1
|
Zhu Y, Xing Y, Li Y, Jia J, Ying Y, Shi W. The Role of Phosphate-Solubilizing Microbial Interactions in Phosphorus Activation and Utilization in Plant-Soil Systems: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2686. [PMID: 39409556 PMCID: PMC11478493 DOI: 10.3390/plants13192686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024]
Abstract
To address the issue of phosphorus limitation in agricultural and forestry production and to identify green and economical alternatives to chemical phosphorus fertilizers, this paper reviews the utilization of phosphorus in plant-soil systems and explores the considerable potential for exploiting endogenous phosphorus resources. The application of phosphate-solubilizing microorganisms (PSMs) is emphasized for their role in phosphorus activation and plant growth promotion. A focus is placed on microbial interactions as an entry point to regulate the functional rhizosphere microbiome, introducing the concept of synthetic communities. This approach aims to deepen the understanding of PSM interactions across plant root, soil, and microbial interfaces, providing a theoretical foundation for the development and application of biological regulation technologies to enhance phosphorus utilization efficiency.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (J.J.)
| | - Yijing Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (J.J.)
| | - Yue Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (J.J.)
| | - Jingyi Jia
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (J.J.)
| | - Yeqing Ying
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (J.J.)
- Key Laboratory of Bamboo Science and Technology, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenhui Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (J.J.)
- Key Laboratory of Bamboo Science and Technology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Sheoran S, Prakash D, Yadav PK, Gupta RK, Al-Ansari N, El-Hendawy S, Mattar MA. Long-term application of FYM and fertilizer N improve soil fertility and enzyme activity in 51 st wheat cycle under pearl millet-wheat. Sci Rep 2024; 14:21695. [PMID: 39289455 PMCID: PMC11408662 DOI: 10.1038/s41598-024-72076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Our study from an ongoing research experiment initiated in Rabi 1967 at the Research Farm of CCS Haryana Agricultural University, Haryana, India, reports that during the 51st wheat cycle in pearl millet-wheat sequence, adding FYM in both seasons significantly impacted various soil parameters at different wheat growth stages compared to the rabi season. The application of 15 t of FYM ha-1 resulted in a considerable increase in dissolved organic carbon content (9.1-11.2%), available P (9.7-12.1%), and available S (12.6-17.1%), DHA levels by 7.3-22.0%, urease activity (10.1 and 17.0%), β-Glucosidase activity (6.2-8.4%), and APA activity (5.2-10.6%), compared to 10 t FYM ha-1. Application of N120 exhibited a considerable improvement in DHA (11.0-23.2%), β-Glucosidase (9.4-19.2%), urease (13.3-28.3%), and APA (3.3-6.2%) activity compared to control (N0). At stage 3, the box plot revealed that 50% of the available N, P, and S values varied from 223.1 to 287.9 kg ha-1, 53.0 to 98.2 kg ha-1, and 50.0 to 97.6 kg ha-1, respectively. Principal component analysis, with PC1 explaining 94.7% and PC2 explaining 3.15% of the overall variability, and SOC had a polynomial relationship with soil characteristics (R2 = 0.89 to 0.99). Applying FYM15 × N120 treatment during both seasons proved beneficial in sustaining the health of sandy loam soil in North-West India.
Collapse
Affiliation(s)
- Sunita Sheoran
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Dhram Prakash
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Parmod Kumar Yadav
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Rajeev Kumar Gupta
- Department of Agronomy, Lovely Professional University, Jalandhar, Punjab, 144001, India.
- Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Nadhir Al-Ansari
- Department of Civil, Environmental, and Natural Resources Engineering, Lulea University of Technology, 97187, Luleå, Sweden.
