1
|
Parvin K, Hasanuzzaman M, Mohsin SM, Nahar K, Fujita M. Vanillic Acid Modulates Antioxidant Defense and Methylglyoxal Detoxification Systems to Combat Drought Stress in Tomato Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:3114. [PMID: 39599323 PMCID: PMC11597367 DOI: 10.3390/plants13223114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024]
Abstract
Vanillic acid (VA) regulates various plant physiological and biochemical processes upon different environmental stresses to enhance their tolerance. This study aimed to evaluate the protective effect of VA on growth and physiology, including osmoprotection, and antioxidant defense systems for enhancing higher tolerance by lowering oxidative damage against water deficit stress in tomatoes (Solanum lycopersicum L. cv. BARI Tomato-16). Hydroponically grown tomato seedlings (8 d old) were pretreated with 50 µM VA for 2 days followed by water deficit stress (imposed by water withdrawal and 12% polyethylene glycol; PEG-6000) for 4 d. Drought stress inhibited the seedlings' growth by reducing water content and photosynthetic pigments contents, alleviating oxidative stress induced by a reactive oxygen species and methylglyoxal. A significant enhancement in growth, biomass accumulation, and photosynthetic pigment content was observed in VA-pretreated stress conditions. In addition, there was an improvement in the water status and proline content, along with modulated activities of the antioxidant responses, including both non-enzymatic and enzymatic components in leaves of VA-pretreated seedlings upon the water deficit. Vanillic acid significantly reduced the reactive oxygen species generation and decreased cellular membrane damage in drought-affected tomato seedlings. Methylglyoxal detoxification was ensured to a great extent in VA-pretreated stressed tomato seedlings by strengthening the glyoxalase enzymes' activities. Therefore, VA can be effective for protecting tomato seedlings by inducing a plant antioxidant defense and the methylglyoxal detoxification system and osmoregulation under drought stress.
Collapse
Affiliation(s)
- Khursheda Parvin
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Sayed Mohammad Mohsin
- Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
2
|
Ahmed S, Ashraf S, Yasin NA, Sardar R, Al-Ashkar I, Abdelhamid MT, Sabagh AE. Exogenously applied nano-zinc oxide mitigates cadmium stress in Zea mays L. through modulation of physiochemical activities and nutrients homeostasis. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2250-2265. [PMID: 39066663 DOI: 10.1080/15226514.2024.2383657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The increasing levels of cadmium (Cd) pollution in agricultural soil reduces plant growth and yield. This study aims to determine the impact of green synthesized zinc oxide nanoparticles (ZnO-NPs) on the physiochemical activities, nutrition, growth, and yield of Zea mays L. under Cd stress conditions. For this purpose, ZnO-NPs (450 ppm and 600 ppm) synthesized from Syzygium aromaticum were applied through foliar spray to Z. mays and also used as seed priming agents. A significant decline in plant height (35.24%), biomass production (43.86%), mineral content, gas exchange attributes, and yield (37.62%) was observed in Cd-spiked plants compared to the control. While, 450 ppm ZnO-NPs primed seed increased plant height (18.46%), total chlorophyll (80.07%), improved ascorbic acid (25.10%), DPPH activity (26.66%), and soil mineral uptake (Mg+2 (38.86%), K+ (27.83%), and Zn+2 (43.68%) as compared to plants only spiked with Cd. On the contrary, the foliar-applied 450 ppm ZnO-NPs increased plant height (8.22%), total chlorophyll content (73.59%), ascorbic acid (21.39%), and DPPH activity (17.61%) and yield parameters; cob diameter (19.45%), and kernels numbers 6.35% enhanced compared to plants that were spiked only with Cd. The findings of the current study pave the way for safer and more cost-effective crop production in Cd-stressed soils by using green synthesized NPs and provide deep insights into the underlying mechanisms of NPs treatment at the molecular level to provide compelling evidence for the use of NPs in improving plant growth and yield.
Collapse
Affiliation(s)
- Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Sana Ashraf
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Nasim Ahmad Yasin
- Department of Horticulture, University of the Punjab, Lahore, Pakistan
| | | | - Ibrahim Al-Ashkar
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Ayman El Sabagh
- Faculty of Agriculture, Department of Field Crops, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
3
|
Danso OP, Wang Z, Zhang Z, Niu S, Wang Y, Wu G, Wang X, Zheng L, Dai J, Yin X, Zhu R. Effects of foliar selenium, biochar, and pig manure on cadmium accumulation in rice grains and assessment of health risk. ENVIRONMENTAL RESEARCH 2024; 256:119160. [PMID: 38754613 DOI: 10.1016/j.envres.2024.119160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Addressing cadmium (Cd) contamination in agricultural lands is crucial, given its health implications and accumulation in crops. This study used pot experiments to evaluate the impact of foliar selenium spray (Se) (0.40 mM), corn straw biochar (1%), and pig manure (1%) on the growth of rice plants, the accumulation of Cd in rice grain, and to examine their influence on health risk indices associated with Cd exposure. The treatments were designated as follows: a control group without any amendment (CK), biochar (T1), pig manure (T2), Se (T3), Se and biochar (T4), Se and pig manure (T5), and Se along with biochar and pig manure (T6). Our results indicated that the treatments affected soil pH and redox potential and improved growth and the nitrogen and phosphorus content in rice plants. The soil-plant analysis development (SPAD) meter readings of leaves during the tillering stage indicated a 5.27%-15.86% increase in treatments T2 to T6 compared to CK. The flag leaves of T2 exhibited increases of 12.06%-38.94% for electrolyte leakage and an 82.61%-91.60% decline in SOD compared to treatments T3 to T6. Treatments T1 to T6 increased protein content; however, amylose content was significantly reduced in T6. Treatment T6 recorded the lowest Cd concentration in rice grains (0.018 mg/kg), while T2 recorded the highest (0.051 mg/kg). The CK treatment group showed a grain Cd content reduction of 29.30% compared to T2. The assessment of acceptable daily intake, hazard quotient, and carcinogenic risk revealed an ascending order as follows: T6 < T3 < T5 < T4 < T1 < CK < T2. In conclusion, the application of treatment T6 demonstrates the potential to lower oxidative stress, enhance production, reduce cancer risk, and ensure the safe cultivation of rice in environments affected by Cd contamination.
