1
|
Ravikiran KT, Thribhuvan R, Anilkumar C, Kallugudi J, Prakash NR, Adavi B S, Sunitha NC, Abhijith KP. Harnessing the power of genomics to develop climate-smart crop varieties: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123461. [PMID: 39622137 DOI: 10.1016/j.jenvman.2024.123461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 01/15/2025]
Abstract
Abiotic stresses arising as consequences of climate change pose a serious threat to agricultural productivity on a global scale. Most cultivated crop varieties exhibit susceptibility to such environmental pressures as drought, salinity, and waterlogging. Addressing these abiotic stresses through agronomic means is not only financially burdensome but also often impractical, particularly in the case of abiotic stresses like heat stress. Cultivating resilient varieties that can withstand such pressures emerges as an economically feasible strategy to mitigate these challenges. Nevertheless, the development of stress-tolerant cultivars is hindered by the intricate nature of abiotic stress tolerance, often characterized by low heritability values. Compounding this complexity is the dynamic and multifaceted nature of these stresses, which impede conventional breeding efforts, rendering them painstakingly slow. The identification of molecular markers has emerged as a pivotal advancement in this arena. By pinpointing genomic regions associated with tolerance to abiotic stresses, these markers serve as effective tools for selection and trait introgression. In the post-genomic era, the proliferation of high-density SNP markers has revolutionized breeding strategies. Genomic selection, leveraging these markers, has become the method of choice for addressing polygenic traits with low heritability, such as abiotic stress tolerance. With the functional characterization of many genes being done, precise manipulation through genome editing techniques is gaining significant traction. This review delves into the application of molecular markers in breeding stress-tolerant crop varieties, alongside role of recent genomic techniques in enhancing abiotic stress tolerance. It also explores success stories and identifies potential targets for marker-assisted selection.
Collapse
Affiliation(s)
- K T Ravikiran
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Institute of Jute and Allied Fibres, Barrakpore, West Bengal, India
| | - C Anilkumar
- ICAR-National Rice Research Institute, Cuttak, Odisha, India; Department of Agronomy and Plant Genetics, University of Minnesota, MN, USA
| | - Jayanth Kallugudi
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, Himachal Pradesh, India
| | - N R Prakash
- ICAR-CSSRI, Regional Research Station, Canning Town, West Bengal, India
| | - Sandeep Adavi B
- ICAR-National Institute of Biotic Stress Management, Raipur, Chhatisgarh, India
| | - N C Sunitha
- ICAR-National Rice Research Institute, Cuttak, Odisha, India
| | - Krishnan P Abhijith
- ICAR-Indian Agricultural Research Institute, Assam, Gogamukh, Dhemaji, Assam, India.
| |
Collapse
|
2
|
Amoah P, Oumarou Mahamane AR, Byiringiro MH, Mahula NJ, Manneh N, Oluwasegun YR, Assfaw AT, Mukiti HM, Garba AD, Chiemeke FK, Bernard Ojuederie O, Olasanmi B. Genome editing in Sub-Saharan Africa: a game-changing strategy for climate change mitigation and sustainable agriculture. GM CROPS & FOOD 2024; 15:279-302. [PMID: 39481911 PMCID: PMC11533803 DOI: 10.1080/21645698.2024.2411767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Sub-Saharan Africa's agricultural sector faces a multifaceted challenge due to climate change consisting of high temperatures, changing precipitation trends, alongside intensified pest and disease outbreaks. Conventional plant breeding methods have historically contributed to yield gains in Africa, and the intensifying demand for food security outpaces these improvements due to a confluence of factors, including rising urbanization, improved living standards, and population growth. To address escalating food demands amidst urbanization, rising living standards, and population growth, a paradigm shift toward more sustainable and innovative crop improvement strategies is imperative. Genome editing technologies offer a promising avenue for achieving sustained yield increases while bolstering resilience against escalating biotic and abiotic stresses associated with climate change. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein (CRISPR/Cas) is unique due to its ubiquity, efficacy, alongside precision, making it a pivotal tool for Sub-Saharan African crop improvement. This review highlights the challenges and explores the prospect of gene editing to secure the region's future foods.
Collapse
Affiliation(s)
- Peter Amoah
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | | | - Moise Hubert Byiringiro
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Neo Jeremiah Mahula
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Nyimasata Manneh
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Yetunde Ruth Oluwasegun
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Abebawork Tilahun Assfaw
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Hellen Mawia Mukiti
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Abubakar Danlami Garba
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Felicity Kido Chiemeke
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Omena Bernard Ojuederie
- Department of Biological Sciences, Biotechnology Unit, Faculty of Science, Kings University, Ode-Omu, Nigeria
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Bunmi Olasanmi
- Department of Crop and Horticultural Science, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
3
|
Kumar R, Das SP, Choudhury BU, Kumar A, Prakash NR, Verma R, Chakraborti M, Devi AG, Bhattacharjee B, Das R, Das B, Devi HL, Das B, Rawat S, Mishra VK. Advances in genomic tools for plant breeding: harnessing DNA molecular markers, genomic selection, and genome editing. Biol Res 2024; 57:80. [PMID: 39506826 PMCID: PMC11542492 DOI: 10.1186/s40659-024-00562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Conventional pre-genomics breeding methodologies have significantly improved crop yields since the mid-twentieth century. Genomics provides breeders with advanced tools for whole-genome study, enabling a direct genotype-phenotype analysis. This shift has led to precise and efficient crop development through genomics-based approaches, including molecular markers, genomic selection, and genome editing. Molecular markers, such as SNPs, are crucial for identifying genomic regions linked to important traits, enhancing breeding accuracy and efficiency. Genomic resources viz. genetic markers, reference genomes, sequence and protein databases, transcriptomes, and gene expression profiles, are vital in plant breeding and aid in the identification of key traits, understanding genetic diversity, assist in genomic mapping, support marker-assisted selection and speeding up breeding programs. Advanced techniques like CRISPR/Cas9 allow precise gene modification, accelerating breeding processes. Key techniques like Genome-Wide Association study (GWAS), Marker-Assisted Selection (MAS), and Genomic Selection (GS) enable precise trait selection and prediction of breeding outcomes, improving crop yield, disease resistance, and stress tolerance. These tools are handy for complex traits influenced by multiple genes and environmental factors. This paper explores new genomic technologies like molecular markers, genomic selection, and genome editing for plant breeding showcasing their impact on developing new plant varieties.
Collapse
Affiliation(s)
- Rahul Kumar
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India.
| | | | - Burhan Uddin Choudhury
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Amit Kumar
- ICAR Research Complex for NEH Region, Umiam, 793103, Meghalaya, India
| | | | - Ramlakhan Verma
- ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Ayam Gangarani Devi
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Bijoya Bhattacharjee
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Rekha Das
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Bapi Das
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | | | - Biswajit Das
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Santoshi Rawat
- Department of Food Science and Technology, College of Agriculture, G.B.P.U.A.&T., Pantnagar, India
| | | |
Collapse
|
4
|
Zhou Y, Feng C, Wang Y, Yun C, Zou X, Cheng N, Zhang W, Jing Y, Li H. Understanding of Plant Salt Tolerance Mechanisms and Application to Molecular Breeding. Int J Mol Sci 2024; 25:10940. [PMID: 39456729 PMCID: PMC11507592 DOI: 10.3390/ijms252010940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Soil salinization is a widespread hindrance that endangers agricultural production and ecological security. High salt concentrations in saline soils are primarily caused by osmotic stress, ionic toxicity and oxidative stress, which have a negative impact on plant growth and development. In order to withstand salt stress, plants have developed a series of complicated physiological and molecular mechanisms, encompassing adaptive changes in the structure and function of various plant organs, as well as the intricate signal transduction networks enabling plants to survive in high-salinity environments. This review summarizes the recent advances in salt perception under different tissues, physiological responses and signaling regulations of plant tolerance to salt stress. We also examine the current knowledge of strategies for breeding salt-tolerant plants, including the applications of omics technologies and transgenic approaches, aiming to provide the basis for the cultivation of salt-tolerant crops through molecular breeding. Finally, future research on the application of wild germplasm resources and muti-omics technologies to discover new tolerant genes as well as investigation of crosstalk among plant hormone signaling pathways to uncover plant salt tolerance mechanisms are also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan Jing
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.Z.); (C.F.); (Y.W.); (C.Y.); (X.Z.); (N.C.); (W.Z.)
| | - Haiyan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.Z.); (C.F.); (Y.W.); (C.Y.); (X.Z.); (N.C.); (W.Z.)
| |
Collapse
|
5
|
Liang Y, Yang X, Wang C, Wang Y. miRNAs: Primary modulators of plant drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2024; 301:154313. [PMID: 38991233 DOI: 10.1016/j.jplph.2024.154313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Drought is a principal environmental factor that affects the growth and development of plants. Accordingly, plants have evolved adaptive mechanisms to cope with adverse environmental conditions. One of the mechanisms is gene regulation mediated by microRNAs (miRNAs). miRNAs are regarded as primary modulators of gene expression at the post-transcriptional level and have been shown to participate in drought stress response, including ABA response, auxin signaling, antioxidant defense, and osmotic regulation through downregulating the corresponding targets. miRNA-based genetic reconstructions have the potential to improve the tolerance of plants to drought. However, there are few precise classification and discussion of miRNAs in specific response behaviors to drought stress and their applications. This review summarized and discussed the specific response behaviors of miRNAs under drought stress and the role of miRNAs as regulators in the response of plants to drought and highlighted that the modification of miRNAs might effectively improve the tolerance of plants to drought.