| | - Salah El-Hendawy
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Mattar
- Department of Agricultural Engineering, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
3
|
Ponnusamy J, Santhy Poongavanam LK, Ettiyagounder P, Murugesan M, Ramanujam K, Rangasamy S, Mariappan S, Shanmugam KP. Impact of regenerative farming practices on soil quality and yield of cotton-sorghum system in semi arid Indian conditions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:462. [PMID: 38642132 DOI: 10.1007/s10661-024-12608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/04/2024] [Indexed: 04/22/2024]
Abstract
Regenerative agricultural practices, i.e. organic and natural farming, are rooted in India since ancient times. However, the high cost of production, lack of organic pest control measures and premium price of organic produces in chemical agriculture encourage natural farming. In the present study, the quality improvement of calcareous soils under organic (OGF) and natural (NTF) management was compared with integrated conventional (ICF) and non-invasive (NIF) farming practices with cotton-sorghum crops over three consecutive years. A total of 23 soil attributes were analyzed at the end of the third cropping cycle and subjected to principal component analysis (PCA) to select a minimum data set (MDS) and obtain a soil quality index (SQI). The attributes soil organic carbon (SOC), available Fe, pH, bulk density (BD) and alkaline phosphatase (APA) were selected as indicators based on correlations and expert opinions on the lime content of the experimental soil. The SQI was improved in the order of OGF (0.89) > NTF(0.69) > ICF(0.48) > NIF(0.05). The contribution of the indicators to SQI was in the order of available Fe (17-44%) > SOC (21-28%), APA (11-36%) > pH (0-22%), and BD (0-20%) regardless of the farming practices. These indicators contribute equally to soil quality under natural (17-22%) and organic (18-22%) farming. The benefit:cost ratio was calculated to show the advantage of natural farming and was in the order of NTF(1.95-2.29), ICF (1.34-1.47), OGF (1.13-1.20) and NIF (0.84-1.47). In overall, the natural farming significantly sustained the soil quality and cost benefit compared to integrated conventional farming practices.
Collapse
Affiliation(s)
- Janaki Ponnusamy
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, TN, 641003, India.
| | - Lalid Kumar Santhy Poongavanam
- Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, TN, 641003, India
| | - Parameswari Ettiyagounder
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, TN, 641003, India
| | - Monicaa Murugesan
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, TN, 641003, India
| | - Krishnan Ramanujam
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, TN, 641003, India
| | - Sunitha Rangasamy
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, TN, 641003, India
| | - Suganthy Mariappan
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, TN, 641003, India
| | - Kavitha P Shanmugam
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, TN, 641003, India
| |
Collapse
|
4
|
Dutta A, Hazra KK, Nath CP, Kumar N, Singh SS, Praharaj CS. Long-term impact of legume-inclusive diversification and nutrient management practices on phosphorus dynamics in alkaline Fluvisol. Sci Rep 2024; 14:65. [PMID: 38167531 PMCID: PMC10762125 DOI: 10.1038/s41598-023-49616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024] Open
Abstract
An insight into the dynamics of soil phosphorus (P) pools with long-term cropping/management practices would help in designing efficient and sustainable management module(s). The study aimed to investigate the long-term impact of diversified rice-based rotations and variable nutrient management practices on the dynamic composition of P pools and their influence on systems' base-crop productivity in an alkaline soil of Indo-Gangetic plain (Fluvisol). Treatments consisted of four rotations [rice-wheat (R-W), rice-wheat-mungbean (R-W-Mb), rice-wheat-rice-chickpea (R-W-R-C), rice-chickpea (R-C)] each with three nutrient treatments [control (CT), integrated nutrient management (INM), sole-chemical fertilizers (CF)]. Notably, R-C exhibited higher levels of bioavailable-P (soluble-P, Ca2-P, labile-Po), particularly in subsurface soil depth (0.2-0.4 m) compared to other rotations. Likewise, the inclusion of chickpea every alternate year (R-W-R-C) resulted in higher Ca2-P (40%), labile-Pi (15%), labile-Po (11%), and moderately labile Po (8%) compared to R-W rotation demonstrating an increased significance of chickpea in maintaining a favorable soil P regime in alkaline soil. Both R-C and R-W-R-C reduced the surface-to-subsurface depth ratio (SSBR) of soluble-P and Ca2-P while increasing the ratio for microbial biomass P. Even with a suboptimal fertilizer-P rate, INM significantly increased soluble-P (4-33%), labile-Po (13-17%), microbial biomass P (10-26%), moderately labile-Po (4-17%) compared to CF and exhibited higher SSBR values. Correlation analysis demonstrated the substantial influence of very-labile carbon, microbial and phosphatase activities on P availability. The treatment-induced changes in labile-P pools significantly influenced rice (base-crop) yields. In conclusion, chickpea-inclusive diversification and INM could be a sustainable approach to enhance P bioavailability and crop productivity in tropical rice soils.