Collapse
Affiliation(s)
- Ofori Prince Danso
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; Nanjing Institute of Functional Agriculture Science and Technology (iFAST), Nanjing, Jiangsu, 210031, China
| | - Zhangmin Wang
- Nanjing Institute of Functional Agriculture Science and Technology (iFAST), Nanjing, Jiangsu, 210031, China; School of Environmental Science and Engineering, Suzhou, Jiangsu, 215009, China
| | - Zezhou Zhang
- Institute of Functional Agriculture (Food) Science and Technology (iFAST) at Yangtze River Delta, Chuzhou, Anhui, 239050, China
| | - Shanshan Niu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; Nanjing Institute of Functional Agriculture Science and Technology (iFAST), Nanjing, Jiangsu, 210031, China
| | - Yuanqi Wang
- Faculty of Agriculture, Functional Agriculture Research Institute, Taigu, Shanxi, 30801, China
| | - Gege Wu
- Faculty of Agriculture, Functional Agriculture Research Institute, Taigu, Shanxi, 30801, China
| | - Xiaohu Wang
- Faculty of Agriculture, Functional Agriculture Research Institute, Taigu, Shanxi, 30801, China
| | - Li Zheng
- College of Plant Science, Jilin University, Changchun, Jilin, 130062, China
| | - Jun Dai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xuebin Yin
- Institute of Functional Agriculture Science and Technology (iFAST) at Yangtze River Delta, Anhui Science and Technology University, Chuzhou, Anhui, 239050, China; National Innovation Center for Functional Rice, Nanjing Institute of Functional Agriculture Science and Technology (iFAST), Nanjing, Jiangsu, 210031, China.
| | - Renbin Zhu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; Anhui Province Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
4
|
Saeed W, Mubeen S, Pan J, Rehman M, Fang W, Luo D, Liu P, Li Y, Chen P. Integrated physiological and metabolomic responses reveal mechanisms of Cd tolerance and detoxification in kenaf ( Hibiscus cannabinus L.) under Cd stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1332426. [PMID: 39175486 PMCID: PMC11340530 DOI: 10.3389/fpls.2024.1332426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/11/2024] [Indexed: 08/24/2024]
Abstract
Introduction Cadmium (Cd) is a highly toxic trace element that occurs in large quantities in agricultural soils. The cultivation of industrial crops with high phytoremediation potential, such as kenaf, could effectively reduce soil Cd contamination, but the mechanisms of toxicity, tolerance, and detoxification remain unclear. Methods In this study, the effects of different Cd concentrations (0, 100, 250, and 400 µM) on growth, biomass, Cd uptake, physiological parameters, metabolites and gene expression response of kenaf were investigated in a hydroponic experiment. Results and discussion The results showed that Cd stress significantly altered the ability of kenaf to accumulate and transport Cd; increased the activity of hydrogen peroxide (H2O2), superoxide anion (O2 -), and malondialdehyde (MDA); reduced the activities of superoxide dismutase (SOD) and catalase (CAT); and decreased the content of photosynthetic pigments, resulting in significant changes in growth and biomass production. Exposure to Cd was found to have a detrimental effect on the ascorbate-glutathione (AsA-GSH) cycle in the roots, whereas it resulted in an elevation in AsA levels and a reduction in GSH levels in the leaves. The increased content of cell wall polysaccharides under Cd stress could contribute to Cd retention in roots and limited Cd transport to above-ground plant tissues. Metabolomic analyses revealed that alanine, aspartate, and glutamate metabolism, oxidative phosphorylation, ABC transporter, and carbon metabolism were the major metabolic pathways associated with Cd stress tolerance. Cd stress increased gene expression of IRT1 and MTP1 in roots, which resulted in kenaf roots accumulating high Cd concentrations. This study extends our knowledge of the factors regulating the response of kenaf to Cd stress. This work provided a physiological and metabolomic perspective on the mechanism controlling the response of kenaf to Cd stress.
Collapse
Affiliation(s)
- Wajid Saeed
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Samavia Mubeen
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Jiao Pan
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Muzammal Rehman
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Wangqiang Fang
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Dengjie Luo
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Pingwu Liu
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Yun Li
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Peng Chen
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Bhadwal SS, Verma S, Hassan S, Kaur S. Unraveling the potential of hydrogen sulfide as a signaling molecule for plant development and environmental stress responses: A state-of-the-art review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108730. [PMID: 38763004 DOI: 10.1016/j.plaphy.2024.108730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Over the past decade, a plethora of research has illuminated the multifaceted roles of hydrogen sulfide (H2S) in plant physiology. This gaseous molecule, endowed with signaling properties, plays a pivotal role in mitigating metal-induced oxidative stress and strengthening the plant's ability to withstand harsh environmental conditions. It fulfils several functions in regulating plant development while ameliorating the adverse impacts of environmental stressors. The intricate connections among nitric oxide (NO), hydrogen peroxide (H2O2), and hydrogen sulfide in plant signaling, along with their involvement in direct chemical processes, are contributory in facilitating post-translational modifications (PTMs) of proteins that target cysteine residues. Therefore, the present review offers a comprehensive overview of sulfur metabolic pathways regulated by hydrogen sulfide, alongside the advancements in understanding its biological activities in plant growth and development. Specifically, it centres on the physiological roles of H2S in responding to environmental stressors to explore the crucial significance of different exogenously administered hydrogen sulfide donors in mitigating the toxicity associated with heavy metals (HMs). These donors are of utmost importance in facilitating the plant development, stabilization of physiological and biochemical processes, and augmentation of anti-oxidative metabolic pathways. Furthermore, the review delves into the interaction between different growth regulators and endogenous hydrogen sulfide and their contributions to mitigating metal-induced phytotoxicity.
Collapse
Affiliation(s)
- Siloni Singh Bhadwal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Shagun Verma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
6
|
Vitelli V, Giamborino A, Bertolini A, Saba A, Andreucci A. Cadmium Stress Signaling Pathways in Plants: Molecular Responses and Mechanisms. Curr Issues Mol Biol 2024; 46:6052-6068. [PMID: 38921032 PMCID: PMC11202648 DOI: 10.3390/cimb46060361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Heavy metal (HM) pollution, specifically cadmium (Cd) contamination, is a worldwide concern for its consequences for plant health and ecosystem stability. This review sheds light on the intricate mechanisms underlying Cd toxicity in plants and the various strategies employed by these organisms to mitigate its adverse effects. From molecular responses to physiological adaptations, plants have evolved sophisticated defense mechanisms to counteract Cd stress. We highlighted the role of phytochelatins (PCn) in plant detoxification, which chelate and sequester Cd ions to prevent their accumulation and minimize toxicity. Additionally, we explored the involvement of glutathione (GSH) in mitigating oxidative damage caused by Cd exposure and discussed the regulatory mechanisms governing GSH biosynthesis. We highlighted the role of transporter proteins, such as ATP-binding cassette transporters (ABCs) and heavy metal ATPases (HMAs), in mediating the uptake, sequestration, and detoxification of Cd in plants. Overall, this work offered valuable insights into the physiological, molecular, and biochemical mechanisms underlying plant responses to Cd stress, providing a basis for strategies to alleviate the unfavorable effects of HM pollution on plant health and ecosystem resilience.