Collapse
Affiliation(s)
- Yanting Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoqian Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
6
|
Mishra S, Nayak S, Tuteja N, Poosapati S, Swain DM, Sahoo RK. CRISPR/Cas-Mediated Genome Engineering in Plants: Application and Prospectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:1884. [PMID: 39065411 PMCID: PMC11279650 DOI: 10.3390/plants13141884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Genetic engineering has become an essential element in developing climate-resilient crops and environmentally sustainable solutions to respond to the increasing need for global food security. Genome editing using CRISPR/Cas [Clustered regulatory interspaced short palindromic repeat (CRISPR)-associated protein (Cas)] technology is being applied to a variety of organisms, including plants. This technique has become popular because of its high specificity, effectiveness, and low production cost. Therefore, this technology has the potential to revolutionize agriculture and contribute to global food security. Over the past few years, increasing efforts have been seen in its application in developing higher-yielding, nutrition-rich, disease-resistant, and stress-tolerant "crops", fruits, and vegetables. Cas proteins such as Cas9, Cas12, Cas13, and Cas14, among others, have distinct architectures and have been used to create new genetic tools that improve features that are important for agriculture. The versatility of Cas has accelerated genomic analysis and facilitated the use of CRISPR/Cas to manipulate and alter nucleic acid sequences in cells of different organisms. This review provides the evolution of CRISPR technology exploring its mechanisms and contrasting it with traditional breeding and transgenic approaches to improve different aspects of stress tolerance. We have also discussed the CRISPR/Cas system and explored three Cas proteins that are currently known to exist: Cas12, Cas13, and Cas14 and their potential to generate foreign-DNA-free or non-transgenic crops that could be easily regulated for commercialization in most countries.
Collapse
Affiliation(s)
- Swetaleena Mishra
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar 752050, India;
| | - Subhendu Nayak
- Vidya USA Corporation, Otis Stone Hunter Road, Bunnell, FL 32100, USA;
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India;
| | - Sowmya Poosapati
- Plant Biology Laboratory, Salk Institute for Biological Studies, San Diego, CA 92037, USA
| | - Durga Madhab Swain
- MU Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Ranjan Kumar Sahoo
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar 752050, India;
| |
Collapse
|
7
|
Hwarari D, Radani Y, Ke Y, Chen J, Yang L. CRISPR/Cas genome editing in plants: mechanisms, applications, and overcoming bottlenecks. Funct Integr Genomics 2024; 24:50. [PMID: 38441816 DOI: 10.1007/s10142-024-01314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
The CRISPR/Cas systems have emerged as transformative tools for precisely manipulating plant genomes and enhancement. It has provided unparalleled applications from modifying the plant genomes to resistant enhancement. This review manuscript summarises the mechanism, application, and current challenges in the CRISPR/Cas genome editing technology. It addresses the molecular mechanisms of different Cas genes, elucidating their applications in various plants through crop improvement, disease resistance, and trait improvement. The advent of the CRISPR/Cas systems has enabled researchers to precisely modify plant genomes through gene knockouts, knock-ins, and gene expression modulation. Despite these successes, the CRISPR/Cas technology faces challenges, including off-target effects, Cas toxicity, and efficiency. In this manuscript, we also discuss these challenges and outline ongoing strategies employed to overcome these challenges, including the development of novel CRISPR/Cas variants with improved specificity and specific delivery methods for different plant species. The manuscript will conclude by addressing the future perspectives of the CRISPR/Cas technology in plants. Although this review manuscript is not conclusive, it aims to provide immense insights into the current state and future potential of CRISPR/Cas in sustainable and secure plant production.
Collapse
Affiliation(s)
- Delight Hwarari
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Yasmina Radani
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongchao Ke
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
8
|
Hualpa-Ramirez E, Carrasco-Lozano EC, Madrid-Espinoza J, Tejos R, Ruiz-Lara S, Stange C, Norambuena L. Stress salinity in plants: New strategies to cope with in the foreseeable scenario. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108507. [PMID: 38467083 DOI: 10.1016/j.plaphy.2024.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/12/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
The excess of salts in soils causes stress in most plants, except for some halophytes that can tolerate higher levels of salinity. The excess of Na+ generates an ionic imbalance, reducing the K+ content and altering cellular metabolism, thus impacting in plant growth and development. Additionally, salinity in soil induces water stress due to osmotic effects and increments the production of reactive oxygen species (ROS) that affect the cellular structure, damaging membranes and proteins, and altering the electrochemical potential of H+, which directly affects nutrient absorption by membrane transporters. However, plants possess mechanisms to overcome the toxicity of the sodium ions, such as internalization into the vacuole or exclusion from the cell, synthesis of enzymes or protective compounds against ROS, and the synthesis of metabolites that help to regulate the osmotic potential of plants. Physiologic and molecular mechanisms of salinity tolerance in plants will be addressed in this review. Furthermore, a revision of strategies taken by researchers to confer salt stress tolerance on agriculturally important species are discussed. These strategies include conventional breeding and genetic engineering as transgenesis and genome editing by CRISPR/Cas9.
Collapse
Affiliation(s)
- Efrain Hualpa-Ramirez
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | | | | - Ricardo Tejos
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Simón Ruiz-Lara
- Instituto de Ciencias Biológicas. Universidad de Talca, Talca, Chile
| | - Claudia Stange
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Lorena Norambuena
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
9
|
Kaur G, Jain S, Bhushan S, Das N, Sharma M, Sharma D. Role of microRNAs and their putative mechanism in regulating potato (Solanum tuberosum L.) life cycle and response to various environmental stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108334. [PMID: 38219424 DOI: 10.1016/j.plaphy.2024.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/31/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
The exponentially increasing population and the demand for food is inextricably linked. This has shifted global attention to improving crop plant traits to meet global food demands. Potato (Solanum tuberosum L.) is a major non-grain food crop that is grown all over the world. Currently, some of the major global potato research work focuses on the significance of microRNAs (miRNAs) in potato. miRNAs are a type of non-coding RNAs that regulate the gene expression of their target mRNA genes by cleavage and/or their translational inhibition. This suggests an essential role of miRNAs in a multitude of plant biological processes, including maintenance of genome integrity, plant growth, development and maturation, and initiation of responses to various stress conditions. Therefore, engineering miRNAs to generate stress-resistant varieties of potato may result in high yield and improved nutritional qualities. In this review, we discuss the potato miRNAs specifically known to play an essential role in the various stages of the potato life cycle, conferring stress-resistant characteristics, and modifying gene expression. This review highlights the significance of the miRNA machinery in plants, especially potato, encouraging further research into engineering miRNAs to boost crop yields and tolerance towards stress.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Sakshi Bhushan
- Department of Botany, Central University of Jammu, Jammu and Kashmir (UT), India
| | - Niranjan Das
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Munish Sharma
- Department of Plant Science, Central University of Himachal Pradesh, Shahpur Parisar, Kangra, Himachal Pradesh, India.
| | - Deepak Sharma
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
10
|
Padmavathi G, Bangale U, Rao K, Balakrishnan D, Arun M, Singh RK, Sundaram RM. Progress and prospects in harnessing wild relatives for genetic enhancement of salt tolerance in rice. FRONTIERS IN PLANT SCIENCE 2024; 14:1253726. [PMID: 38371332 PMCID: PMC10870985 DOI: 10.3389/fpls.2023.1253726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/13/2023] [Indexed: 02/20/2024]
Abstract
Salt stress is the second most devastating abiotic stress after drought and limits rice production globally. Genetic enhancement of salinity tolerance is a promising and cost-effective approach to achieve yield gains in salt-affected areas. Breeding for salinity tolerance is challenging because of the genetic complexity of the response of rice plants to salt stress, as it is governed by minor genes with low heritability and high G × E interactions. The involvement of numerous physiological and biochemical factors further complicates this complexity. The intensive selection and breeding efforts targeted towards the improvement of yield in the green-revolution era inadvertently resulted in the gradual disappearance of the loci governing salinity tolerance and a significant reduction in genetic variability among cultivars. The limited utilization of genetic resources and narrow genetic base of improved cultivars have resulted in a plateau in response to salinity tolerance in modern cultivars. Wild species are an excellent genetic resource for broadening the genetic base of domesticated rice. Exploiting novel genes of underutilized wild rice relatives to restore salinity tolerance loci eliminated during domestication can result in significant genetic gain in rice cultivars. Wild species of rice, Oryza rufipogon and Oryza nivara, have been harnessed in the development of a few improved rice varieties like Jarava and Chinsura Nona 2. Furthermore, increased access to sequence information and enhanced knowledge about the genomics of salinity tolerance in wild relatives has provided an opportunity for the deployment of wild rice accessions in breeding programs, while overcoming the cross-incompatibility and linkage drag barriers witnessed in wild hybridization. Pre-breeding is another avenue for building material that are ready for utilization in breeding programs. Efforts should be directed towards systematic collection, evaluation, characterization, and deciphering salt tolerance mechanisms in wild rice introgression lines and deploying untapped novel loci to improve salinity tolerance in rice cultivars. This review highlights the potential of wild relatives of Oryza to enhance tolerance to salinity, track the progress of work, and provide a perspective for future research.
Collapse
Affiliation(s)
- Guntupalli Padmavathi
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - Umakanth Bangale
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - K. Nagendra Rao
- Genetics and Plant Breeding, Sugarcane Research Station, Vuyyuru, India
| | - Divya Balakrishnan
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - Melekote Nagabhushan Arun
- Crop Production Section, Agronomy, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - Rakesh Kumar Singh
- Crop Diversification and Genetics Section, International Center for Biosaline Agriculture (ICBA), Dubai, United Arab Emirates
| | - Raman Meenakshi Sundaram
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| |
Collapse
|
11
|
Vignesh P, Mahadevaiah C, Selvamuthu K, Mahadeva Swamy HK, Sreenivasa V, Appunu C. Comparative genome-wide characterization of salt responsive micro RNA and their targets through integrated small RNA and de novo transcriptome profiling in sugarcane and its wild relative Erianthus arundinaceus. 3 Biotech 2024; 14:24. [PMID: 38162015 PMCID: PMC10756875 DOI: 10.1007/s13205-023-03867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Soil salinity and saline irrigation water are major constraints in sugarcane affecting the production of cane and sugar yield. To understand the salinity induced responses and to identify novel genomic resources, integrated de novo transcriptome and small RNA sequencing in sugarcane wild relative, Erianthus arundinaceus salt tolerant accession IND 99-907 and salt-sensitive sugarcane genotype Co 97010 were performed. A total of 362 known miRNAs belonging to 62 families and 353 miRNAs belonging to 63 families were abundant in IND 99-907 and Co 97010 respectively. The miRNA families such as miR156, miR160, miR166, miR167, miR169, miR171, miR395, miR399, miR437 and miR5568 were the most abundant with more than ten members in both genotypes. The differential expression analysis of miRNA reveals that 221 known miRNAs belonging to 48 families and 130 known miRNAs belonging to 42 families were differentially expressed in IND 99-907 and Co 97010 respectively. A total of 12,693 and 7982 miRNA targets against the monoploid mosaic genome and a total of 15,031 and 12,152 miRNA targets against the de novo transcriptome were identified for differentially expressed known miRNAs of IND 99-907 and Co 97010 respectively. The gene ontology (GO) enrichment analysis of the miRNA targets revealed that 24, 12 and 14 enriched GO terms (FDR < 0.05) for biological process, molecular function and cellular component respectively. These miRNAs have many targets that associated in regulation of biotic and abiotic stresses. Thus, the genomic resources generated through this study are useful for sugarcane crop improvement through biotechnological and advanced breeding approaches. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03867-7.