Collapse
Affiliation(s)
- Asik Dutta
- Crop Production Division, Indian Institute of Pulses Research (ICAR), Kanpur, Uttar Pradesh, 208024, India.
| | - K K Hazra
- Crop Production Division, Indian Institute of Pulses Research (ICAR), Kanpur, Uttar Pradesh, 208024, India.
| | - C P Nath
- Crop Production Division, Indian Institute of Pulses Research (ICAR), Kanpur, Uttar Pradesh, 208024, India.
| | - N Kumar
- Crop Production Division, Indian Institute of Pulses Research (ICAR), Kanpur, Uttar Pradesh, 208024, India.
| | - S S Singh
- Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, 284003, India
| | - C S Praharaj
- Directorate of Groundnut Research, Junagadh, Gujarat, 362001, India
| |
Collapse
|
5
|
Wang R, Funayama-Noguchi S, Xiong Z, Staudinger C, Wasaki J. Phosphorus absorption kinetics and exudation strategies of roots developed by three lupin species to tackle P deficiency. PLANTA 2023; 259:29. [PMID: 38133691 DOI: 10.1007/s00425-023-04307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
MAIN CONCLUSION Different lupin species exhibited varied biomass, P allocation, and physiological responses to P-deprivation. White and yellow lupins had higher carboxylate exudation rates, while blue lupin showed the highest phosphatase activity. White lupin (Lupinus albus) can produce specialized root structures, called cluster roots, which are adapted to low-phosphorus (P) soil. Blue lupin (L. angustifolius) and yellow lupin (L. luteus), which are two close relatives of white lupin, do not produce cluster roots. This study characterized plant responses to nutrient limitation by analyzing biomass accumulation and P distribution, absorption kinetics and root exudation in white, blue, and yellow lupins. Plants were grown in hydroponic culture with (64 µM NaH2PO4) or without P for 31 days. Under P limitation, more biomass was allocated to roots to improve P absorption. Furthermore, the relative growth rate of blue lupin showed the strongest inhibition. Under + P conditions, the plant total-P contents of blue lupin and yellow lupin were higher than that of white lupin. To elucidate the responses of lupins via the perspective of absorption kinetics and secretion analysis, blue and yellow lupins were confirmed to have stronger affinity and absorption capacity for orthophosphate after P-deprivation cultivation, whereas white lupin and yellow lupin had greater ability to secrete organic acids. The exudation of blue lupin had higher acid phosphatase activity. This study elucidated that blue lupin was more sensitive to P-scarcity stress and yellow had the greater tolerance of P-deficient condition than either of the other two lupin species. The three lupin species have evolved different adaptation strategies to cope with P deficiency.
Collapse
Affiliation(s)
- Ruixin Wang
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, 739-8521, Japan
| | - Sachiko Funayama-Noguchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Zilin Xiong
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, 739-8521, Japan
| | - Christiana Staudinger
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, 739-8521, Japan
- Department of Crop Sciences, University of Natural Resources and Life Sciences (BOKU), Konrad Lorenz Str. 24, 3430, Tulln, Austria
| | - Jun Wasaki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, 739-8521, Japan.
- Seto Inland Sea Carbon Neutral Research Center, Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
6
|
Sardans J, Lambers H, Preece C, Alrefaei AF, Penuelas J. Role of mycorrhizas and root exudates in plant uptake of soil nutrients (calcium, iron, magnesium, and potassium): has the puzzle been completely solved? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36917083 DOI: 10.1111/tpj.16184] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 05/16/2023]
Abstract
Anthropogenic global change is driving an increase in the frequency and intensity of drought and flood events, along with associated imbalances and limitation of several soil nutrients. In the context of an increasing human population, these impacts represent a global-scale challenge for biodiversity conservation and sustainable crop production to ensure food security. Plants have evolved strategies to enhance uptake of soil nutrients under environmental stress conditions; for example, symbioses with fungi (mycorrhization) in the rhizosphere and the release of exudates from roots. Although crop cultivation is managed for the effects of limited availability of nitrogen (N) and phosphorus (P), there is increasing evidence for limitation of plant growth and fitness because of the low availability of other soil nutrients such as the metals potassium (K), calcium (Ca), magnesium (Mg), and iron (Fe), which may become increasingly limiting for plant productivity under global change. The roles of mycorrhizas and plant exudates on N and P uptake have been studied intensively; however, our understanding of the effects on metal nutrients is less clear and still inconsistent. Here, we review the literature on the role of mycorrhizas and root exudates in plant uptake of key nutrients (N, P, K, Ca, Mg, and Fe) in the context of potential nutrient deficiencies in crop and non-crop terrestrial ecosystems, and identify knowledge gaps for future research to improve nutrient-uptake capacity in food crop plants.