Collapse
Affiliation(s)
- Valentina Vitelli
- Department of Biology, University of Pisa, 56126 Pisa, Italy;
- Department of Surgical, Medical and Molecular Pathology and Critical Care Area, University of Pisa, 56126 Pisa, Italy; (A.G.); (A.B.); (A.S.)
| | - Agnese Giamborino
- Department of Surgical, Medical and Molecular Pathology and Critical Care Area, University of Pisa, 56126 Pisa, Italy; (A.G.); (A.B.); (A.S.)
| | - Andrea Bertolini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Area, University of Pisa, 56126 Pisa, Italy; (A.G.); (A.B.); (A.S.)
| | - Alessandro Saba
- Department of Surgical, Medical and Molecular Pathology and Critical Care Area, University of Pisa, 56126 Pisa, Italy; (A.G.); (A.B.); (A.S.)
| | | |
Collapse
|
7
|
Zheng Q, Xin J, Zhao C, Tian R. Role of methylglyoxal and glyoxalase in the regulation of plant response to heavy metal stress. PLANT CELL REPORTS 2024; 43:103. [PMID: 38502356 DOI: 10.1007/s00299-024-03186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
KEY MESSAGE Methylglyoxal and glyoxalase function a significant role in plant response to heavy metal stress. We update and discuss the most recent developments of methylglyoxal and glyoxalase in regulating plant response to heavy metal stress. Methylglyoxal (MG), a by-product of several metabolic processes, is created by both enzymatic and non-enzymatic mechanisms. It plays an important role in plant growth and development, signal transduction, and response to heavy metal stress (HMS). Changes in MG content and glyoxalase (GLY) activity under HMS imply that they may be potential biomarkers of plant stress resistance. In this review, we summarize recent advances in research on the mechanisms of MG and GLY in the regulation of plant responses to HMS. It has been discovered that appropriate concentrations of MG assist plants in maintaining a balance between growth and development and survival defense, therefore shielding them from heavy metal harm. MG and GLY regulate plant physiological processes by remodeling cellular redox homeostasis, regulating stomatal movement, and crosstalking with other signaling molecules (including abscisic acid, gibberellic acid, jasmonic acid, cytokinin, salicylic acid, melatonin, ethylene, hydrogen sulfide, and nitric oxide). We also discuss the involvement of MG and GLY in the regulation of plant responses to HMS at the transcriptional, translational, and metabolic levels. Lastly, considering the current state of research, we present a perspective on the future direction of MG research to elucidate the MG anti-stress mechanism and offer a theoretical foundation and useful advice for the remediation of heavy metal-contaminated environments in the future.
Collapse
Affiliation(s)
- Qianqian Zheng
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jianpan Xin
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Chu Zhao
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Runan Tian
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
8
|
Seang-On L, Meeinkuirt W, Koedrith P. Alleviation of Cadmium Toxicity in Thai Rice Cultivar (PSL2) Using Biofertilizer Containing Indigenous Cadmium-Resistant Microbial Consortia. PLANTS (BASEL, SWITZERLAND) 2023; 12:3651. [PMID: 37896114 PMCID: PMC10610292 DOI: 10.3390/plants12203651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Biofertilizer as an amendment has growing awareness. Little attention has been paid to bioremediation potential of indigenous heavy-metal-resistant microbes, especially when isolated from long-term polluted soil, as a bioinoculant in biofertilizers. Biofertilizers are a type of versatile nutrient provider and soil conditioner that is cost-competitive and highly efficient with nondisruptive detoxifying capability. Herein, we investigated the effect of biofertilizers containing indigenous cadmium (Cd)-resistant microbial consortia on rice growth and physiological response. The Thai rice cultivar PSL2 (Oryza sativa L.) was grown in Cd-enriched soils amended with 3% biofertilizer. The composition of the biofertilizers' bacterial community at different taxonomic levels was explored using 16S rRNA gene Illumina MiSeq sequencing. Upon Cd stress, the test biofertilizer had maximum mitigating effects as shown by modulating photosynthetic pigment, MDA and proline content and enzymatic antioxidants, thereby allowing increased shoot and root biomass (46% and 53%, respectively) and reduced grain Cd content, as compared to the control. These phenomena might be attributed to increased soil pH and organic matter, as well as enriched beneficial detoxifiers, i.e., Bacteroidetes, Firmicutes and Proteobacteria, in the biofertilizers. The test biofertilizer was effective in alleviating Cd stress by improving soil biophysicochemical traits to limit Cd bioavailability, along with adjusting physiological traits such as antioxidative defense. This study first demonstrated that incorporating biofertilizer derived from indigenous Cd-resistant microbes could restrict Cd contents and consequently enhance plant growth and tolerance in polluted soil.
Collapse
Affiliation(s)
- Ladda Seang-On
- Faculty of Environment and Resource Studies, Mahidol University, 999 Phuttamonthon District, Nakhon Pathom 73170, Thailand
| | - Weeradej Meeinkuirt
- Water and Soil Environmental Research Unit, Nakhonsawan Campus, Mahidol University, Nakhonsawan 60130, Thailand
| | - Preeyaporn Koedrith
- Faculty of Environment and Resource Studies, Mahidol University, 999 Phuttamonthon District, Nakhon Pathom 73170, Thailand
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Biomedical Campus, Dongguk University, 32, Dongguk-ro, Ilsandong-gu, Goyang-si 410-820, Republic of Korea
| |
Collapse
|
9
|
Ennoury A, Nhhala N, Kchikich A, Roussi Z, Asri SE, Zouaoui Z, Nhiri M. Saltbuch extract: a bio-solutionfor cadmium stress sorghum plants in germination and maturation. Biometals 2023; 36:997-1012. [PMID: 36933179 DOI: 10.1007/s10534-023-00499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
Cadmium (Cd) is one of the dangerous factors that have negative impacts on plants and human health. Recently, many researchers have been looking for biostimulants to use as bioprotectants that can help or ameliorate plants' tolerance against abiotic stress, including Cd. To test the dangerousness of Cd accumulated in the soil, 200 µM of the latter was applied to sorghum seeds at germination and maturation stages. At the same time, Atriplex halimus water extract (0.1%, 0.25%, 0.5%) was applied to test its efficacy on Cd alleviation in sorghum plants. The obtained results showed that the tested concentrations enhanced the tolerance of sorghum to Cd by enhancing the germination indexes parameters such as germination percentage (GP), seedling vigor index (SVI), and reducing the mean germination time (MGT) of sorghum seeds grown under cadmium stress. On the other hand, the morphological parameters (height and weight) as well as the physiological parameters (chlorophyll and carotenoid) were stimulated in treated maturated sorghum plants under Cd stress. In addition, 0.5% and 0.25% of Atriplex halimus extract (AHE) stimulated the antioxidant enzymes, including superoxide dismutase, catalase, glutathione peroxidase, glutathione-s-transferase, and glutathione reductase. In the same time, an increase in carbon-nitrogen enzymes was recorded in the case of AHE treatment; phosphoenol pyruvate carboxylase, glutamine synthase, glutamate dehydrogenase, and amino acid transferase were all upregulated. These results suggest that using AHE as a biostimulant could be a better strategy to enhance the tolerance of sorghum plants to Cd stress.