Collapse
Affiliation(s)
- Palanisamy Vignesh
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Channappa Mahadevaiah
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
- ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bangalore, 560089 India
| | - Kannan Selvamuthu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | | | - Venkatarayappa Sreenivasa
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Chinnaswamy Appunu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| |
Collapse
|
12
|
Bravo-Vázquez LA, Méndez-García A, Chamu-García V, Rodríguez AL, Bandyopadhyay A, Paul S. The applications of CRISPR/Cas-mediated microRNA and lncRNA editing in plant biology: shaping the future of plant non-coding RNA research. PLANTA 2023; 259:32. [PMID: 38153530 DOI: 10.1007/s00425-023-04303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/25/2023] [Indexed: 12/29/2023]
Abstract
MAIN CONCLUSION CRISPR/Cas technology has greatly facilitated plant non-coding RNA (ncRNA) biology research, establishing itself as a promising tool for ncRNA functional characterization and ncRNA-mediated plant improvement. Throughout the last decade, the promising genome editing tool clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated proteins (Cas; CRISPR/Cas) has allowed unprecedented advances in the field of plant functional genomics and crop improvement. Even though CRISPR/Cas-mediated genome editing system has been widely used to elucidate the biological significance of a number of plant protein-coding genes, this technology has been barely applied in the functional analysis of those non-coding RNAs (ncRNAs) that modulate gene expression, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Nevertheless, compelling findings indicate that CRISPR/Cas-based ncRNA editing has remarkable potential for deciphering the biological roles of ncRNAs in plants, as well as for plant breeding. For instance, it has been demonstrated that CRISPR/Cas tool could overcome the challenges associated with other approaches employed in functional genomic studies (e.g., incomplete knockdown and off-target activity). Thus, in this review article, we discuss the current status and progress of CRISPR/Cas-mediated ncRNA editing in plant science in order to provide novel prospects for further assessment and validation of the biological activities of plant ncRNAs and to enhance the development of ncRNA-centered protocols for crop improvement.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico
| | - Andrea Méndez-García
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico
| | - Verenice Chamu-García
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, 72453, Puebla, Mexico
| | - Alma L Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico
| | - Anindya Bandyopadhyay
- International Rice Research Institute, 4031, Manila, Philippines.
- Reliance Industries Ltd., Navi Mumbai, Maharashtra, 400701, India.
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico.
| |
Collapse
|
13
|
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Biotechnol Adv 2023; 69:108248. [PMID: 37666372 DOI: 10.1016/j.biotechadv.2023.108248] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Cereal crops, including triticeae species (barley, wheat, rye), as well as edible cereals (wheat, corn, rice, oat, rye, sorghum), are significant suppliers for human consumption, livestock feed, and breweries. Over the past half-century, modern varieties of cereal crops with increased yields have contributed to global food security. However, presently cultivated elite crop varieties were developed mainly for optimal environmental conditions. Thus, it has become evident that taking into account the ongoing climate changes, currently a priority should be given to developing new stress-tolerant cereal cultivars. It is necessary to enhance the accuracy of methods and time required to generate new cereal cultivars with the desired features to adapt to climate change and keep up with the world population expansion. The CRISPR/Cas9 system has been developed as a powerful and versatile genome editing tool to achieve desirable traits, such as developing high-yielding, stress-tolerant, and disease-resistant transgene-free lines in major cereals. Despite recent advances, the CRISPR/Cas9 application in cereals faces several challenges, including a significant amount of time required to develop transgene-free lines, laboriousness, and a limited number of genotypes that may be used for the transformation and in vitro regeneration. Additionally, developing elite lines through genome editing has been restricted in many countries, especially Europe and New Zealand, due to a lack of flexibility in GMO regulations. This review provides a comprehensive update to researchers interested in improving cereals using gene-editing technologies, such as CRISPR/Cas9. We will review some critical and recent studies on crop improvements and their contributing factors to superior cereals through gene-editing technologies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
14
|
Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KHM, Singh RK, Zhuang W, Varshney RK. Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotechnol 2023; 43:1035-1062. [PMID: 35968922 DOI: 10.1080/07388551.2022.2093695] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/08/2022] [Indexed: 01/19/2023]
Abstract
Climate change gives rise to numerous environmental stresses, including soil salinity. Salinity/salt stress is the second biggest abiotic factor affecting agricultural productivity worldwide by damaging numerous physiological, biochemical, and molecular processes. In particular, salinity affects plant growth, development, and productivity. Salinity responses include modulation of ion homeostasis, antioxidant defense system induction, and biosynthesis of numerous phytohormones and osmoprotectants to protect plants from osmotic stress by decreasing ion toxicity and augmented reactive oxygen species scavenging. As most crop plants are sensitive to salinity, improving salt tolerance is crucial in sustaining global agricultural productivity. In response to salinity, plants trigger stress-related genes, proteins, and the accumulation of metabolites to cope with the adverse consequence of salinity. Therefore, this review presents an overview of salinity stress in crop plants. We highlight advances in modern biotechnological tools, such as omics (genomics, transcriptomics, proteomics, and metabolomics) approaches and different genome editing tools (ZFN, TALEN, and CRISPR/Cas system) for improving salinity tolerance in plants and accomplish the goal of "zero hunger," a worldwide sustainable development goal proposed by the FAO.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Javaria Tabassum
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science (CAAS), Zhejiang, China
| | - Ali Zeeshan Fakhar
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Rahat Sharif
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Luo Ju
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science (CAAS), Zhejiang, China
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Perth, Australia
| | - Rakesh K Singh
- Crop Diversification and Genetics, International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Rajeev K Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Murdoch's Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| |
Collapse
|
15
|
Joshi A, Yang SY, Song HG, Min J, Lee JH. Genetic Databases and Gene Editing Tools for Enhancing Crop Resistance against Abiotic Stress. BIOLOGY 2023; 12:1400. [PMID: 37997999 PMCID: PMC10669554 DOI: 10.3390/biology12111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Abiotic stresses extensively reduce agricultural crop production globally. Traditional breeding technology has been the fundamental approach used to cope with abiotic stresses. The development of gene editing technology for modifying genes responsible for the stresses and the related genetic networks has established the foundation for sustainable agriculture against environmental stress. Integrated approaches based on functional genomics and transcriptomics are now expanding the opportunities to elucidate the molecular mechanisms underlying abiotic stress responses. This review summarizes some of the features and weblinks of plant genome databases related to abiotic stress genes utilized for improving crops. The gene-editing tool based on clustered, regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has revolutionized stress tolerance research due to its simplicity, versatility, adaptability, flexibility, and broader applications. However, off-target and low cleavage efficiency hinder the successful application of CRISPR/Cas systems. Computational tools have been developed for designing highly competent gRNA with better cleavage efficiency. This powerful genome editing tool offers tremendous crop improvement opportunities, overcoming conventional breeding techniques' shortcomings. Furthermore, we also discuss the mechanistic insights of the CRISPR/Cas9-based genome editing technology. This review focused on the current advances in understanding plant species' abiotic stress response mechanism and applying the CRISPR/Cas system genome editing technology to develop crop resilience against drought, salinity, temperature, heavy metals, and herbicides.
Collapse
Affiliation(s)
- Alpana Joshi
- Department of Bioenvironmental Chemistry, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea;
- Department of Agriculture Technology & Agri-Informatics, Shobhit Institute of Engineering & Technology, Meerut 250110, India
| | - Seo-Yeon Yang
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-Y.Y.); (H.-G.S.)
| | - Hyung-Geun Song
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-Y.Y.); (H.-G.S.)
| | - Jiho Min
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea;
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-Y.Y.); (H.-G.S.)
- Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
16
|
Yadav B, Majhi A, Phagna K, Meena MK, Ram H. Negative regulators of grain yield and mineral contents in rice: potential targets for CRISPR-Cas9-mediated genome editing. Funct Integr Genomics 2023; 23:317. [PMID: 37837547 DOI: 10.1007/s10142-023-01244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Rice is a major global staple food crop, and improving its grain yield and nutritional quality has been a major thrust research area since last decades. Yield and nutritional quality are complex traits which are controlled by multiple signaling pathways. Sincere efforts during past decades of research have identified several key genetic and molecular regulators that governed these complex traits. The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated gene knockout approaches has accelerated the development of improved varieties; however, finding out target gene with negative regulatory function in particular trait without giving any pleiotropic effect remains a challenge. Here, we have reviewed past and recent literature and identified important negative regulators of grain yield and mineral contents which could be potential targets for CRISPR-Cas9-mediated gene knockout. Additionally, we have also compiled a list of microRNAs (miRNAs), which target positive regulators of grain yield, plant stress tolerance, and grain mineral contents. Knocking out these miRNAs could help to increase expression of such positive regulators and thus improve the plant trait. The knowledge presented in this review would help to further accelerate the CRISPR-Cas9-mediated trait improvement in rice.
Collapse
Affiliation(s)
- Banita Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashis Majhi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kanika Phagna
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mukesh Kumar Meena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
17
|
Chen YH, Lu J, Yang X, Huang LC, Zhang CQ, Liu QQ, Li QF. Gene editing of non-coding regulatory DNA and its application in crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6158-6175. [PMID: 37549968 DOI: 10.1093/jxb/erad313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The development of the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) system has provided precise and efficient strategies to edit target genes and generate transgene-free crops. Significant progress has been made in the editing of protein-coding genes; however, studies on the editing of non-coding DNA with regulatory roles lags far behind. Non-coding regulatory DNAs, including those which can be transcribed into long non-coding RNAs (lncRNAs), and miRNAs, together with cis-regulatory elements (CREs), play crucial roles in regulating plant growth and development. Therefore, the combination of CRISPR/Cas technology and non-coding regulatory DNA has great potential to generate novel alleles that affect various agronomic traits of crops, thus providing valuable genetic resources for crop breeding. Herein, we review recent advances in the roles of non-coding regulatory DNA, attempts to edit non-coding regulatory DNA for crop improvement, and potential application of novel editing tools in modulating non-coding regulatory DNA. Finally, the existing problems, possible solutions, and future applications of gene editing of non-coding regulatory DNA in modern crop breeding practice are also discussed.
