significantly increased the coverage of Dr. octopetala var. asiatica, did not change it for V. uliginosum and decreased it for Rh. confertissimum. Rh. confertissimum had significantly lower carbohydrates and invested more carbon on secondary compounds than the other two species. CONCLUSIONS Enhanced dominance and competitiveness of Dr. octopetala var. asiatica was companied by increased trend in carbohydrate concentrations and decreased ratio of secondary compounds to total carbon in the warming OTCs. We, therefore, predict that Dr. octopetala var. asiatica will continue to maintain dominant status, but the competition ability of V. uliginosum could gradually decrease with warming, leading to changes in species composition and community structure of the Changbai tundra ecosystem under future climate warming.
Collapse
Affiliation(s)
- Yumei Zhou
- Ecological Technique and Engineering School, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Ming Yang
- Ecological Technique and Engineering School, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Zhijuan Tai
- Department of Tourism Economy, Changbai Mountain Academy of Sciences, Baihe, 133633, China
| | - Jingjing Jia
- Ecological Technique and Engineering School, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Dongtao Luan
- Ecological Technique and Engineering School, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Xia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
7
|
Li X, Zhao X, Tsujii Y, Ma Y, Zhang R, Qian C, Wang Z, Geng F, Jin S. Links between leaf anatomy and leaf mass per area of herbaceous species across slope aspects in an eastern Tibetan subalpine meadow. Ecol Evol 2022; 12:e8973. [PMID: 35784019 PMCID: PMC9163673 DOI: 10.1002/ece3.8973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
Leaf anatomy varies with abiotic factors and is an important trait for understanding plant adaptive responses to environmental conditions. Leaf mass per area (LMA) is a key morphological trait and is related to leaf performance, such as light-saturated photosynthetic rate per leaf mass, leaf mechanical strength, and leaf lifespan. LMA is the multiplicative product of leaf thickness (LT) and leaf density (LD), both of which vary with leaf anatomy. Nevertheless, how LMA, LT, and LD covary with leaf anatomy is largely unexplored along natural environmental gradients. Slope aspect is a topographic factor that underlies variations in solar irradiation, air temperature, humidity, and soil fertility. In the present study, we examined (1) how leaf anatomy varies with different slope aspects and (2) how leaf anatomy is related to LMA, LD, and LT. Leaf anatomy was measured for 30 herbaceous species across three slope aspects (south-, west-, and north-facing slopes; hereafter, SFS, WFS, and NFS, respectively) in an eastern Tibetan subalpine meadow. For 18 of the 30 species, LMA data were available from previous studies. LD was calculated as LMA divided by LT. Among the slope aspects, the dominant species on the SFS exhibited the highest LTs with the thickest spongy mesophyll layers. The thicker spongy mesophyll layer was related to a lower LD via larger intercellular airspaces. In contrast, LD was the highest on NFS among the slope aspects. LMA was not significantly different among the slope aspects because higher LTs on SFS were effectively offset by lower LDs. These results suggest that the relationships between leaf anatomy and LMA were different among the slope aspects. Mechanisms underlying the variations in leaf anatomy may include different solar radiation, air temperatures, soil water, and nutrient availabilities among the slope aspects.
Collapse
Affiliation(s)
- Xin’e Li
- Division of Grassland ScienceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Xin Zhao
- Division of Grassland ScienceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Yuki Tsujii
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Faculty of ScienceKyushu UniversityFukuokaJapan
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Yueqi Ma
- Division of Grassland ScienceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Renyi Zhang
- College of EcologyLanzhou UniversityLanzhouChina
| | - Cheng Qian
- Division of Grassland ScienceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Zixi Wang
- Division of Grassland ScienceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Feilong Geng
- Division of Grassland ScienceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouJiangsuChina
| | - Shixuan Jin
- Division of Grassland ScienceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouJiangsuChina
| |
Collapse
|
8
|
Feng JQ, Wang JH, Zhang SB. Leaf physiological and anatomical responses of two sympatric Paphiopedilum species to temperature. PLANT DIVERSITY 2022; 44:101-108. [PMID: 35281120 PMCID: PMC8897187 DOI: 10.1016/j.pld.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/19/2021] [Accepted: 05/05/2021] [Indexed: 06/14/2023]
Abstract
Paphiopedilum dianthum and P. micranthum are two endangered orchid species, with high ornamental and conservation values. They are sympatric species, but their leaf anatomical traits and flowering period have significant differences. However, it is unclear whether the differences in leaf structure of the two species will affect their adaptabilities to temperature. Here, we investigated the leaf photosynthetic, anatomical, and flowering traits of these two species at three sites with different temperatures (Kunming, 16.7 ± 0.2 °C; Puer, 17.7 ± 0.2 °C; Menglun, 23.3 ± 0.2 °C) in southwest China. Compared with those at Puer and Kunming, the values of light-saturated photosynthetic rate (Pmax), stomatal conductance (gs), leaf thickness (LT), and stomatal density (SD) in both species were lower at Menglun. The values of Pmax, gs, LT, adaxial cuticle thickness (CTad) and SD in P. dianthum were higher than those of P. micranthum at the three sites. Compared with P. dianthum, there were no flowering plants of P. micranthum at Menglun. These results indicated that both species were less resistance to high temperature, and P. dianthum had a stronger adaptability to high-temperature than P. micranthum. Our findings can provide valuable information for the conservation and cultivation of Paphiopedilum species.
Collapse
Affiliation(s)
- Jing-Qiu Feng
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Hua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
9
|
Wu T, Tissue DT, Li X, Liu S, Chu G, Zhou G, Li Y, Zheng M, Meng Z, Liu J. Long-term effects of 7-year warming experiment in the field on leaf hydraulic and economic traits of subtropical tree species. GLOBAL CHANGE BIOLOGY 2020; 26:7144-7157. [PMID: 32939936 DOI: 10.1111/gcb.15355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Rising temperature associated with climate change may have substantial impacts on forest tree functions. We conducted a 7-year warming experiment in subtropical China by translocating important native forest tree species (Machilas breviflora, Syzygium rehderianum, Schima superba and Itea chinensis) from cooler high-elevation sites (600 m) to 1-2°C warmer low-elevation sites (300 and 30 m) to investigate warming effects on leaf hydraulic and economic traits. Here, we report data from the last 3 years (Years 5-7) of the experiment. Warming increased leaf hydraulic conductance of S. superba to meet the higher evaporative demand. M. breviflora (300 m), S. rehderianum, S. superba and I. chinensis (300 and 30 m) exhibited higher area-based and mass-based maximum photosynthetic rates (Aa and Am , respectively) related to increasing stomatal conductance (gs ) and stomatal density in the wet season, which led to rapid growth; however, we observed decreased growth of M. breviflora at 30 m due to lower stomatal density and decreased Aa in the wet season. Warming increased photosynthetic nitrogen-use efficiency and photosynthetic phosphorus-use efficiency, but reduced leaf dry mass per unit area due to lower leaf thickness, suggesting that these tree species allocated more resources into upregulating photosynthesis rather than into structural investment. Our findings highlight that there was trait variation in the capacity of trees to acclimate to warmer temperatures such that I. chinensis may benefit from warming, but S. superba may be negatively influenced by warming in future climates.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Penrith, NSW, Australia
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Penrith, NSW, Australia
| | - Xu Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shizhong Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guowei Chu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guoyi Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Mianhai Zheng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ze Meng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|