Collapse
Affiliation(s)
- Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco.
| | - Nada Nhhala
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Anass Kchikich
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Zoulfa Roussi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Sara El Asri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Zakia Zouaoui
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| |
Collapse
|
10
|
Cuypers A, Vanbuel I, Iven V, Kunnen K, Vandionant S, Huybrechts M, Hendrix S. Cadmium-induced oxidative stress responses and acclimation in plants require fine-tuning of redox biology at subcellular level. Free Radic Biol Med 2023; 199:81-96. [PMID: 36775109 DOI: 10.1016/j.freeradbiomed.2023.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Cadmium (Cd) is one of the most toxic compounds released into our environment and is harmful to human health, urging the need to remediate Cd-polluted soils. To this end, it is important to increase our insight into the molecular mechanisms underlying Cd stress responses in plants, ultimately leading to acclimation, and to develop novel strategies for economic validation of these soils. Albeit its non-redox-active nature, Cd causes a cellular oxidative challenge, which is a crucial determinant in the onset of diverse signalling cascades required for long-term acclimation and survival of Cd-exposed plants. Although it is well known that Cd affects reactive oxygen species (ROS) production and scavenging, the contribution of individual organelles to Cd-induced oxidative stress responses is less well studied. Here, we provide an overview of the current information on Cd-induced organellar responses with special attention to redox biology. We propose that an integration of organellar ROS signals with other signalling pathways is essential to finetune plant acclimation to Cd stress.
Collapse
Affiliation(s)
- Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium.
| | - Isabeau Vanbuel
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Verena Iven
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Kris Kunnen
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Stéphanie Vandionant
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Michiel Huybrechts
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| |
Collapse
|
11
|
Raihan MRH, Rahman M, Mahmud NU, Adak MK, Islam T, Fujita M, Hasanuzzaman M. Application of Rhizobacteria, Paraburkholderia fungorum and Delftia sp. Confer Cadmium Tolerance in Rapeseed ( Brassica campestris) through Modulating Antioxidant Defense and Glyoxalase Systems. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202738. [PMID: 36297762 PMCID: PMC9610570 DOI: 10.3390/plants11202738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 05/06/2023]
Abstract
We investigated the role of two different plant growth-promoting probiotic bacteria in conferring cadmium (Cd) tolerance in rapeseed (Brassica campestris cv. BARI Sarisha-14) through improving reactive oxygen species scavenging, antioxidant defense, and glyoxalase system. Soil, as well as seeds of rapeseed, were separately treated with probiotic bacteria, Paraburkholderia fungorum BRRh-4 and Delftia sp. BTL-M2. Fourteen-day-old seedlings were exposed to 0.25 and 0.5 mM CdCl2 for two weeks. Cadmium-treated plants resulted in a higher accumulation of hydrogen peroxide, increased lipid peroxidation, electrolyte leakage, chlorophyll damage, and impaired antioxidant defense and glyoxalase systems. Consequently, it reduced plant growth and biomass production, and yield parameters. However, probiotic bacteria-inoculated plants significantly ameliorated the Cd toxicity by enhancing the activities of antioxidant enzymes (ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, glutathione reductase, glutathione peroxidase, and catalase) and glyoxalase enzymes (glyoxalase I and glyoxalase II) which led to the mitigation of oxidative damage indicated by reduced hydrogen peroxide, lipid peroxidation, and electrolyte leakage that ultimately improved growth, physiology, and yield of the bacterial inoculants rapeseed plants. When taken together, our results demonstrated the potential role of the plant probiotic bacteria, BRRh-4 and BTL-M2, in mitigating the Cd-induced damages in rapeseed plants.
Collapse
Affiliation(s)
| | - Mira Rahman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Nur Uddin Mahmud
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Malay Kumar Adak
- Department of Botany, University of Kalyani, Nadia 741235, West Bengal, India
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Correspondence: (T.I.); (M.F.); (M.H.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Takamatsu 761-0795, Japan
- Correspondence: (T.I.); (M.F.); (M.H.)
| | - Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
- Correspondence: (T.I.); (M.F.); (M.H.)
| |
Collapse
|
12
|
Požgajová M, Navrátilová A, Kovár M. Curative Potential of Substances with Bioactive Properties to Alleviate Cd Toxicity: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12380. [PMID: 36231680 PMCID: PMC9566368 DOI: 10.3390/ijerph191912380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Rapid urbanization and industrialization have led to alarming cadmium (Cd) pollution. Cd is a toxic heavy metal without any known physiological function in the organism, leading to severe health threat to the population. Cd has a long half-life (10-30 years) and thus it represents serious concern as it to a great extent accumulates in organs or organelles where it often causes irreversible damage. Moreover, Cd contamination might further lead to certain carcinogenic and non-carcinogenic health risks. Therefore, its negative effect on population health has to be minimalized. As Cd is able to enter the body through the air, water, soil, and food chain one possible way to defend and eliminate Cd toxicities is via dietary supplements that aim to eliminate the adverse effects of Cd to the organism. Naturally occurring bioactive compounds in food or medicinal plants with beneficial, mostly antioxidant, anti-inflammatory, anti-aging, or anti-tumorigenesis impact on the organism, have been described to mitigate the negative effect of various contaminants and pollutants, including Cd. This study summarizes the curative effect of recently studied bioactive substances and mineral elements capable to alleviate the negative impact of Cd on various model systems, supposing that not only the Cd-derived health threat can be reduced, but also prevention and control of Cd toxicity and elimination of Cd contamination can be achieved in the future.