Collapse
Affiliation(s)
- Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Hans Lambers
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Catherine Preece
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
- Sustainability in Biosystems Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, E-08140, Caldes de Montbui, Spain
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| |
Collapse
|
7
|
Wang Y, Liu L, Hu Y, Zhang J, Jia R, Huang Q, Gao H, Awasthi MK, Li H, Zhao Z. The spatio-temporal change in soil P and P-solubilizing bacteria under clover mulching in apple orchards of Loess Plateau. CHEMOSPHERE 2022; 304:135334. [PMID: 35709835 DOI: 10.1016/j.chemosphere.2022.135334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Cover crop is an effective practice for improving soil quality and increase soil nutrients. However, the spatio-temporal change of soil phosphorus (P) components and P-solubilizing microorganisms in the process of grass succession is not evident. Here, we studied the variation of soil P components and P-solubilizing bacteria at 0-60 cm soil layer under clean tillage (CT) and white clover (WC, Trifolium repens L.) grown for 5, 9, and 14 years in an apple test station on the Loess Plateau, China. This study suggested that clover cover could effectively increase the total P, available P (AP), microbial P, organic P (Po), and inorganic P (Al-P, Ca2-P, Ca8-P and Fe-P) in topsoil (0-20 cm) and AP, Po and inorganic P at 20-40 cm soil layer to improve the soil P bioavailability. The effects of WC living mulch on the soil P forms were more significant with the increase in grass growing years, but this effect was difficult to extend to deep soil. In addition, the WC treatments were beneficial to the growth of P-solubilizing microorganisms in surface soil and improved the alkaline phosphatase activity at 0-40 cm soil layer, mainly including Bacillus, Bradyrhizobium, Nocardioides, Sphingomonas and Streptomyces. This study provided a perspective on the dynamic changes of soil P forms and P-solubilizing microorganisms and under long-term cover crop.
Collapse
Affiliation(s)
- Yuanji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Li Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Jiatao Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rongjian Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Qianqian Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hua Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Huike Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
8
|
Combination of Inorganic Nitrogen and Organic Soil Amendment Improves Nitrogen Use Efficiency While Reducing Nitrogen Runoff. NITROGEN 2022. [DOI: 10.3390/nitrogen3010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Improved nitrogen fertiliser management and increased nitrogen use efficiency (NUE) can be achieved by synchronising nitrogen (N) availability with plant uptake requirements. Organic materials in conjunction with inorganic fertilisers provide a strategy for supplying plant-available N over the growing season and reducing N loss. This study investigated whether a combined application of inorganic N with an organic soil amendment could improve nitrogen use efficiency by reducing N loss in runoff. Nitrogen runoff from a ryegrass (Lolium multiflorum) cover was investigated using a rainfall simulator. Nitrogen was applied at low, medium and high (50, 75 and 100 kg/ha) rates as either (NH4)2SO4 or in combination with a poultry manure-based organic material. We showed that the NUE in the combination (58–75%) was two-fold greater than in (NH4)2SO4 (24–42%). Furthermore, this combination also resulted in a two-fold lower N runoff compared with the inorganic fertiliser alone. This effect was attributed to the slower rate of N release from the organic amendment relative to the inorganic fertiliser. Here, we demonstrated that the combined use of inorganic and organic N substrates can reduce nutrient losses in surface runoff due to a better synchronisation of N availability with plant uptake requirements.
