1
|
Coquin S, Ormeno E, Pasqualini V, Monnier B, Culioli G, Lecareux C, Fernandez C, Saunier A. Chemical Diversity of Mediterranean Seagrasses Volatilome. Metabolites 2024; 14:705. [PMID: 39728486 DOI: 10.3390/metabo14120705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Biogenic volatile organic compounds (BVOCs), extensively studied in terrestrial plants with global emissions around 1 PgC yr-1, are also produced by marine organisms. However, benthic species, especially seagrasses, are understudied despite their global distribution (177,000-600,000 km2). This study aims to examine BVOC emissions from key Mediterranean seagrass species (Cymodocea nodosa, Posidonia oceanica, Zostera noltei, and Zostera marina) in marine and coastal lagoon environments. METHODS BVOCs were collected using headspace solid-phase microextraction (HS-SPME) using divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fibers and analyzed by gas chromatography-mass spectrometry (GC-MS). RESULTS An important chemical diversity was found with a total of 92 volatile compounds (61 for Z. noltei, 59 for C. nodosa, 55 for P. oceanica, and 51 for Z. marina), from different biosynthetic pathways (e.g., terpenoids, benzenoids, and fatty acid derivatives) and with several types of chemical functions (e.g., alkanes, esters, aldehydes, and ketones) or heteroatoms (e.g., sulfur). No differences in chemical richness or diversity of compounds were observed between species. The four species shared 29 compounds enabling us to establish a specific chemical footprint for Mediterranean marine plants, including compounds like benzaldehyde, benzeneacetaldehyde, 8-heptadecene, heneicosane, heptadecane, nonadecane, octadecane, pentadecane, tetradecane, and tridecanal. PLS-DA and Heatmap show that the four species presented significantly different chemical profiles. The major compounds per species in relative abundance were isopropyl myristate for C. nodosa (25.6%), DMS for P. oceanica (39.3%), pentadecane for Z. marina (42.9%), and heptadecane for Z. noltei (46%). CONCLUSIONS These results highlight the potential of BVOCs' emission from seagrass ecosystems and reveal species-specific chemical markers.
Collapse
Affiliation(s)
- Salomé Coquin
- CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France
| | - Elena Ormeno
- CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France
| | - Vanina Pasqualini
- UMR CNRS SPE, UAR CNRS Stella Mare, Université de Corse, BP 52, 20250 Corte, France
| | - Briac Monnier
- UMR CNRS SPE, UAR CNRS Stella Mare, Université de Corse, BP 52, 20250 Corte, France
| | - Gérald Culioli
- CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France
| | - Caroline Lecareux
- CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France
| | - Catherine Fernandez
- CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France
| | - Amélie Saunier
- CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France
| |
Collapse
|
2
|
Dubuisson C, Wortham H, Garinie T, Hossaert-McKey M, Lapeyre B, Buatois B, Temime-Roussel B, Ormeño E, Staudt M, Proffit M. Ozone alters the chemical signal required for plant - insect pollination: The case of the Mediterranean fig tree and its specific pollinator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170861. [PMID: 38354792 DOI: 10.1016/j.scitotenv.2024.170861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
Tropospheric ozone (O3) is likely to affect the chemical signal emitted by flowers to attract their pollinators through its effects on the emission of volatile organic compounds (VOCs) and its high reactivity with these compounds in the atmosphere. We investigated these possible effects using a plant-pollinator interaction where the VOCs responsible for pollinator attraction are known and which is commonly exposed to high O3 concentration episodes: the Mediterranean fig tree (Ficus carica) and its unique pollinator, the fig wasp (Blastophaga psenes). In controlled conditions, we exposed fig trees bearing receptive figs to a high-O3 episode (5 h) of 200 ppb and analyzed VOC emission. In addition, we investigated the chemical reactions occurring in the atmosphere between O3 and pollinator-attractive VOCs using real-time monitoring. Finally, we tested the response of fig wasps to the chemical signal when exposed to increasing O3 mixing ratios (0, 40, 80, 120 and 200 ppb). The exposure of the fig tree to high O3 levels induced a significant decrease in leaf stomatal conductance, a limited change in the emission by receptive figs of VOCs not involved in pollinator attraction, but a major change in the relative abundances of the compounds among pollinator-attractive VOCs in O3-enriched atmosphere. Fig VOCs reacted with O3 in the atmosphere even at the lowest level tested (40 ppb) and the resulting changes in VOC composition significantly disrupted the attraction of the specific pollinator. These results strongly suggest that current O3 episodes are probably already affecting the interaction between the fig tree and its specific pollinator.