Collapse
Affiliation(s)
- Miroslava Požgajová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Alica Navrátilová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Marek Kovár
- Institute of Plant and Environmental Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
13
|
Comparative Study of Trehalose and Trehalose 6-Phosphate to Improve Antioxidant Defense Mechanisms in Wheat and Mustard Seedlings under Salt and Water Deficit Stresses. STRESSES 2022. [DOI: 10.3390/stresses2030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Trehalose 6-phosphate (T6P) regulates sugar levels and starch metabolism in a plant cell and thus interacts with various signaling pathways, and after converting T6P into trehalose (Tre), it acts as a vital osmoprotectant under stress conditions. This study was conducted using wheat (Triticum aestivum L. cv. Norin 61) and mustard (Brassica juncea L. cv. BARI sharisha 13) seedlings to investigate the role of Tre and T6P in improving salt and water deficit stress tolerance. The seedlings were grown hydroponically using Hyponex solution and exposed to salt (300 and 200 mM NaCl for wheat and mustard, respectively) and water deficit (20 and 12% PEG 6000 for wheat and mustard, respectively) stresses with or without Tre and T6P. The study demonstrated that salt and water deficit stress negatively influenced plant growth by destroying photosynthetic pigments and increasing oxidative damage. In response to salt and water deficit stresses, the generation of H2O2 increased by 114 and 67%, respectively, in wheat seedlings, while in mustard, it increased by 86 and 50%, respectively. Antioxidant defense systems were also altered by salt and water deficit stresses due to higher oxidative damage. The AsA content was reduced by 65 and 38% in wheat and 61 and 45% in mustard under salt and water deficit stresses, respectively. The subsequent negative results of salinity and water deficit can be overcome by exogenous application of Tre and T6P; these agents reduced the oxidative stress by decreasing H2O2 and TBARS levels and increasing enzymatic and non-enzymatic antioxidants. Moreover, the application of Tre and T6P decreased the accumulation of Na in the shoots and roots of wheat and mustard seedlings. Therefore, the results suggest that the use of Tre and T6P is apromising strategy to alleviate osmotic and ionic toxicity in plants under salt and water deficit stresses.
Collapse
|
14
|
Zeng YQ, He JT, Hu BY, Li W, Deng J, Lin QL, Fang Y. Virgin coconut oil: A comprehensive review of antioxidant activity and mechanisms contributed by phenolic compounds. Crit Rev Food Sci Nutr 2022; 64:1052-1075. [PMID: 35997296 DOI: 10.1080/10408398.2022.2113361] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Virgin coconut oil (VCO) is obtained by processing mature coconut cores with mechanical or natural methods. In recent years, VCO has been widely used in the food, pharmaceutical, and cosmetic industries because of its excellent functional activities. VCO has biological functions such as antioxidant, anti-inflammatory, antibacterial, and antiviral, and also has potential therapeutic effects on many chronic degenerative diseases. Among these functions, the antioxidant is the most basic and important function, which is mainly determined by phenolic compounds and medium-chain fatty acids (MCFAs). This review aims to elucidate the antioxidant functions of each phenolic compound in VCO, and discuss the antioxidant mechanisms of VCO in terms of the role of phenolic compounds with fat, intestinal microorganisms, and various organs. Besides, the composition of VCO and its application in various industries are summarized, and the biological functions of VCO are generalized, which should lay a foundation for further research on the antioxidant activity of VCO and provide a theoretical basis for the development of food additives with antioxidant activity.
Collapse
Affiliation(s)
- Yu-Qing Zeng
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jin-Tao He
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Bo-Yong Hu
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Wen Li
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jing Deng
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Qin-Lu Lin
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yong Fang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
15
|
Roussi Z, Ben Mrid R, Ennoury A, Nhhala N, Zouaoui Z, El Omari R, Nhiri M. Insight into Cistus salviifolius extract for potential biostimulant effects in modulating cadmium-induced stress in sorghum plant. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1323-1334. [PMID: 35910448 PMCID: PMC9334477 DOI: 10.1007/s12298-022-01202-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 05/21/2023]
Abstract
The main aim of the current study was to investigate the role of Cistus salviifolius leaves extract (CSE) in alleviating the toxic effect of cadmium (Cd) in sorghum (Sorghum bicolor) plants. The plants exposed to Cd (200 µM) exhibited limited growth, reduced biomass, and chlorophyll content compared to unstressed ones. Nevertheless, supplementation of CSE restored the negative effect of Cd and increased biomass and pigment content. CSE also increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), isocitrate dehydrogenase (ICDH), glutathione peroxidase (GPx), glutathione reductase (GR), and Glutathione-S-Transferase (GST). Furthermore, supplementation of CSE decreased lipid peroxidation and further increased the content of soluble sugar and amino acid. We also found that CSE has a promising effect in modulating the perturbations of carbon and nitrogen metabolism in sorghum plants under Cd stress by examining several carbon-nitrogen enzyme activities: phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (NAD-MDH), glutamine synthase (GS), glutamate dehydrogenase (GDH), and aspartate aminotransferase (AAT). Overall, our results confirm that the application of CSE can be a promising mechanism to overcome the negative effects of Cd stress in sorghum plants.
Collapse
Affiliation(s)
- Zoulfa Roussi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Reda Ben Mrid
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), 43150 Ben-Guerir, Morocco
| | - Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Nada Nhhala
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Zakia Zouaoui
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Redouane El Omari
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
- Higher School of Technology (EST) Sidi Bennour, Chouaib Doukkali University, El Jadida, Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
16
|
Reactive Oxygen Species in Plants: From Source to Sink. Antioxidants (Basel) 2022; 11:antiox11020225. [PMID: 35204108 PMCID: PMC8868209 DOI: 10.3390/antiox11020225] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS, partial reduction or derivatives of free radicals) are highly reactive, dangerous and can cause oxidative cell death. In addition to their role as toxic by-products of aerobic metabolism, ROS play a role in the control and regulation of biological processes such as growth, the cell cycle, programmed cell death, hormone signaling, biotic and abiotic stress reactions and development. ROS always arise in plants as a by-product of several metabolic processes that are located in different cell compartments, or as a result of the inevitable escape of electrons to oxygen from the electron transport activities of chloroplasts, mitochondria and plasma membranes. These reactive species are formed in chloroplasts, mitochondria, plasma membranes, peroxisomes, apoplasts, the endoplasmic reticulum and cell walls. The action of many non-enzymatic and enzymatic antioxidants present in tissues is required for efficient scavenging of ROS generated during various environmental stressors. The current review provides an in-depth look at the fate of ROS in plants, a beneficial role in managing stress and other irregularities. The production sites are also explained with their negative effects. In addition, the biochemical properties and sources of ROS generation, capture systems, the influence of ROS on cell biochemistry and the crosstalk of ROS with other signaling molecules/pathways are discussed.