Collapse
|
9
|
Raniro HR, Bettoni Teles AP, Adam C, Pavinato PS. Phosphorus solubility and dynamics in a tropical soil under sources derived from wastewater and sewage sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113984. [PMID: 34700086 DOI: 10.1016/j.jenvman.2021.113984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Conventional phosphate fertilizers are usually highly water-soluble and rapidly solubilize when moistened by the soil solution. However, if this solubilization is not in alignment with plants demand, P can react with the soil colloidal phase, becoming less available over time. This is more pronounced in acidic, oxidic tropical soils, with high P adsorption capacity, reducing the efficiency of P fertilization. Furthermore, these fertilizers are derived from phosphate rock, a non-renewable resource, generating an environmental impact. To assess these concerns, waste-recycled P sources (struvite, hazenite and AshDec®) were studied for their potential of reducing P fixation by the soil and improving the agronomic efficiency of the P fertilization. In our work, we compared the solubilization dynamics of struvite, hazenite, AshDec® to triple superphosphate (TSP) in a sandy clay loam Ferralsol, as well as their effect on solution pH and on soil P pools (labile, moderately-labile and non-labile) via an incubation experiment. Leaching columns containing 50 g of soil with surface application of 100 mg per column (mg col-1) of P from each selected fertilizer and one control (nil-P) were evaluated for 60 days. Daily leachate samples from the column were analyzed for P content and pH. Soil was stratified in the end and submitted to P fractionation. All results were analyzed considering p < 0.05. Our findings showed that TSP and struvite promoted an acid P release reaction (reaching pHs of 4.3 and 5.5 respectively), while AshDec® and hazenite reaction was alkaline (reaching pHs of 8.4 and 8.5 respectively). Furthermore, TSP promoted the highest P release among all sources in 60 days (52.8 mg col-1) and showed rapid release dynamic in the beginning, while struvite and hazenite showed late release dynamics and lower total leached P (29.7 and 15.5 mg col-1 P respectively). In contrast, no P-release was detected in the leachate of the AshDec® over the whole trial period. Struvite promoted the highest soil labile P concentration (7938 mg kg-1), followed by hazenite (5877 mg kg-1) and AshDec® (4468 mg kg-1), all higher than TSP (3821 mg kg-1), while AshDec® showed high moderately-labile P (9214 mg kg-1), reaffirming its delayed release potential.
Collapse
Affiliation(s)
- Henrique Rasera Raniro
- Department of Soil Science, Luiz de Queiroz College of Agriculture (Esalq), University of São Paulo (USP), Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil.
| | - Ana Paula Bettoni Teles
- Department of Soil Science, Luiz de Queiroz College of Agriculture (Esalq), University of São Paulo (USP), Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil.
| | - Christian Adam
- Division 4.4 - Thermochemical Residues Treatment and Resource Recovery, German Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße, 11, 12489, Berlin, Germany.
| | - Paulo Sergio Pavinato
- Department of Soil Science, Luiz de Queiroz College of Agriculture (Esalq), University of São Paulo (USP), Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil.
| |
Collapse
|
10
|
Phillips IR, Courtney R. Long term field trials demonstrate sustainable nutrient supply and uptake in rehabilitated bauxite residue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150134. [PMID: 34509849 DOI: 10.1016/j.scitotenv.2021.150134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Establishing a sustainable vegetation cover is one of the most important steps in progressive rehabilitation and final closure of ore-processing residues and tailings facilities. Sustainable rehabilitation partly depends on establishing and maintaining a supply of plant-available nutrients, but few long term field studies demonstrating the success or failure of rehabilitation of degraded land such as mineral processing tailings have been reported. Bauxite-processing residues are a highly sodic, highly alkaline, nutrient-poor by-product generated from alumina extraction, and pose many challenges for successful rehabilitation. This study investigated long term performance of rehabilitation established on bauxite-processing residue storage areas (RSAs) by comparing the nutrient content of the vegetation cover with nutrient concentrations in the underlying residue sand. Five plant species having diverse physiology were selected from rehabilitation varying in age from 1 to 10 years old; these being: Hardenbergia comptoniana - a vigorous growing legume ground cover/creeper), Acacia cochlearis and A. rostellifera - legume shrubs tolerant of sandy, alkaline conditions, Grevillea crithmifolia - a drought-tolerant proteaceous shrub tolerant of alkaline soil, and Spyridium globulosum - a robust, fast-growing shrub, commonly found on alkaline coastal soils. Gypsum incorporation reduced the pH and soluble aluminium levels in residue sand, but also acted as a long-term source of nutrients for the vegetation cover. Legume species contained more nitrogen than non-legumes (2.5% N and 1.5% N, respectively), and decomposition of surface litter increased organic carbon and total and mineral nitrogen contents of the residue sand over time. Nutrient cycling maintained a supply of macro- and micro- nutrients for the vegetation cover, and 10-year old rehabilitation exhibited characteristics similar to an analogue site. This study highlighted the importance of organic matter accumulation, developing a functional microbial community, and a diverse plant species mix on transforming the residue sand characteristics and encouraging nutrient cycling as key mechanisms for establishing a sustainable vegetation cover and functional ecosystem on residue sand embankments.