Collapse
Affiliation(s)
- Candice Dubuisson
- CEFE, Université de Montpellier, CNRS, EPHE, IRD - 1919 route de Mende - 34293, Montpellier Cedex 5, France
| | - Henri Wortham
- LCE, Aix Marseille Université, CNRS, Marseille, France
| | - Tessie Garinie
- CEFE, Université de Montpellier, CNRS, EPHE, IRD - 1919 route de Mende - 34293, Montpellier Cedex 5, France
| | - Martine Hossaert-McKey
- CEFE, Université de Montpellier, CNRS, EPHE, IRD - 1919 route de Mende - 34293, Montpellier Cedex 5, France
| | - Benoit Lapeyre
- CEFE, Université de Montpellier, CNRS, EPHE, IRD - 1919 route de Mende - 34293, Montpellier Cedex 5, France
| | - Bruno Buatois
- CEFE, Université de Montpellier, CNRS, EPHE, IRD - 1919 route de Mende - 34293, Montpellier Cedex 5, France
| | | | - Elena Ormeño
- IMBE, CNRS, Aix Marseille Univ, IRD, Avignon Univ, Marseille, France
| | - Michael Staudt
- CEFE, Université de Montpellier, CNRS, EPHE, IRD - 1919 route de Mende - 34293, Montpellier Cedex 5, France
| | - Magali Proffit
- CEFE, Université de Montpellier, CNRS, EPHE, IRD - 1919 route de Mende - 34293, Montpellier Cedex 5, France.
| |
Collapse
|
3
|
Laoué J, Havaux M, Ksas B, Tuccio B, Lecareux C, Fernandez C, Ormeño E. Long-term rain exclusion in a Mediterranean forest: response of physiological and physico-chemical traits of Quercus pubescens across seasons. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1293-1308. [PMID: 37596909 DOI: 10.1111/tpj.16424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/21/2023]
Abstract
With climate change, an aggravation in summer drought is expected in the Mediterranean region. To assess the impact of such a future scenario, we compared the response of Quercus pubescens, a drought-resistant deciduous oak species, to long-term amplified drought (AD) (partial rain exclusion in natura for 10 years) and natural drought (ND). We studied leaf physiological and physico-chemical trait responses to ND and AD over the seasonal cycle, with a focus on chemical traits including major groups of central (photosynthetic pigments and plastoquinones) and specialized (tocochromanols, phenolic compounds, and cuticular waxes) metabolites. Seasonality was the main driver of all leaf traits, including cuticular triterpenoids, which were highly concentrated in summer, suggesting their importance to cope with drought and thermal stress periods. Under AD, trees not only reduced CO2 assimilation (-42%) in summer and leaf concentrations of some phenolic compounds and photosynthetic pigments (carotenoids from the xanthophyll cycle) but also enhanced the levels of other photosynthetic pigments (chlorophylls, lutein, and neoxanthin) and plastochromanol-8, an antioxidant located in chloroplasts. Overall, the metabolomic adjustments across seasons and drought conditions reinforce the idea that Q. pubescens is highly resistant to drought although significant losses of antioxidant defenses and photoprotection were identified under AD.
Collapse
Affiliation(s)
- Justine Laoué
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, IMBE, Marseille, France
| | - Michel Havaux
- Aix Marseille Univ., CEA, CNRS UMR 7265 BIAM, CEA/Cadarache, Saint-Paul-lès-Durance, France
| | - Brigitte Ksas
- Aix Marseille Univ., CEA, CNRS UMR 7265 BIAM, CEA/Cadarache, Saint-Paul-lès-Durance, France
| | | | - Caroline Lecareux
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, IMBE, Marseille, France
| | | | - Elena Ormeño
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, IMBE, Marseille, France
| |
Collapse
|
4
|
Badmi R, Gogoi A, Doyle Prestwich B. Secondary Metabolites and Their Role in Strawberry Defense. PLANTS (BASEL, SWITZERLAND) 2023; 12:3240. [PMID: 37765404 PMCID: PMC10537498 DOI: 10.3390/plants12183240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Strawberry is a high-value commercial crop and a model for the economically important Rosaceae family. Strawberry is vulnerable to attack by many pathogens that can affect different parts of the plant, including the shoot, root, flowers, and berries. To restrict pathogen growth, strawberry produce a repertoire of secondary metabolites that have an important role in defense against diseases. Terpenes, allergen-like pathogenesis-related proteins, and flavonoids are three of the most important metabolites involved in strawberry defense. Genes involved in the biosynthesis of secondary metabolites are induced upon pathogen attack in strawberry, suggesting their transcriptional activation leads to a higher accumulation of the final compounds. The production of secondary metabolites is also influenced by the beneficial microbes associated with the plant and its environmental factors. Given the importance of the secondary metabolite pathways in strawberry defense, we provide a comprehensive overview of their literature and their role in the defense responses of strawberry. We focus on terpenoids, allergens, and flavonoids, and discuss their involvement in the strawberry microbiome in the context of defense responses. We discuss how the biosynthetic genes of these metabolites could be potential targets for gene editing through CRISPR-Cas9 techniques for strawberry crop improvement.