Collapse
Affiliation(s)
- Yu-Hao Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jun Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xia Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Li-Chun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
18
|
Samynathan R, Venkidasamy B, Shanmugam A, Ramalingam S, Thiruvengadam M. Functional role of microRNA in the regulation of biotic and abiotic stress in agronomic plants. Front Genet 2023; 14:1272446. [PMID: 37886688 PMCID: PMC10597799 DOI: 10.3389/fgene.2023.1272446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
The increasing demand for food is the result of an increasing population. It is crucial to enhance crop yield for sustainable production. Recently, microRNAs (miRNAs) have gained importance because of their involvement in crop productivity by regulating gene transcription in numerous biological processes, such as growth, development and abiotic and biotic stresses. miRNAs are small, non-coding RNA involved in numerous other biological functions in a plant that range from genomic integrity, metabolism, growth, and development to environmental stress response, which collectively influence the agronomic traits of the crop species. Additionally, miRNA families associated with various agronomic properties are conserved across diverse plant species. The miRNA adaptive responses enhance the plants to survive environmental stresses, such as drought, salinity, cold, and heat conditions, as well as biotic stresses, such as pathogens and insect pests. Thus, understanding the detailed mechanism of the potential response of miRNAs during stress response is necessary to promote the agronomic traits of crops. In this review, we updated the details of the functional aspects of miRNAs as potential regulators of various stress-related responses in agronomic plants.
Collapse
Affiliation(s)
- Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Ashokraj Shanmugam
- Plant Physiology and Biotechnology Division, UPASI Tea Research Foundation, Coimbatore, Tamil Nadu, India
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Lab, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Shaheen N, Ahmad S, Alghamdi SS, Rehman HM, Javed MA, Tabassum J, Shao G. CRISPR-Cas System, a Possible "Savior" of Rice Threatened by Climate Change: An Updated Review. RICE (NEW YORK, N.Y.) 2023; 16:39. [PMID: 37688677 PMCID: PMC10492775 DOI: 10.1186/s12284-023-00652-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/04/2023] [Indexed: 09/11/2023]
Abstract
Climate change has significantly affected agriculture production, particularly the rice crop that is consumed by almost half of the world's population and contributes significantly to global food security. Rice is vulnerable to several abiotic and biotic stresses such as drought, heat, salinity, heavy metals, rice blast, and bacterial blight that cause huge yield losses in rice, thus threatening food security worldwide. In this regard, several plant breeding and biotechnological techniques have been used to raise such rice varieties that could tackle climate changes. Nowadays, gene editing (GE) technology has revolutionized crop improvement. Among GE technology, CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein) system has emerged as one of the most convenient, robust, cost-effective, and less labor-intensive system due to which it has got more popularity among plant researchers, especially rice breeders and geneticists. Since 2013 (the year of first application of CRISPR/Cas-based GE system in rice), several trait-specific climate-resilient rice lines have been developed using CRISPR/Cas-based GE tools. Earlier, several reports have been published confirming the successful application of GE tools for rice improvement. However, this review particularly aims to provide an updated and well-synthesized brief discussion based on the recent studies (from 2020 to present) on the applications of GE tools, particularly CRISPR-based systems for developing CRISPR rice to tackle the current alarming situation of climate change, worldwide. Moreover, potential limitations and technical bottlenecks in the development of CRISPR rice, and prospects are also discussed.
Collapse
Affiliation(s)
- Nabeel Shaheen
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia
| | - Shakeel Ahmad
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia.
| | - Salem S Alghamdi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hafiz Mamoon Rehman
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, National Rice Research Institute, 310006, Hangzhou, China.
- Zhejiang Lab, 310006, Hangzhou, China.
| |
Collapse
|
20
|
Riyazuddin R, Singh K, Iqbal N, Labhane N, Ramteke P, Singh VP, Gupta R. Unveiling the biosynthesis, mechanisms, and impacts of miRNAs in drought stress resilience in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107978. [PMID: 37660607 DOI: 10.1016/j.plaphy.2023.107978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Drought stress is one of the most serious threats to sustainable agriculture and is predicted to be further intensified in the coming decades. Therefore, understanding the mechanism of drought stress tolerance and the development of drought-resilient crops are the major goals at present. In recent years, noncoding microRNAs (miRNAs) have emerged as key regulators of gene expressions under drought stress conditions and are turning out to be the potential candidates that can be targeted to develop drought-resilient crops in the future. miRNAs are known to target and decrease the expression of various genes to govern the drought stress response in plants. In addition, emerging evidence also suggests a regulatory role of long non-coding RNAs (lncRNAs) in the regulation of miRNAs and the expression of their target genes by a process referred as miRNA sponging. In this review, we present the regulatory roles of miRNAs in the modulation of drought-responsive genes along with discussing their biosynthesis and action mechanisms. Additionally, the interactive roles of miRNAs with phytohormone signaling components have also been highlighted to present the global view of miRNA functioning under drought-stress conditions.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary.
| | - Kalpita Singh
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary; Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, H-2462, Martonvásár, Hungary.
| | - Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary.
| | - Nitin Labhane
- Department of Botany, Bhavan's College Andheri West, Mumbai, 400058, India.
| | - Pramod Ramteke
- Department of Biotechnology, Dr. Ambedkar College, Nagpur, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Ravi Gupta
- College of General Education, Kookmin University, 02707, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Raza A, Charagh S, Karikari B, Sharif R, Yadav V, Mubarik MS, Habib M, Zhuang Y, Zhang C, Chen H, Varshney RK, Zhuang W. miRNAs for crop improvement. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107857. [PMID: 37437345 DOI: 10.1016/j.plaphy.2023.107857] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Climate change significantly impacts crop production by inducing several abiotic and biotic stresses. The increasing world population, and their food and industrial demands require focused efforts to improve crop plants to ensure sustainable food production. Among various modern biotechnological tools, microRNAs (miRNAs) are one of the fascinating tools available for crop improvement. miRNAs belong to a class of small non-coding RNAs playing crucial roles in numerous biological processes. miRNAs regulate gene expression by post-transcriptional target mRNA degradation or by translation repression. Plant miRNAs have essential roles in plant development and various biotic and abiotic stress tolerance. In this review, we provide propelling evidence from previous studies conducted around miRNAs and provide a one-stop review of progress made for breeding stress-smart future crop plants. Specifically, we provide a summary of reported miRNAs and their target genes for improvement of plant growth and development, and abiotic and biotic stress tolerance. We also highlight miRNA-mediated engineering for crop improvement and sequence-based technologies available for the identification of miRNAs associated with stress tolerance and plant developmental events.
Collapse
Affiliation(s)
- Ali Raza
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Rahat Sharif
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Vivek Yadav
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shanxi, 712100, China
| | | | - Madiha Habib
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Rd., Islamabad 45500, Pakistan
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Chong Zhang
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Hua Chen
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Rajeev K Varshney
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China; WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Weijian Zhuang
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China.
| |
Collapse
|
22
|
Yadav RK, Tripathi MK, Tiwari S, Tripathi N, Asati R, Chauhan S, Tiwari PN, Payasi DK. Genome Editing and Improvement of Abiotic Stress Tolerance in Crop Plants. Life (Basel) 2023; 13:1456. [PMID: 37511831 PMCID: PMC10381907 DOI: 10.3390/life13071456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Genome editing aims to revolutionise plant breeding and could assist in safeguarding the global food supply. The inclusion of a 12-40 bp recognition site makes mega nucleases the first tools utilized for genome editing and first generation gene-editing tools. Zinc finger nucleases (ZFNs) are the second gene-editing technique, and because they create double-stranded breaks, they are more dependable and effective. ZFNs were the original designed nuclease-based approach of genome editing. The Cys2-His2 zinc finger domain's discovery made this technique possible. Clustered regularly interspaced short palindromic repeats (CRISPR) are utilized to improve genetics, boost biomass production, increase nutrient usage efficiency, and develop disease resistance. Plant genomes can be effectively modified using genome-editing technologies to enhance characteristics without introducing foreign DNA into the genome. Next-generation plant breeding will soon be defined by these exact breeding methods. There is abroad promise that genome-edited crops will be essential in the years to come for improving the sustainability and climate-change resilience of food systems. This method also has great potential for enhancing crops' resistance to various abiotic stressors. In this review paper, we summarize the most recent findings about the mechanism of abiotic stress response in crop plants and the use of the CRISPR/Cas mediated gene-editing systems to improve tolerance to stresses including drought, salinity, cold, heat, and heavy metals.
Collapse
Affiliation(s)
- Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India
| | - Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Shailja Chauhan
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Prakash Narayan Tiwari
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | | |
Collapse
|
23
|
Gajardo HA, Gómez-Espinoza O, Boscariol Ferreira P, Carrer H, Bravo LA. The Potential of CRISPR/Cas Technology to Enhance Crop Performance on Adverse Soil Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091892. [PMID: 37176948 PMCID: PMC10181257 DOI: 10.3390/plants12091892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Worldwide food security is under threat in the actual scenery of global climate change because the major staple food crops are not adapted to hostile climatic and soil conditions. Significant efforts have been performed to maintain the actual yield of crops, using traditional breeding and innovative molecular techniques to assist them. However, additional strategies are necessary to achieve the future food demand. Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) technology, as well as its variants, have emerged as alternatives to transgenic plant breeding. This novelty has helped to accelerate the necessary modifications in major crops to confront the impact of abiotic stress on agriculture systems. This review summarizes the current advances in CRISPR/Cas applications in crops to deal with the main hostile soil conditions, such as drought, flooding and waterlogging, salinity, heavy metals, and nutrient deficiencies. In addition, the potential of extremophytes as a reservoir of new molecular mechanisms for abiotic stress tolerance, as well as their orthologue identification and edition in crops, is shown. Moreover, the future challenges and prospects related to CRISPR/Cas technology issues, legal regulations, and customer acceptance will be discussed.