Collapse
|
17
|
Abdel Maksoud MIA, Bekhit M, El-Sherif DM, Sofy AR, Sofy MR. Gamma radiation-induced synthesis of a novel chitosan/silver/Mn-Mg ferrite nanocomposite and its impact on cadmium accumulation and translocation in brassica plant growth. Int J Biol Macromol 2022; 194:306-316. [PMID: 34871657 DOI: 10.1016/j.ijbiomac.2021.11.197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 01/13/2023]
Abstract
Herein, a novel chitosan/silver/Mn0.5Mg0.5Fe2O4 (Cs/Ag/MnMgFe2O4) nanocomposite was synthesized with gamma irradiation assistant. The prepared Cs/Ag/MnMgFe2O4 nanocomposite was characterized via EDX, XRD, SEM, UV-vis spectroscopy. To evaluate the effects of soak low and high-dose nanocomposite on physiological parameters, photosynthetic pigments, antioxidant and non-antioxidant enzymes of cabbage under Cd stress, a factorial experiment was conducted based on CRD with five replications. The Cd stress decreased the morphological characteristics and photosynthetic pigments while increasing cabbage's antioxidant and non-antioxidant enzymes. The application of low and high-dose of nanocomposite decreased Cd content in leaves by about 42.86%, 60.48%, and the root by approximately 18.72%, 28.72%, respectively, and translocation factors and tolerance index, H2O2, O2, and malondialdehyde. In contrast, the application of high of the nanocomposite increased the values of SPAD chlorophyll about 27.50%, stomatal conductance about 87.18%, net photosynthetic rate about 44.90%, intercellular CO2 concentration about 32.00%, and transpiration rate about 85.20%, as compared to Cd stress. Furthermore, the application of low and high-dose Cs/Ag/MnMgFe2O4 nanocomposite enhances the antioxidant and non-antioxidant enzymes of the cabbage plant compared to Cd stress. Generally, it was conducted that Cs/Ag/MnMgFe2O4 nanocomposite can be used as a proper tool for increasing cabbage plants under Cd stress.
Collapse
Affiliation(s)
- M I A Abdel Maksoud
- Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Mohamad Bekhit
- Radiation Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Dina M El-Sherif
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Ahmed R Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Mahmoud R Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt.
| |
Collapse
|
18
|
Thakur M, Praveen S, Divte PR, Mitra R, Kumar M, Gupta CK, Kalidindi U, Bansal R, Roy S, Anand A, Singh B. Metal tolerance in plants: Molecular and physicochemical interface determines the "not so heavy effect" of heavy metals. CHEMOSPHERE 2022; 287:131957. [PMID: 34450367 DOI: 10.1016/j.chemosphere.2021.131957] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 05/27/2023]
Abstract
An increase in technological interventions and ruthless urbanization in the name of development has deteriorated our environment over time and caused the buildup of heavy metals (HMs) in the soil and water resources. These heavy metals are gaining increased access into our food chain through the plant and/or animal-based products, to adversely impact human health. The issue of how to restrict the entry of HMs or modulate their response in event of their ingress into the plant system is worrisome. The current knowledge on the interactive-regulatory role and contribution of different physical, biophysical, biochemical, physiological, and molecular factors that determine the heavy metal availability-uptake-partitioning dynamics in the soil-plant-environment needs to be updated. The present review critically analyses the interactive overlaps between different adaptation and tolerance strategies that may be causally related to their cellular localization, conjugation and homeostasis, a relative affinity for the transporters, rhizosphere modifications, activation of efflux pumps and vacuolar sequestration that singly or collectively determine a plant's response to HM stress. Recently postulated role of gaseous pollutants such as SO2 and other secondary metabolites in heavy metal tolerance, which may be regulated at the whole plant and/or tissue/cell is discussed to delineate and work towards a "not so heavy" response of plants to heavy metals present in the contaminated soils.
Collapse
Affiliation(s)
- Meenakshi Thakur
- College of Horticulture and Forestry (Dr. Y.S. Parmar University of Horticulture and Forestry), Neri, Hamirpur, 177 001, Himachal Pradesh, India
| | - Shamima Praveen
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Pandurang R Divte
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Raktim Mitra
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Mahesh Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Maharashtra, 413 115, India
| | - Chandan Kumar Gupta
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, 226 002, India
| | - Usha Kalidindi
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Ruchi Bansal
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110 012, India
| | - Suman Roy
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, 700 120, India
| | - Anjali Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| | - Bhupinder Singh
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| |
Collapse
|
19
|
Garai S, Bhowal B, Kaur C, Singla-Pareek SL, Sopory SK. What signals the glyoxalase pathway in plants? PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2407-2420. [PMID: 34744374 PMCID: PMC8526643 DOI: 10.1007/s12298-021-00991-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 05/06/2023]
Abstract
Glyoxalase (GLY) system, comprising of GLYI and GLYII enzymes, has emerged as one of the primary methylglyoxal (MG) detoxification pathways with an indispensable role during abiotic and biotic stresses. MG homeostasis is indeed very closely guarded by the cell as its higher levels are cytotoxic for the organism. The dynamic responsiveness of MG-metabolizing GLY pathway to both endogenous cues such as, phytohormones, nutrient status, etc., as well as external environmental fluctuations (abiotic and biotic stresses) indicates that a tight regulation occurs in the cell to maintain physiological levels of MG in the system. Interestingly, GLY pathway is also manipulated by its substrates and reaction products. Hence, an investigation of signalling and regulatory aspects of GLY pathway would be worthwhile. Herein, we have attempted to converge all known factors acting as signals or directly regulating GLYI/II enzymes in plants. Further, we also discuss how crosstalk between these different signal molecules might facilitate the regulation of glyoxalase pathway. We believe that MG detoxification is controlled by intricate mechanisms involving a plethora of signal molecules.
Collapse
Affiliation(s)
- Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Charanpreet Kaur
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sneh Lata Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Sudhir K. Sopory
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
20
|
Faizan M, Bhat JA, Hessini K, Yu F, Ahmad P. Zinc oxide nanoparticles alleviates the adverse effects of cadmium stress on Oryza sativa via modulation of the photosynthesis and antioxidant defense system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112401. [PMID: 34118747 DOI: 10.1016/j.ecoenv.2021.112401] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/10/2021] [Accepted: 05/31/2021] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd) is a trace element causing severe toxicity symptoms in plants, besides posing hazardous fitness issue due to its buildup in the human body through food chain. Nanoparticles (NPs) are recently employed as a novel strategy to directly ameliorate the Cd stress and acted as nano-fertilizers. The intend of the current study was to explore the effects of zinc oxide nanoparticles (ZnO-NPs; 50 mg/L) on plant growth, photosynthetic activity, elemental status and antioxidant activity in Oryza sativa (rice) under Cd (0.8 mM) stress. To this end, the rice plants are treated by Cd stress at 15 days after sowing (DAS), and the treatment was given directly into the soil. Supply of ZnO-NPs as foliar spray was given for five consecutive days from 30 to 35 DAS, and sampling was done at 45 DAS. However, rice plants supplemented with ZnO-NPs under the Cd toxicity revealed significantly increased shoot length (SL; 34.0%), root fresh weight (RFW; 30.0%), shoot dry weight (SDW; 23.07%), and root dry weight (RDW; 12.24%). Moreover, the ZnO-NPs supplement has also positive effects on photosynthesis related parameters, SPAD value (40%), chloroplast structure, and qualitatively high fluorescence observed by confocal microscopy even under Cd stress. ZnO-NPs also substantially prevented the increases of hydrogen peroxide (H2O2) and malondialdehyde (MDA) triggered by Cd. Physiological and biochemical analysis showed that ZnO-NPs increased enzymatic activities of superoxide dismutase (SOD; 59%), catalase (CAT; 52%), and proline (17%) that metabolize reactive oxygen species (ROS); these increases coincided with the changes observed in the H2O2 and MDA accumulation after ZnO-NPs application. In conclusion, ZnO-NPs application to foliage has great efficiency to improve biomass, photosynthesis, protein, antioxidant enzymes activity, mineral nutrient contents and reducing Cd levels in rice. This can be attributed mainly from reduced oxidative damage resulted due to the ZnO-NPs application.