Collapse
Affiliation(s)
- Raghuram Badmi
- School of Biological Earth and Environmental Sciences, University College Cork, T23 TK30 Cork, Ireland;
| | - Anupam Gogoi
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research (NIBIO), 1433 Ås, Norway
| | - Barbara Doyle Prestwich
- School of Biological Earth and Environmental Sciences, University College Cork, T23 TK30 Cork, Ireland;
| |
Collapse
|
5
|
Quer E, Pereira S, Michel T, Santonja M, Gauquelin T, Simioni G, Ourcival JM, Joffre R, Limousin JM, Aupic-Samain A, Lecareux C, Dupouyet S, Orts JP, Bousquet-Mélou A, Gros R, Sagova-Mareckova M, Kopecky J, Fernandez C, Baldy V. Amplified Drought Alters Leaf Litter Metabolome, Slows Down Litter Decomposition, and Modifies Home Field (Dis)Advantage in Three Mediterranean Forests. PLANTS (BASEL, SWITZERLAND) 2022; 11:2582. [PMID: 36235447 PMCID: PMC9571106 DOI: 10.3390/plants11192582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In Mediterranean ecosystems, the projected rainfall reduction of up to 30% may alter plant-soil interactions, particularly litter decomposition and Home Field Advantage (HFA). We set up a litter transplant experiment in the three main forests encountered in the northern part of the Medi-terranean Basin (dominated by either Quercus ilex, Quercus pubescens, or Pinus halepensis) equipped with a rain exclusion device, allowing an increase in drought either throughout the year or concentrated in spring and summer. Senescent leaves and needles were collected under two precipitation treatments (natural and amplified drought plots) at their "home" forest and were left to decompose in the forest of origin and in other forests under both drought conditions. MS-based metabolomic analysis of litter extracts combined with multivariate data analysis enabled us to detect modifications in the composition of litter specialized metabolites, following amplified drought treatment. Amplified drought altered litter quality and metabolomes, directly slowed down litter decomposition, and induced a loss of home field (dis)advantage. No indirect effect mediated by a change in litter quality on decomposition was observed. These results may suggest major alterations of plant-soil interactions in Mediterranean forests under amplified drought conditions.
Collapse
Affiliation(s)
- Elodie Quer
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Susana Pereira
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Thomas Michel
- CNRS, Nice Institute of Chemistry, UMR 7272, Parc Valrose, University of Côte d’Azur, 06108 Nice, France
| | - Mathieu Santonja
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Thierry Gauquelin
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Guillaume Simioni
- INRAE, Ecologie des Forêts Méditerranéennes (UR629) Domaine Saint Paul, Site Agroparc, 84914 Avignon, France
| | - Jean-Marc Ourcival
- CNRS, EPHE, IRD, CEFE, University Paul Valéry Montpellier, 34090 Montpellier, France
| | - Richard Joffre
- CNRS, EPHE, IRD, CEFE, University Paul Valéry Montpellier, 34090 Montpellier, France
| | - Jean-Marc Limousin
- CNRS, EPHE, IRD, CEFE, University Paul Valéry Montpellier, 34090 Montpellier, France
| | - Adriane Aupic-Samain
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Caroline Lecareux
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Sylvie Dupouyet
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Jean-Philippe Orts
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Anne Bousquet-Mélou
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Raphaël Gros
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Marketa Sagova-Mareckova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00 Praha, Czech Republic
- Crop Research Institute, Drnovska 507, 16106 Praha, Czech Republic
| | - Jan Kopecky
- Crop Research Institute, Drnovska 507, 16106 Praha, Czech Republic
| | - Catherine Fernandez
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Virginie Baldy
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| |
Collapse
|
6
|
The Optical Response of a Mediterranean Shrubland to Climate Change: Hyperspectral Reflectance Measurements during Spring. PLANTS 2022; 11:plants11040505. [PMID: 35214838 PMCID: PMC8874438 DOI: 10.3390/plants11040505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022]
Abstract
Remote sensing techniques in terms of monitoring plants’ responses to environmental constraints have gained much attention during recent decades. Among these constraints, climate change appears to be one of the major challenges in the Mediterranean region. In this study, the main goal was to determine how field spectrometry could improve remote sensing study of a Mediterranean shrubland submitted to climate aridification. We provided the spectral signature of three common plants of the Mediterranean garrigue: Cistus albidus, Quercus coccifera, and Rosmarinus officinalis. The pattern of these spectra changed depending on the presence of a neighboring plant species and water availability. Indeed, the normalized water absorption reflectance (R975/R900) tended to decrease for each species in trispecific associations (11–26%). This clearly indicates that multispecific plant communities will better resist climate aridification compared to monospecific stands. While Q. coccifera seemed to be more sensible to competition for water resources, C. albidus exhibited a facilitation effect on R. officinalis in trispecific assemblage. Among the 17 vegetation indices tested, we found that the pigment pheophytinization index (NPQI) was a relevant parameter to characterize plant–plant coexistence. This work also showed that some vegetation indices known as indicators of water and pigment contents could also discriminate plant associations, namely RGR (Red Green Ratio), WI (Water Index), Red Edge Model, NDWI1240 (Normalized Difference Water Index), and PRI (Photochemical Reflectance Index). The latter was shown to be linearly and negatively correlated to the ratio of R975/R900, an indicator of water status.