Collapse
Affiliation(s)
- Humberto A Gajardo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| | - Olman Gómez-Espinoza
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Pedro Boscariol Ferreira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| |
Collapse
|
24
|
Surya Krishna S, Harish Chandar SR, Ravi M, Valarmathi R, Lakshmi K, Prathima PT, Manimekalai R, Viswanathan R, Hemaprabha G, Appunu C. Transgene-Free Genome Editing for Biotic and Abiotic Stress Resistance in Sugarcane: Prospects and Challenges. AGRONOMY 2023; 13:1000. [DOI: 10.3390/agronomy13041000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Sugarcane (Saccharum spp.) is one of the most valuable food and industrial crops. Its production is constrained due to major biotic (fungi, bacteria, viruses and insect pests) and abiotic (drought, salt, cold/heat, water logging and heavy metals) stresses. The ever-increasing demand for sugar and biofuel and the rise of new pest and disease variants call for the use of innovative technologies to speed up the sugarcane genetic improvement process. Developing new cultivars through conventional breeding techniques requires much time and resources. The advent of CRISPR/Cas genome editing technology enables the creation of new cultivars with improved resistance/tolerance to various biotic and abiotic stresses. The presence of genome editing cassette inside the genome of genome-edited plants hinders commercial exploitation due to regulatory issues. However, this limitation can be overcome by using transgene-free genome editing techniques. Transgene-free genome editing approaches, such as delivery of the RNPs through biolistics or protoplast fusion, virus-induced genome editing (VIGE), transient expression of CRISPR/Cas reagents through Agrobacterium-mediated transformation and other approaches, are discussed. A well-established PCR-based assay and advanced screening systems such as visual marker system and Transgene killer CRISPR system (TKC) rapidly identify transgene-free genome edits. These advancements in CRISPR/Cas technology speed up the creation of genome-edited climate-smart cultivars that combat various biotic and abiotic stresses and produce good yields under ever-changing conditions.
Collapse
Affiliation(s)
- Sakthivel Surya Krishna
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| | - S R Harish Chandar
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| | - Maruthachalam Ravi
- Indian Institute of Science Education and Research (IISER), Thiruvananthapuram 695551, Kerala, India
| | - Ramanathan Valarmathi
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| | - Kasirajan Lakshmi
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| | | | - Ramaswamy Manimekalai
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| | - Rasappa Viswanathan
- ICAR—Indian Institute of Sugarcane Research, Lucknow 226002, Uttar Pradesh, India
| | - Govindkurup Hemaprabha
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| | - Chinnaswamy Appunu
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| |
Collapse
|
25
|
Lei L, Cao L, Ding G, Zhou J, Luo Y, Bai L, Xia T, Chen L, Wang J, Liu K, Lei Q, Xie T, Yang G, Wang X, Sun S, Lai Y. OsBBX11 on qSTS4 links to salt tolerance at the seeding stage in Oryza sativa L. ssp. Japonica. FRONTIERS IN PLANT SCIENCE 2023; 14:1139961. [PMID: 36968393 PMCID: PMC10030886 DOI: 10.3389/fpls.2023.1139961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Rice has been reported to be highly sensitive to salt stress at the seedling stage. However, the lack of target genes that can be used for improving salt tolerance has resulted in several saline soils unsuitable for cultivation and planting. To characterize new salt-tolerant genes, we used 1,002 F2:3 populations derived from Teng-Xi144 and Long-Dao19 crosses as the phenotypic source to systematically characterize seedlings' survival days and ion concentration under salt stress. Utilizing QTL-seq resequencing technology and a high-density linkage map based on 4,326 SNP markers, we identified qSTS4 as a major QTL influencing seedling salt tolerance, which accounted for 33.14% of the phenotypic variation. Through functional annotation, variation detection and qRT-PCR analysis of genes within 46.9 Kb of qSTS4, it was revealed that there was one SNP in the promoter region of OsBBX11, which resulted in a significant response difference between the two parents to salt stress. Transgenic plants using knockout-based technology and demonstrated that Na+ and K+ in the roots of the functional-loss-type OsBBX11 were translocated largely to the leaves under 120 mmol/L NaCl compared with the wild-type, causing osbbx11 leaves to die after 12 days of salt stress due to an imbalance in osmotic pressure. In conclusion, this study identified OsBBX11 as a salt-tolerance gene, and one SNPs in the OsBBX11 promoter region can be used to identify its interacting transcription factors. This provides a theoretical basis for finding the molecular mechanism of OsBBX11 upstream and downstream regulation of salt tolerance and molecular design breeding in the future.
Collapse
Affiliation(s)
- Lei Lei
- Postdoctoral Scientific Research Station of Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Liangzi Cao
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Guohua Ding
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Jinsong Zhou
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Yu Luo
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Liangming Bai
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
| | - Tianshu Xia
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Lei Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jiangxu Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Kai Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qingjun Lei
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Tingting Xie
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guang Yang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xueyang Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shichen Sun
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Yongcai Lai
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| |
Collapse
|
26
|
Nascimento FDS, Rocha ADJ, Soares JMDS, Mascarenhas MS, Ferreira MDS, Morais Lino LS, Ramos APDS, Diniz LEC, Mendes TADO, Ferreira CF, dos Santos-Serejo JA, Amorim EP. Gene Editing for Plant Resistance to Abiotic Factors: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:305. [PMID: 36679018 PMCID: PMC9860801 DOI: 10.3390/plants12020305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 05/22/2023]
Abstract
Agricultural crops are exposed to various abiotic stresses, such as salinity, water deficits, temperature extremes, floods, radiation, and metal toxicity. To overcome these challenges, breeding programs seek to improve methods and techniques. Gene editing by Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR/Cas-is a versatile tool for editing in all layers of the central dogma with focus on the development of cultivars of plants resistant or tolerant to multiple biotic or abiotic stresses. This systematic review (SR) brings new contributions to the study of the use of CRISPR/Cas in gene editing for tolerance to abiotic stress in plants. Articles deposited in different electronic databases, using a search string and predefined inclusion and exclusion criteria, were evaluated. This SR demonstrates that the CRISPR/Cas system has been applied to several plant species to promote tolerance to the main abiotic stresses. Among the most studied crops are rice and Arabidopsis thaliana, an important staple food for the population, and a model plant in genetics/biotechnology, respectively, and more recently tomato, whose number of studies has increased since 2021. Most studies were conducted in Asia, specifically in China. The Cas9 enzyme is used in most articles, and only Cas12a is used as an additional gene editing tool in plants. Ribonucleoproteins (RNPs) have emerged as a DNA-free strategy for genome editing without exogenous DNA. This SR also identifies several genes edited by CRISPR/Cas, and it also shows that plant responses to stress factors are mediated by many complex-signaling pathways. In addition, the quality of the articles included in this SR was validated by a risk of bias analysis. The information gathered in this SR helps to understand the current state of CRISPR/Cas in the editing of genes and noncoding sequences, which plays a key role in the regulation of various biological processes and the tolerance to multiple abiotic stresses, with potential for use in plant genetic improvement programs.
Collapse
Affiliation(s)
| | - Anelita de Jesus Rocha
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil
| | | | | | - Mileide dos Santos Ferreira
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang Y, Zafar N, Ali Q, Manghwar H, Wang G, Yu L, Ding X, Ding F, Hong N, Wang G, Jin S. CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives. Cells 2022; 11:3928. [PMID: 36497186 PMCID: PMC9736268 DOI: 10.3390/cells11233928] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Crossbreeding, mutation breeding, and traditional transgenic breeding take much time to improve desirable characters/traits. CRISPR/Cas-mediated genome editing (GE) is a game-changing tool that can create variation in desired traits, such as biotic and abiotic resistance, increase quality and yield in less time with easy applications, high efficiency, and low cost in producing the targeted edits for rapid improvement of crop plants. Plant pathogens and the severe environment cause considerable crop losses worldwide. GE approaches have emerged and opened new doors for breeding multiple-resistance crop varieties. Here, we have summarized recent advances in CRISPR/Cas-mediated GE for resistance against biotic and abiotic stresses in a crop molecular breeding program that includes the modification and improvement of genes response to biotic stresses induced by fungus, virus, and bacterial pathogens. We also discussed in depth the application of CRISPR/Cas for abiotic stresses (herbicide, drought, heat, and cold) in plants. In addition, we discussed the limitations and future challenges faced by breeders using GE tools for crop improvement and suggested directions for future improvements in GE for agricultural applications, providing novel ideas to create super cultivars with broad resistance to biotic and abiotic stress.
Collapse
Affiliation(s)
- Yaxin Wang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Naeem Zafar
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qurban Ali
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hakim Manghwar
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Yu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Ding
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Hong
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoping Wang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
28
|
Shelake RM, Kadam US, Kumar R, Pramanik D, Singh AK, Kim JY. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives. PLANT COMMUNICATIONS 2022; 3:100417. [PMID: 35927945 PMCID: PMC9700172 DOI: 10.1016/j.xplc.2022.100417] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 05/10/2023]
Abstract
Prolonged periods of drought triggered by climate change hamper plant growth and cause substantial agricultural yield losses every year. In addition to drought, salinity is one of the major abiotic stresses that severely affect crop health and agricultural production. Plant responses to drought and salinity involve multiple processes that operate in a spatiotemporal manner, such as stress sensing, perception, epigenetic modifications, transcription, post-transcriptional processing, translation, and post-translational changes. Consequently, drought and salinity stress tolerance are polygenic traits influenced by genome-environment interactions. One of the ideal solutions to these challenges is the development of high-yielding crop varieties with enhanced stress tolerance, together with improved agricultural practices. Recently, genome-editing technologies, especially clustered regularly interspaced short palindromic repeats (CRISPR) tools, have been effectively applied to elucidate how plants deal with drought and saline environments. In this work, we aim to portray that the combined use of CRISPR-based genome engineering tools and modern genomic-assisted breeding approaches are gaining momentum in identifying genetic determinants of complex traits for crop improvement. This review provides a synopsis of plant responses to drought and salinity stresses at the morphological, physiological, and molecular levels. We also highlight recent advances in CRISPR-based tools and their use in understanding the multi-level nature of plant adaptations to drought and salinity stress. Integrating CRISPR tools with modern breeding approaches is ideal for identifying genetic factors that regulate plant stress-response pathways and for the introgression of beneficial traits to develop stress-resilient crops.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| | - Ulhas Sopanrao Kadam
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Ritesh Kumar
- Department of Agronomy & Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea.