Collapse
Affiliation(s)
- Mohammad Faizan
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China
| | - Javaid Akhter Bhat
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kamel Hessini
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fangyuan Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Parvaiz Ahmad
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
21
|
SA-Mediated Regulation and Control of Abiotic Stress Tolerance in Rice. Int J Mol Sci 2021; 22:ijms22115591. [PMID: 34070465 PMCID: PMC8197520 DOI: 10.3390/ijms22115591] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Environmental or abiotic stresses are a common threat that remains a constant and common challenge to all plants. These threats whether singular or in combination can have devastating effects on plants. As a semiaquatic plant, rice succumbs to the same threats. Here we systematically look into the involvement of salicylic acid (SA) in the regulation of abiotic stress in rice. Studies have shown that the level of endogenous salicylic acid (SA) is high in rice compared to any other plant species. The reason behind this elevated level and the contribution of this molecule towards abiotic stress management and other underlying mechanisms remains poorly understood in rice. In this review we will address various abiotic stresses that affect the biochemistry and physiology of rice and the role played by SA in its regulation. Further, this review will elucidate the potential mechanisms that control SA-mediated stress tolerance in rice, leading to future prospects and direction for investigation.
Collapse
|
22
|
Mohsin SM, Hasanuzzaman M, Parvin K, Shahadat Hossain M, Fujita M. Protective role of tebuconazole and trifloxystrobin in wheat ( Triticum aestivum L.) under cadmium stress via enhancement of antioxidant defense and glyoxalase systems. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1043-1057. [PMID: 34092950 PMCID: PMC8139999 DOI: 10.1007/s12298-021-00983-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/11/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a toxic metal and an environmental pollutant that significantly reduces plant growth and productivity. Proper management can ameliorate dysfunction and improve the plant growth and productivity exposed to Cd. Therefore, the present study was conducted to explore the protective role of the fungicides tebuconazole (TEB) and trifloxystrobin (TRI) in helping wheat (Triticum aestivum L. cv. Norin 61) seedlings to tolerate Cd. Five-day-old hydroponically grown seedlings were allowed to mild (0.25 mM CdCl2) and severe (0.5 mM CdCl2) Cd stress separately and with the fungicides (2.75 µM TEB + 1.0 µM TRI) for the next four days. Compared to control, the level of H2O2 in the seedlings exposed to mild and severe Cd stress alone increased by 81 and 112%, respectively. The accumulation of Cd also increased in the wheat seedlings along with declining mineral nutrients under Cd stress. The protective effect of TEB and TRI was observed with the enhancement of the antioxidant defense and methylglyoxalase systems and reduction in oxidative damage. Applying TEB and TRI reduced MDA (by 9 and 18%), EL (by 21 and 17%), MG (by 12 and 17%), and LOX activity (by 37 and 27%), respectively, relative to Cd stress alone. Cadmium uptake also decreased in the shoots (by 48 and 50%, respectively) and roots (by 23 and 25%, respectively) of the fungicide-treated wheat seedlings under mild and severe Cd stress, relative to stress alone. These results indicate the exogenous application of TEB and TRI is a promising approach to improve Cd tolerance in wheat plants. Further investigation is needed under field conditions and for other crop species to determine the Cd-tolerance induced by TEB and TRI application.
Collapse
Affiliation(s)
- Sayed Mohammad Mohsin
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa, 761-0795 Japan
- Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Khursheda Parvin
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Md. Shahadat Hossain
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa, 761-0795 Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa, 761-0795 Japan
| |
Collapse
|
23
|
Parvin K, Hasanuzzaman M, Mohsin SM, Nahar K, Fujita M. Coumarin improves tomato plant tolerance to salinity by enhancing antioxidant defence, glyoxalase system and ion homeostasis. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:181-192. [PMID: 33135242 DOI: 10.1111/plb.13208] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Salinity is a severe threat to crop growth, development and even to world food sustainability. Plant possess natural antioxidant defense tactics to mitigate salinity-induced oxidative stress. Phenolic compounds are non-enzymatic antioxidants with specific roles in protecting plant cells against stress-mediated reactive oxygen species (ROS) generation. Coumarin (COU) is one of these compounds, however, to date, little is known about antioxidative roles of exogenous COU in enhancing plant tolerance mechanisms under salt stress. The involvement of COU in increasing tomato salt tolerance was examined in the present study using COU as a pre-treatment at 20 or 30 µM for 2 days against salt stress (100 or 160 NaCl; 5 days). The COU-mediated stimulation of plant antioxidant defence and glyoxalase systems to suppress salt-induced ROS and methylglyoxal (MG) toxicity, respectively, were the main hypotheses examined in the present study. Addition of COU suppressed salt-induced excess accumulation of ROS and MG, and significantly reduced membrane damage, lipid peroxidation and Na+ toxicity. These results demonstrate COU-improved plant growth, biomass content, photosynthetic pigment content, water retention and mineral homeostasis upon imposition of salinity. Finally, this present study suggests that COU has potential roles as a phytoprotectant in stimulating plant antioxidative mechanisms and improving glyoxalase enzyme activity under salinity stress.