Collapse
|
7
|
Viros J, Santonja M, Temime‐Roussel B, Wortham H, Fernandez C, Ormeño E. Volatilome of Aleppo Pine litter over decomposition process. Ecol Evol 2021; 11:6862-6880. [PMID: 34141261 PMCID: PMC8207447 DOI: 10.1002/ece3.7533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/25/2021] [Accepted: 02/24/2021] [Indexed: 01/26/2023] Open
Abstract
Biogenic Volatile Organic Compounds (BVOC) are largely accepted to contribute to both atmospheric chemistry and ecosystem functioning. While the forest canopy is recognized as a major source of BVOC, emissions from plant litter have scarcely been explored with just a couple of studies being focused on emission patterns over litter decomposition process. The aim of this study was to quantitatively and qualitatively characterize BVOC emissions (C1-C15) from Pinus halepensis litter, one of the major Mediterranean conifer species, over a 15-month litter decomposition experiment. Senescent needles of P. halepensis were collected and placed in 42 litterbags where they underwent in situ decomposition. Litterbags were collected every 3 months and litter BVOC emissions were studied in vitro using both online (PTR-ToF-MS) and offline analyses (GC-MS). Results showed a large diversity of BVOC (58 compounds detected), with a strong variation over time. Maximum total BVOC emissions were observed after 3 months of decomposition with 9.18 µg gDM -1 hr-1 mainly composed by terpene emissions (e.g., α-pinene, terpinolene, β-caryophyllene). At this stage, methanol, acetone, and acetic acid were the most important nonterpenic volatiles representing, respectively, up to 26%, 10%, and 26% of total emissions. This study gives an overview of the evolution of BVOC emissions from litter along with decomposition process and will thus contribute to better understand the dynamics and sources of BVOC emission in Mediterranean pine forests.
Collapse
Affiliation(s)
- Justine Viros
- CNRSAix Marseille UnivIRDAvignon UnivIMBEMarseilleFrance
| | | | | | | | | | - Elena Ormeño
- CNRSAix Marseille UnivIRDAvignon UnivIMBEMarseilleFrance
| |
Collapse
|
8
|
Frank L, Wenig M, Ghirardo A, van der Krol A, Vlot AC, Schnitzler JP, Rosenkranz M. Isoprene and β-caryophyllene confer plant resistance via different plant internal signalling pathways. PLANT, CELL & ENVIRONMENT 2021; 44:1151-1164. [PMID: 33522606 DOI: 10.1111/pce.14010] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 05/12/2023]
Abstract
Isoprene and other terpenoids are important biogenic volatile organic compounds in terms of atmospheric chemistry. Isoprene can aid plant performance under abiotic stresses, but the fundamental biological reasons for the high emissions are not completely understood. Here, we provide evidence of a previously unrecognized ecological function for isoprene and for the sesquiterpene, ß-caryophyllene. We show that isoprene and ß-caryophyllene act as core components of plant signalling networks, inducing resistance against microbial pathogens in neighbouring plants. We challenged Arabidopsis thaliana with Pseudomonas syringae, after exposure to pure volatile terpenoids or to volatile emissions of transformed poplar or Arabidopsis plants. The data suggest that isoprene induces a defence response in receiver plants that is similar to that elicited by monoterpenes and depended on salicylic acid (SA) signalling. In contrast, the sesquiterpene, ß-caryophyllene, induced resistance via jasmonic acid (JA)-signalling. The experiments in an open environment show that natural biological emissions are enough to induce resistance in neighbouring Arabidopsis. Our results show that both isoprene and ß-caryophyllene function as allelochemical components in complex plant signalling networks. Knowledge of this system may be used to boost plant immunity against microbial pathogens in various crop management schemes.
Collapse
Affiliation(s)
- Lena Frank
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Andrea Ghirardo
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| | | | - A Corina Vlot
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Maaria Rosenkranz
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| |
Collapse
|