| |
Collapse
|
29
|
Rahman MU, Zulfiqar S, Raza MA, Ahmad N, Zhang B. Engineering Abiotic Stress Tolerance in Crop Plants through CRISPR Genome Editing. Cells 2022; 11:3590. [PMID: 36429019 PMCID: PMC9688763 DOI: 10.3390/cells11223590] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental abiotic stresses challenge food security by depressing crop yields often exceeding 50% of their annual production. Different methods, including conventional as well as genomic-assisted breeding, mutagenesis, and genetic engineering have been utilized to enhance stress resilience in several crop species. Plant breeding has been partly successful in developing crop varieties against abiotic stresses owning to the complex genetics of the traits as well as the narrow genetic base in the germplasm. Irrespective of the fact that genetic engineering can transfer gene(s) from any organism(s), transgenic crops have become controversial mainly due to the potential risk of transgene-outcrossing. Consequently, the cultivation of transgenic crops is banned in certain countries, particularly in European countries. In this scenario, the discovery of the CRISPR tool provides a platform for producing transgene-free genetically edited plants-similar to the mutagenized crops that are not extensively regulated such as genetically modified organisms (GMOs). Thus, the genome-edited plants without a transgene would likely go into the field without any restriction. Here, we focused on the deployment of CRISPR for the successful development of abiotic stress-tolerant crop plants for sustaining crop productivity under changing environments.
Collapse
Affiliation(s)
- Mehboob-ur Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Sana Zulfiqar
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Muhammad Ahmad Raza
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Niaz Ahmad
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
30
|
Maharajan T, Krishna TPA, Rakkammal K, Ceasar SA, Ramesh M. Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance. PLANTA 2022; 256:106. [PMID: 36326904 DOI: 10.1007/s00425-022-04023-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Application of the recently developed CRISPR/Cas tools might help enhance cereals' growth and yield under biotic and abiotic stresses. Cereals are the most important food crops for human life and an essential source of nutrients for people in developed and developing countries. The growth and yield of all major cereals are affected by both biotic and abiotic stresses. To date, molecular breeding and functional genomic studies have contributed to the understanding and improving cereals' growth and yield under biotic and abiotic stresses. Clustered, regularly inter-spaced, short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system has been predicted to play a major role in precision plant breeding and developing non-transgenic cereals that can tolerate adverse effects of climate change. Variants of next-generation CRISPR/Cas tools, such as prime editor, base editor, CRISPR activator and repressor, chromatin imager, Cas12a, and Cas12b, are currently used in various fields, including plant science. However, few studies have been reported on applying the CRISPR/Cas system to understand the mechanism of biotic and abiotic stress tolerance in cereals. Rice is the only plant used frequently for such studies. Genes responsible for biotic and abiotic stress tolerance have not yet been studied by CRISPR/Cas system in other major cereals (sorghum, barley, maize and small millets). Examining the role of genes that respond to biotic and abiotic stresses using the CRISPR/Cas system may help enhance cereals' growth and yield under biotic and abiotic stresses. It will help to develop new and improved cultivars with biotic- and abiotic-tolerant traits for better yields to strengthen food security. This review provides information for cereal researchers on the current status of the CRISPR/Cas system for improving biotic and abiotic stress tolerance in cereals.
Collapse
Affiliation(s)
- Theivanayagam Maharajan
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683104, India
| | - T P Ajeesh Krishna
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683104, India
| | - Kasinathan Rakkammal
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683104, India.
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| |
Collapse
|
31
|
Nguyen NH, Vu NT, Cheong JJ. Transcriptional Stress Memory and Transgenerational Inheritance of Drought Tolerance in Plants. Int J Mol Sci 2022; 23:12918. [PMID: 36361708 PMCID: PMC9654142 DOI: 10.3390/ijms232112918] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2023] Open
Abstract
Plants respond to drought stress by producing abscisic acid, a chemical messenger that regulates gene expression and thereby expedites various physiological and cellular processes including the stomatal operation to mitigate stress and promote tolerance. To trigger or suppress gene transcription under drought stress conditions, the surrounding chromatin architecture must be converted between a repressive and active state by epigenetic remodeling, which is achieved by the dynamic interplay among DNA methylation, histone modifications, loop formation, and non-coding RNA generation. Plants can memorize chromatin status under drought conditions to enable them to deal with recurrent stress. Furthermore, drought tolerance acquired during plant growth can be transmitted to the next generation. The epigenetically modified chromatin architectures of memory genes under stressful conditions can be transmitted to newly developed cells by mitotic cell division, and to germline cells of offspring by overcoming the restraints on meiosis. In mammalian cells, the acquired memory state is completely erased and reset during meiosis. The mechanism by which plant cells overcome this resetting during meiosis to transmit memory is unclear. In this article, we review recent findings on the mechanism underlying transcriptional stress memory and the transgenerational inheritance of drought tolerance in plants.
Collapse
Affiliation(s)
- Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam
| | - Nam Tuan Vu
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
32
|
Zhang Y, Zhou Y, Zhu W, Liu J, Cheng F. Non-coding RNAs fine-tune the balance between plant growth and abiotic stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:965745. [PMID: 36311129 PMCID: PMC9597485 DOI: 10.3389/fpls.2022.965745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/26/2022] [Indexed: 05/24/2023]
Abstract
To survive in adverse environmental conditions, plants have evolved sophisticated genetic and epigenetic regulatory mechanisms to balance their growth and abiotic stress tolerance. An increasing number of non-coding RNAs (ncRNAs), including small RNAs (sRNAs) and long non-coding RNAs (lncRNAs) have been identified as essential regulators which enable plants to coordinate multiple aspects of growth and responses to environmental stresses through modulating the expression of target genes at both the transcriptional and posttranscriptional levels. In this review, we summarize recent advances in understanding ncRNAs-mediated prioritization towards plant growth or tolerance to abiotic stresses, especially to cold, heat, drought and salt stresses. We highlight the diverse roles of evolutionally conserved microRNAs (miRNAs) and small interfering RNAs (siRNAs), and the underlying phytohormone-based signaling crosstalk in regulating the balance between plant growth and abiotic stress tolerance. We also review current discoveries regarding the potential roles of ncRNAs in stress memory in plants, which offer their descendants the potential for better fitness. Future ncRNAs-based breeding strategies are proposed to optimize the balance between growth and stress tolerance to maximize crop yield under the changing climate.
Collapse
Affiliation(s)
- Yingying Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ye Zhou
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Junzhong Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Fang Cheng
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
33
|
Li Y, Wu X, Zhang Y, Zhang Q. CRISPR/Cas genome editing improves abiotic and biotic stress tolerance of crops. Front Genome Ed 2022; 4:987817. [PMID: 36188128 PMCID: PMC9524261 DOI: 10.3389/fgeed.2022.987817] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Abiotic stress such as cold, drought, saline-alkali stress and biotic stress including disease and insect pest are the main factors that affect plant growth and limit agricultural productivity. In recent years, with the rapid development of molecular biology, genome editing techniques have been widely used in botany and agronomy due to their characteristics of high efficiency, controllable and directional editing. Genome editing techniques have great application potential in breeding resistant varieties. These techniques have achieved remarkable results in resistance breeding of important cereal crops (such as maize, rice, wheat, etc.), vegetable and fruit crops. Among them, CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) provides a guarantee for the stability of crop yield worldwide. In this paper, the development of CRISRR/Cas and its application in different resistance breeding of important crops are reviewed, the advantages and importance of CRISRR/Cas technology in breeding are emphasized, and the possible problems are pointed out.
Collapse
Affiliation(s)
- Yangyang Li
- Hunan Tobacco Research Institute, Changsha, China
| | - Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yan Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- *Correspondence: Qiang Zhang, ; Yan Zhang,
| | - Qiang Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- *Correspondence: Qiang Zhang, ; Yan Zhang,
| |
Collapse
|
34
|
Zulfiqar F, Nafees M, Chen J, Darras A, Ferrante A, Hancock JT, Ashraf M, Zaid A, Latif N, Corpas FJ, Altaf MA, Siddique KHM. Chemical priming enhances plant tolerance to salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:946922. [PMID: 36160964 PMCID: PMC9490053 DOI: 10.3389/fpls.2022.946922] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/25/2022] [Indexed: 05/10/2023]
Abstract
Salt stress severely limits the productivity of crop plants worldwide and its detrimental effects are aggravated by climate change. Due to a significant world population growth, agriculture has expanded to marginal and salinized regions, which usually render low crop yield. In this context, finding methods and strategies to improve plant tolerance against salt stress is of utmost importance to fulfill food security challenges under the scenario of the ever-increasing human population. Plant priming, at different stages of plant development, such as seed or seedling, has gained significant attention for its marked implication in crop salt-stress management. It is a promising field relying on the applications of specific chemical agents which could effectively improve plant salt-stress tolerance. Currently, a variety of chemicals, both inorganic and organic, which can efficiently promote plant growth and crop yield are available in the market. This review summarizes our current knowledge of the promising roles of diverse molecules/compounds, such as hydrogen sulfide (H2S), molecular hydrogen, nitric oxide (NO), hydrogen peroxide (H2O2), melatonin, chitosan, silicon, ascorbic acid (AsA), tocopherols, and trehalose (Tre) as potential primers that enhance the salinity tolerance of crop plants.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Anastasios Darras
- Department of Agriculture, University of the Peloponnese, Kalamata, Greece
| | - Antonio Ferrante
- Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Milano, Italy
| | - John T. Hancock
- Department of Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Nadeem Latif
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Francisco J. Corpas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | |
Collapse
|
35
|
Molecular Aspects of MicroRNAs and Phytohormonal Signaling in Response to Drought Stress: A Review. Curr Issues Mol Biol 2022; 44:3695-3710. [PMID: 36005149 PMCID: PMC9406886 DOI: 10.3390/cimb44080253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Phytohormones play an essential role in plant growth and development in response to environmental stresses. However, plant hormones require a complex signaling network combined with other signaling pathways to perform their proper functions. Thus, multiple phytohormonal signaling pathways are a prerequisite for understanding plant defense mechanism against stressful conditions. MicroRNAs (miRNAs) are master regulators of eukaryotic gene expression and are also influenced by a wide range of plant development events by suppressing their target genes. In recent decades, the mechanisms of phytohormone biosynthesis, signaling, pathways of miRNA biosynthesis and regulation were profoundly characterized. Recent findings have shown that miRNAs and plant hormones are integrated with the regulation of environmental stress. miRNAs target several components of phytohormone pathways, and plant hormones also regulate the expression of miRNAs or their target genes inversely. In this article, recent developments related to molecular linkages between miRNAs and phytohormones were reviewed, focusing on drought stress.