Collapse
Affiliation(s)
- I R Phillips
- Department of Agriculture and Fisheries, Queensland Government, Toowoomba, Queensland 4350, Australia; Alcoa of Australia Limited, Pinjarra, Western Australia, Australia
| | - R Courtney
- Department of Biological Sciences and Bernal Institute, University of Limerick, Ireland.
| |
Collapse
|
11
|
Nieva AS, Romero FM, Erban A, Carrasco P, Ruiz OA, Kopka J. Metabolic Profiling and Metabolite Correlation Network Analysis Reveal That Fusarium solani Induces Differential Metabolic Responses in Lotus japonicus and Lotus tenuis against Severe Phosphate Starvation. J Fungi (Basel) 2021; 7:765. [PMID: 34575803 PMCID: PMC8468338 DOI: 10.3390/jof7090765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/20/2023] Open
Abstract
Root fungal endophytes are essential mediators of plant nutrition under mild stress conditions. However, variations in the rhizosphere environment, such as nutrient depletion, could result in a stressful situation for both partners, shifting mutualistic to nonconvenient interactions. Mycorrhizal fungi and dark septate endophytes (DSEs) have demonstrated their ability to facilitate phosphate (Pi) acquisition. However, few studies have investigated other plant-fungal interactions that take place in the root environment with regard to phosphate nutrition. In the present research work, we aimed to analyze the effect of extreme Pi starvation and the fungal endophyte Fusarium solani on the model Lotus japonicus and the crop L. tenuis. We conducted metabolomics analysis based on gas chromatography-mass spectrometry (GC-MS) on plant tissues under optimal conditions, severe Pi starvation and F.solani presence. By combining statistical and correlation network analysis strategies, we demonstrated the differential outcomes of the two plant species against the combination of treatments. The combination of nutritional stress and Fusarium presence activated significant modifications in the metabolism of L. japonicus affecting the levels of sugars, polyols and some amino acids. Our results display potential markers for further inspection of the factors related to plant nutrition and plant-fungal interactions.
Collapse
Affiliation(s)
- Amira Susana Nieva
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Am Mühlenberg 1, 14476 Potsdam, Germany; (A.E.); (J.K.)
- Postdoctoral Fellow—Deutscher Akademischer Austauschdienst (DAAD), Kennedyallee 50, 53175 Bonn, Germany
| | - Fernando Matías Romero
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martin (UNSAM), Av. Intendente Marino Km 8.2, Chascomús 7130, Argentina; (F.M.R.); (O.A.R.)
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Am Mühlenberg 1, 14476 Potsdam, Germany; (A.E.); (J.K.)
| | - Pedro Carrasco
- Institut de Biotecnològia i Biomedicina (BIOTECMED), Universitat de València, Av. Doctor Moliner 50, 46100 Burjassot, Spain;
| | - Oscar Adolfo Ruiz
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martin (UNSAM), Av. Intendente Marino Km 8.2, Chascomús 7130, Argentina; (F.M.R.); (O.A.R.)
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Am Mühlenberg 1, 14476 Potsdam, Germany; (A.E.); (J.K.)
| |
Collapse
|
12
|
Abstract
Repeated applications of phosphorus (P) fertilizers result in the buildup of P in soil (commonly known as legacy P), a large fraction of which is not immediately available for plant use. Long-term applications and accumulations of soil P is an inefficient use of dwindling P supplies and can result in nutrient runoff, often leading to eutrophication of water bodies. Although soil legacy P is problematic in some regards, it conversely may serve as a source of P for crop use and could potentially decrease dependence on external P fertilizer inputs. This paper reviews the (1) current knowledge on the occurrence and bioaccessibility of different chemical forms of P in soil, (2) legacy P transformations with mineral and organic fertilizer applications in relation to their potential bioaccessibility, and (3) approaches and associated challenges for accessing native soil P that could be used to harness soil legacy P for crop production. We highlight how the occurrence and potential bioaccessibility of different forms of soil inorganic and organic P vary depending on soil properties, such as soil pH and organic matter content. We also found that accumulation of inorganic legacy P forms changes more than organic P species with fertilizer applications and cessations. We also discuss progress and challenges with current approaches for accessing native soil P that could be used for accessing legacy P, including natural and genetically modified plant-based strategies, the use of P-solubilizing microorganisms, and immobilized organic P-hydrolyzing enzymes. It is foreseeable that accessing legacy P will require multidisciplinary approaches to address these limitations.
Collapse
|