Collapse
Affiliation(s)
- K Parvin
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kita-gun, Kagawa, Japan
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - M Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - S M Mohsin
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kita-gun, Kagawa, Japan
- Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - K Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - M Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kita-gun, Kagawa, Japan
| |
Collapse
|
24
|
Hasanuzzaman M, Bhuyan MHMB, Parvin K, Bhuiyan TF, Anee TI, Nahar K, Hossen MS, Zulfiqar F, Alam MM, Fujita M. Regulation of ROS Metabolism in Plants under Environmental Stress: A Review of Recent Experimental Evidence. Int J Mol Sci 2020; 21:ijms21228695. [PMID: 33218014 PMCID: PMC7698618 DOI: 10.3390/ijms21228695] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
- Correspondence: (M.H.); (M.F.)
| | | | - Khursheda Parvin
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan;
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Tasnim Farha Bhuiyan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.F.B.); (K.N.)
| | - Taufika Islam Anee
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.F.B.); (K.N.)
| | | | - Faisal Zulfiqar
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Md. Mahabub Alam
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan;
- Correspondence: (M.H.); (M.F.)
| |
Collapse
|
25
|
Mohsin SM, Hasanuzzaman M, Nahar K, Hossain MS, Bhuyan MHMB, Parvin K, Fujita M. Tebuconazole and trifloxystrobin regulate the physiology, antioxidant defense and methylglyoxal detoxification systems in conferring salt stress tolerance in Triticum aestivum L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1139-1154. [PMID: 32549679 PMCID: PMC7266902 DOI: 10.1007/s12298-020-00810-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 05/05/2023]
Abstract
Fungicides are widely used for controlling fungi in crop plants. However, their roles in conferring abiotic stress tolerance are still elusive. In this study, the effect of tebuconazole (TEB) and trifloxystrobin (TRI) on wheat seedlings (Triticum aestivum L. cv. Norin 61) was investigated under salt stress. Seedlings were pre-treated for 48 h with fungicide (1.375 µM TEB + 0.5 µM TRI) and then subjected to salt stress (250 mM NaCl) for 5 days. Salt treatment alone resulted in oxidative damage and increased lipid peroxidation as evident by higher malondialdehyde (MDA) and hydrogen peroxide (H2O2) content. Salt stress also decreased the chlorophyll and relative water content and increased the proline (Pro) content. Furthermore, salt stress increased the dehydroascorbate (DHA) and glutathione disulfide (GSSG) content while ascorbate (AsA), the AsA/DHA ratio, reduced glutathione (GSH) and the GSH/GSSG ratio decreased. However, a combined application of TEB and TRI significantly alleviated growth inhibition, photosynthetic pigments and leaf water status improved under salt stress. Application of TEB and TRI also decreased MDA, electrolyte leakage, and H2O2 content by modulating the contents of AsA and GSH, and enzymatic antioxidant activities. In addition, TEB and TRI regulated K+/Na+ homeostasis by improving the K+/Na+ ratio under salt stress. These results suggested that exogenous application of TEB and TRI rendered the wheat seedling more tolerant to salinity stress by controlling ROS and methylglyoxal (MG) production through the regulation of the antioxidant defense and MG detoxification systems.
Collapse
Affiliation(s)
- Sayed Mohammad Mohsin
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa 761-0795 Japan
- Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Md. Shahadat Hossain
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa 761-0795 Japan
| | - M. H. M. Borhannuddin Bhuyan
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa 761-0795 Japan
- Bangladesh Agricultural Research Institute, Citrus Research Station, Jaintapur, Sylhet, 3156 Bangladesh
| | - Khursheda Parvin
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa 761-0795 Japan
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa 761-0795 Japan
| |
Collapse
|
26
|
Mohsin SM, Hasanuzzaman M, Parvin K, Fujita M. Pretreatment of wheat (Triticum aestivum L.) seedlings with 2,4-D improves tolerance to salinity-induced oxidative stress and methylglyoxal toxicity by modulating ion homeostasis, antioxidant defenses, and glyoxalase systems. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:221-231. [PMID: 32438299 DOI: 10.1016/j.plaphy.2020.04.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/14/2020] [Accepted: 04/24/2020] [Indexed: 05/22/2023]
Abstract
The commonly used herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has an as yet undetermined protective role in mitigating salinity-induced damage in crop plants. The aim of this study was to explore the possible roles of antioxidant defense and methylglyoxal (MG) detoxification systems in enhancing salt tolerance in wheat (Triticum aestivum L. cv. Norin 61) seedlings following pretreatment with 2,4-D. Wheat seedlings were grown hydroponically, pretreated with 10 μM 2,4-D for 48 h, and then exposed to salt stress (150 and 250 mM NaCl) for the next five days. The protective effect of 2,4-D was associated with increased antioxidant enzyme activity and ascorbate and glutathione content, and with decreased malondialdehyde and hydrogen peroxide content and reduced electrolytic leakage. Application of 2,4-D increased glyoxalase enzyme activity, resulting in greater MG detoxification. Seedlings pretreated with 2,4-D showed improved growth, biomass, and leaf water content due to reductions in Na+ accumulation and increases in K+, Ca2+, and Mg2+ uptake. Overall, these results highlight the potential use of this common herbicide as a phytoprotectant against salinity stress.
Collapse
Affiliation(s)
- Sayed Mohammad Mohsin
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa 761-0795, Japan; Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh.
| | - Khursheda Parvin
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa 761-0795, Japan; Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa 761-0795, Japan.
| |
Collapse
|
27
|
Arif MS, Yasmeen T, Abbas Z, Ali S, Rizwan M, Aljarba NH, Alkahtani S, Abdel-Daim MM. Role of Exogenous and Endogenous Hydrogen Sulfide (H 2S) on Functional Traits of Plants Under Heavy Metal Stresses: A Recent Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:545453. [PMID: 33488636 PMCID: PMC7817613 DOI: 10.3389/fpls.2020.545453] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/27/2020] [Indexed: 05/08/2023]
Abstract
Improving growth and productivity of plants that are vulnerable to environmental stresses, such as heavy metals, is of significant importance for meeting global food and energy demands. Because heavy metal toxicity not only causes impaired plant growth, it has also posed many concerns related to human well-being, so mitigation of heavy metal pollution is a necessary priority for a cleaner environment and healthier world. Hydrogen sulfide (H2S), a gaseous signaling molecule, is involved in metal-related oxidative stress mitigation and increased stress tolerance in plants. It performs multifunctional roles in plant growth regulation while reducing the adverse effects of abiotic stress. Most effective function of H2S in plants is to eliminate metal-related oxidative toxicity by regulating several key physiobiochemical processes. Soil pollution by heavy metals presents significant environmental challenge due to the absence of vegetation cover and the resulting depletion of key soil functions. However, the use of stress alleviators, such as H2S, along with suitable crop plants, has considerable potential for an effective management of these contaminated soils. Overall, the present review examines the imperative role of exogenous application of different H2S donors in reducing HMs toxicity, by promoting plant growth, stabilizing their physiobiochemical processes, and upregulating antioxidative metabolic activities. In addition, crosstalk of different growth regulators with endogenous H2S and their contribution to the mitigation of metal phytotoxicity have also been explored.
Collapse
Affiliation(s)
- Muhammad Saleem Arif
- Department of Environmental Science and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tahira Yasmeen
- Department of Environmental Science and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
- *Correspondence: Tahira Yasmeen, ;
| | - Zohaib Abbas
- Department of Environmental Science and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Science and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
- Shafaqat Ali, ;
| | - Muhammad Rizwan
- Department of Environmental Science and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nada H. Aljarba
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|