Collapse
|
36
|
Sun M, Shen Y, Chen Y, Wang Y, Cai X, Yang J, Jia B, Dong W, Chen X, Sun X. Osa-miR1320 targets the ERF transcription factor OsERF096 to regulate cold tolerance via JA-mediated signaling. PLANT PHYSIOLOGY 2022; 189:2500-2516. [PMID: 35522026 PMCID: PMC9342977 DOI: 10.1093/plphys/kiac208] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/09/2022] [Indexed: 05/08/2023]
Abstract
MicroRNAs play key roles in abiotic stress response. Rice (Oryza sativa L.) miR1320 is a species-specific miRNA that contributes to miR168-regulated immunity. However, it is still unknown whether miR1320 is involved in rice response to abiotic stress. In this study, we illustrated that the miR1320 precursor generated two mature miR1320s, miR1320-3p, and miR1320-5p, and they both displayed decreased expression under cold stress. Genetic evidence showed that miR1320 overexpression resulted in increased cold tolerance, while miR1320 knock down (KD) reduced cold tolerance. Furthermore, an APETALA2/ethylene-responsive factor (ERF) transcription factor OsERF096 was identified as a target of miR1320 via 5'-RACE and dual luciferase assays. OsERF096 expression was altered by miR1320 overexpression and KD and exhibited an opposite pattern to that of miR1320 in different tissues and under cold stress. Consistently, OsERF096 negatively regulated cold stress tolerance. Furthermore, we suggested that OsERF096 could bind to the GCC and DRE cis-elements and act as a transcriptional activator in the nucleus. Based on RNA-sequencing and targeted metabolomics assays, we found that OsERF096 modified hormone content and signaling pathways. Finally, phenotypic and reverse transcription-quantitative PCR assays showed that jasmonic acid (JA) methyl ester application recovered the cold-sensitive phenotype and JA-activated expression of three Dehydration Responsive Element Binding genes in the OsERF096-OE line. Taken together, our results strongly suggest that the miR1320-OsERF096 module regulates cold tolerance by repressing the JA-mediated cold signaling pathway.
Collapse
Affiliation(s)
- Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yue Chen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yan Wang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Junkai Yang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Weifeng Dong
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xi Chen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
37
|
Ali S, Khan N, Tang Y. Epigenetic marks for mitigating abiotic stresses in plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153740. [PMID: 35716656 DOI: 10.1016/j.jplph.2022.153740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/02/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stressors are one of the major factors affecting agricultural output. Plants have evolved adaptive systems to respond appropriately to various environmental cues. These responses can be accomplished by modulating or fine-tuning genetic and epigenetic regulatory mechanisms. Understanding the response of plants' molecular features to abiotic stress is a priority in the current period of continued environmental changes. Epigenetic modifications are necessary that control gene expression by changing chromatin status and recruiting various transcription regulators. The present study summarized the current knowledge on epigenetic modifications concerning plant responses to various environmental stressors. The functional relevance of epigenetic marks in regulating stress tolerance has been revealed, and epigenetic changes impact the effector genes. This study looks at the epigenetic mechanisms that govern plant abiotic stress responses, especially DNA methylation, histone methylation/acetylation, chromatin remodeling, and various metabolites. Plant breeders will benefit from a thorough understanding of these processes to create alternative crop improvement approaches. Genome editing with clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) provides genetic tools to make agricultural genetic engineering more sustainable and publicly acceptable.
Collapse
Affiliation(s)
- Shahid Ali
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, FL, 32611, USA
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
38
|
Rasheed A, Li H, Nawaz M, Mahmood A, Hassan MU, Shah AN, Hussain F, Azmat S, Gillani SFA, Majeed Y, Qari SH, Wu Z. Molecular tools, potential frontiers for enhancing salinity tolerance in rice: A critical review and future prospective. FRONTIERS IN PLANT SCIENCE 2022; 13:966749. [PMID: 35968147 PMCID: PMC9366114 DOI: 10.3389/fpls.2022.966749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 06/28/2022] [Indexed: 05/08/2023]
Abstract
Improvement of salinity tolerance in rice can minimize the stress-induced yield losses. Rice (Oryza sativa) is one of Asia's most widely consumed crops, native to the subtropical regions, and is generally associated with sensitivity to salinity stress episodes. Salt-tolerant rice genotypes have been developed using conventional breeding methods; however, the success ratio is limited because of the complex nature of the trait and the high cost of development. The narrow genetic base of rice limited the success of conventional breeding methods. Hence, it is critical to launch the molecular tools for screening rice novel germplasm for salt-tolerant genes. In this regard, the latest molecular techniques like quantitative trait loci (QTL) mapping, genetic engineering (GE), transcription factors (TFs) analysis, and clustered regularly interspaced short palindromic repeats (CRISPR) are reliable for incorporating the salt tolerance in rice at the molecular level. Large-scale use of these potent genetic approaches leads to identifying and editing several genes/alleles, and QTL/genes are accountable for holding the genetic mechanism of salinity tolerance in rice. Continuous breeding practices resulted in a huge decline in rice genetic diversity, which is a great worry for global food security. However, molecular breeding tools are the only way to conserve genetic diversity by exploring wild germplasm for desired genes in salt tolerance breeding programs. In this review, we have compiled the logical evidences of successful applications of potent molecular tools for boosting salinity tolerance in rice, their limitations, and future prospects. This well-organized information would assist future researchers in understanding the genetic improvement of salinity tolerance in rice.
Collapse
Affiliation(s)
- Adnan Rasheed
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Huijie Li
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Humanity and Public Administration, Jiangxi Agricultural University, Nanchang, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Fiaz Hussain
- Directorate of Agronomy, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Saira Azmat
- Department of Agriculture, Agriculture Extension and Adaptive Research, Government of the Punjab, Lahore, Pakistan
| | | | - Yasir Majeed
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ziming Wu
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
39
|
Genome Editing: A Promising Approach for Achieving Abiotic Stress Tolerance in Plants. Int J Genomics 2022; 2022:5547231. [PMID: 35465040 PMCID: PMC9033345 DOI: 10.1155/2022/5547231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
The susceptibility of crop plants towards abiotic stresses is highly threatening to assure global food security as it results in almost 50% annual yield loss. To address this issue, several strategies like plant breeding and genetic engineering have been used by researchers from time to time. However, these approaches are not sufficient to ensure stress resilience due to the complexity associated with the inheritance of abiotic stress adaptive traits. Thus, researchers were prompted to develop novel techniques with high precision that can address the challenges connected to the previous strategies. Genome editing is the latest approach that is in the limelight for improving the stress tolerance of plants. It has revolutionized crop research due to its versatility and precision. The present review is an update on the different genome editing tools used for crop improvement so far and the various challenges associated with them. It also highlights the emerging potential of genome editing for developing abiotic stress-resilient crops.
Collapse
|
40
|
Advances in the regulation of plant salt-stress tolerance by miRNA. Mol Biol Rep 2022; 49:5041-5055. [PMID: 35381964 DOI: 10.1007/s11033-022-07179-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
Abstract
Salt stress significantly affects the growth, development, yield, and quality of plants. MicroRNAs (miRNAs) are involved in various stress responses via target gene regulation. Their role in regulating salt stress has also received significant attention from researchers. Various transcription factor families are the common target genes of plant miRNAs. Thus, regulating the expression of miRNAs is a novel method for developing salt-tolerant crops. This review summarizes plant miRNAs that mediate salt tolerance, specifically miRNAs that have been utilized in genetic engineering to modify plant salinity tolerance. The molecular mechanism by which miRNAs mediate salt stress tolerance merits elucidation, and this knowledge will promote the development of miRNA-mediated salt-tolerant crops and provide new strategies against increasingly severe soil salinization.
Collapse
|
41
|
Tregear JW, Richaud F, Collin M, Esbelin J, Parrinello H, Cochard B, Nodichao L, Morcillo F, Adam H, Jouannic S. Micro-RNA-Regulated SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) Gene Expression and Cytokinin Accumulation Distinguish Early-Developing Male and Female Inflorescences in Oil Palm (Elaeis guineensis). PLANTS 2022; 11:plants11050685. [PMID: 35270155 PMCID: PMC8912876 DOI: 10.3390/plants11050685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022]
Abstract
Sexual differentiation of inflorescences and flowers is important for reproduction and affects crop plant productivity. We report here on a molecular study of the process of sexual differentiation in the immature inflorescence of oil palm (Elaeis guineensis). This species is monoecious and exhibits gender diphasy, producing male and female inflorescences separately on the same plant in alternation. Three main approaches were used: small RNA-seq to characterise and study the expression of miRNA genes; RNA-seq to monitor mRNA accumulation patterns; hormone quantification to assess the role of cytokinins and auxins in inflorescence differentiation. Our study allowed the characterisation of 30 previously unreported palm MIRNA genes. In differential gene and miRNA expression studies, we identified a number of key developmental genes and miRNA-mRNA target modules previously described in relation to their developmental regulatory role in the cereal panicle, notably the miR156/529/535-SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) gene regulatory module. Gene enrichment analysis highlighted the importance of hormone-related genes, and this observation was corroborated by the detection of much higher levels of cytokinins in the female inflorescence. Our data illustrate the importance of branching regulation within the developmental window studied, during which the female inflorescence, unlike its male counterpart, produces flower clusters on new successive axes by sympodial growth.
Collapse
Affiliation(s)
- James W. Tregear
- DIADE, University of Montpellier, CIRAD, IRD, 34394 Montpellier, France; (M.C.); (J.E.); (F.M.); (H.A.); (S.J.)
- Correspondence:
| | - Frédérique Richaud
- CIRAD, UMR AGAP, 34398 Montpellier, France;
- AGAP, University of Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France
| | - Myriam Collin
- DIADE, University of Montpellier, CIRAD, IRD, 34394 Montpellier, France; (M.C.); (J.E.); (F.M.); (H.A.); (S.J.)
| | - Jennifer Esbelin
- DIADE, University of Montpellier, CIRAD, IRD, 34394 Montpellier, France; (M.C.); (J.E.); (F.M.); (H.A.); (S.J.)
| | - Hugues Parrinello
- MGX-Montpellier GenomiX, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France;
| | | | | | - Fabienne Morcillo
- DIADE, University of Montpellier, CIRAD, IRD, 34394 Montpellier, France; (M.C.); (J.E.); (F.M.); (H.A.); (S.J.)
- CIRAD, UMR DIADE, 34394 Montpellier, France
| | - Hélène Adam
- DIADE, University of Montpellier, CIRAD, IRD, 34394 Montpellier, France; (M.C.); (J.E.); (F.M.); (H.A.); (S.J.)
| | - Stefan Jouannic
- DIADE, University of Montpellier, CIRAD, IRD, 34394 Montpellier, France; (M.C.); (J.E.); (F.M.); (H.A.); (S.J.)
| |
Collapse
|
42
|
Nazir R, Mandal S, Mitra S, Ghorai M, Das N, Jha NK, Majumder M, Pandey DK, Dey A. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated genome-editing toolkit to enhance salt stress tolerance in rice and wheat. PHYSIOLOGIA PLANTARUM 2022; 174:e13642. [PMID: 35099818 DOI: 10.1111/ppl.13642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/02/2022] [Accepted: 01/27/2022] [Indexed: 05/14/2023]
Abstract
The rice and wheat agricultural system is the primary source of food for billions across the world. However, the productivity and long-term sustainability of rice and wheat are threatened by a large number of abiotic stresses, especially salinity stress. Salinity has a significant impact on plant development and productivity and is one of the leading causes of crop yield losses in agricultural soils worldwide. Over the last few decades, several attempts have been undertaken to enhance salinity stress tolerance, most of which have relied on traditional or molecular breeding approaches. These approaches have so far been insufficient in addressing the issues of abiotic stress. However, due to the availability of genome sequences for cereal crops like rice and wheat and the development of genome editing techniques like clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9 (Cas9), it is now possible to "edit" genes and influence key traits. Here, we review the application of the CRISPR/Cas9 system in both rice (Oryza sativa L.) and wheat (Triticum aestivum L.) to develop salinity tolerant cultivars. The CRISPR/Cas genome editing toolkit holds great promise of producing cereal crops tolerant to salt stress to increase agriculture resilience with a strong impact on the environment and public health.
Collapse
Affiliation(s)
- Romaan Nazir
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sicon Mitra
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Neela Das
- Department of Botany, Rishi Bankim Chandra College, Naihati, West Bengal, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | | | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
43
|
Negi P, Mishra S, Ganapathi TR, Srivastava AK. Regulatory short RNAs: A decade's tale for manipulating salt tolerance in plants. PHYSIOLOGIA PLANTARUM 2021; 173:1535-1555. [PMID: 34227692 DOI: 10.1111/ppl.13492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Salt stress is a globally increasing environmental detriment to crop growth and productivity. Exposure to salt stress evokes a complex medley of cellular signals, which rapidly reprogram transcriptional and metabolic networks to shape plant phenotype. To date, genetic engineering approaches were used with success to enhance salt tolerance; however, their performance is yet to be evaluated under realistic field conditions. Regulatory short non-coding RNAs (rsRNAs) are emerging as next-generation candidates for engineering salt tolerance in crops. In view of this, the present review provides a comprehensive analysis of a decade's worth of functional studies on non-coding RNAs involved in salt tolerance. Further, we have integrated this knowledge of rsRNA-mediated regulation with the current paradigm of salt tolerance to highlight two regulatory complexes (RCs) for regulating salt tolerance in plants. Finally, a knowledge-driven roadmap is proposed to judiciously utilize RC component(s) for enhancing salt tolerance in crops.
Collapse
Affiliation(s)
- Pooja Negi
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Shefali Mishra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Thumballi Ramabhatta Ganapathi
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
44
|
Patil S, Joshi S, Jamla M, Zhou X, Taherzadeh MJ, Suprasanna P, Kumar V. MicroRNA-mediated bioengineering for climate-resilience in crops. Bioengineered 2021; 12:10430-10456. [PMID: 34747296 PMCID: PMC8815627 DOI: 10.1080/21655979.2021.1997244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Global projections on the climate change and the dynamic environmental perturbations indicate severe impacts on food security in general, and crop yield, vigor and the quality of produce in particular. Sessile plants respond to environmental challenges such as salt, drought, temperature, heavy metals at transcriptional and/or post-transcriptional levels through the stress-regulated network of pathways including transcription factors, proteins and the small non-coding endogenous RNAs. Amongs these, the miRNAs have gained unprecedented attention in recent years as key regulators for modulating gene expression in plants under stress. Hence, tailoring of miRNAs and their target pathways presents a promising strategy for developing multiple stress-tolerant crops. Plant stress tolerance has been successfully achieved through the over expression of microRNAs such as Os-miR408, Hv-miR82 for drought tolerance; OsmiR535A and artificial DST miRNA for salinity tolerance; and OsmiR535 and miR156 for combined drought and salt stress. Examples of miR408 overexpression also showed improved efficiency of irradiation utilization and carbon dioxide fixation in crop plants. Through this review, we present the current understanding about plant miRNAs, their roles in plant growth and stress-responses, the modern toolbox for identification, characterization and validation of miRNAs and their target genes including in silico tools, machine learning and artificial intelligence. Various approaches for up-regulation or knock-out of miRNAs have been discussed. The main emphasis has been given to the exploration of miRNAs for development of bioengineered climate-smart crops that can withstand changing climates and stressful environments, including combination of stresses, with very less or no yield penalties.
Collapse
Affiliation(s)
- Suraj Patil
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| | - Shrushti Joshi
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| | - Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| | - Xianrong Zhou
- School of Life Science and Biotechnology, Yangtze Normal University, Ch-ongqing, China
| | | | - Penna Suprasanna
- Bhabha Atomic Research Centre, Homi Bhabha National Institute, Mumbai, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
45
|
Gelaw TA, Sanan-Mishra N. Non-Coding RNAs in Response to Drought Stress. Int J Mol Sci 2021; 22:12519. [PMID: 34830399 PMCID: PMC8621352 DOI: 10.3390/ijms222212519] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Drought stress causes changes in the morphological, physiological, biochemical and molecular characteristics of plants. The response to drought in different plants may vary from avoidance, tolerance and escape to recovery from stress. This response is genetically programmed and regulated in a very complex yet synchronized manner. The crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged as game-changers in modulating the plant responses to drought and other abiotic stresses. The ncRNAs interact with their targets to form potentially subtle regulatory networks that control multiple genes to determine the overall response of plants. Many long and small drought-responsive ncRNAs have been identified and characterized in different plant varieties. The miRNA-based research is better documented, while lncRNA and transposon-derived RNAs are relatively new, and their cellular role is beginning to be understood. In this review, we have compiled the information on the categorization of non-coding RNAs based on their biogenesis and function. We also discuss the available literature on the role of long and small non-coding RNAs in mitigating drought stress in plants.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
- Department of Biotechnology, College of Natural and Computational Science, Debre Birhan University, Debre Birhan P.O. Box 445, Ethiopia
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| |
Collapse
|
46
|
Singroha G, Sharma P, Sunkur R. Current status of microRNA-mediated regulation of drought stress responses in cereals. PHYSIOLOGIA PLANTARUM 2021; 172:1808-1821. [PMID: 33956991 DOI: 10.1111/ppl.13451] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 05/03/2023]
Abstract
Drought is one of the most important abiotic stress factors impeding crop productivity. With the uncovering of their role as potential regulators of gene expression, microRNAs (miRNAs) have been recognized as new targets for developing stress resistance. MicroRNAs are small noncoding RNAs whose abundance is significantly altered under stress conditions. Interestingly, plant miRNAs predominantly targets transcription factors (TFs), and some of which are also the most critical drought-responsive genes that in turn could regulate the expression of numerous loci with drought-adaptive potential. The phytohormone ABA plays important roles in regulating stomatal conductance and in initiating an adaptive response to drought stress. miRNAs are implicated in regulating ABA-(abscisic acid) and non-ABA-mediated drought resistance pathways. For instance, miR159-MYB module and miR169-NFYA module participates in an ABA-dependent pathway, whereas several other ABA-independent miRNA-target modules (miR156-SPL; miR393-TIR1; miR160-ARF10, ARF16, ARF17; miR167-ARF6 and ARF8; miR390/TAS3siRNA-ARF2, ARF3, ARF4) collectively regulate drought responses in plants. Overall, miRNA-mediated drought response manifests diverse molecular, biochemical and physiological processes. Because of their immense role in controlling gene expression, miRNA manipulation has significant potential to augment plant tolerance to drought stress. This review compiles the current understanding of drought-responsive miRNAs in major cereals. Also, potential miRNA manipulation strategies currently in use along with the challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Garima Singroha
- Crop Improvement Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Pradeep Sharma
- Crop Improvement Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Ramanjulu Sunkur
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
47
|
Chen J, Teotia S, Lan T, Tang G. MicroRNA Techniques: Valuable Tools for Agronomic Trait Analyses and Breeding in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:744357. [PMID: 34616418 PMCID: PMC8489592 DOI: 10.3389/fpls.2021.744357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/16/2021] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression at the post-transcriptional level. Extensive studies have revealed that miRNAs have critical functions in plant growth, development, and stress responses and may provide valuable genetic resources for plant breeding research. We herein reviewed the development, mechanisms, and characteristics of miRNA techniques while highlighting widely used approaches, namely, the short tandem target mimic (STTM) approach. We described STTM-based advances in plant science, especially in the model crop rice, and introduced the CRISPR-based transgene-free crop breeding. Finally, we discussed the challenges and unique opportunities related to combining STTM and CRISPR technology for crop improvement and agriculture.
Collapse
Affiliation(s)
- Jiwei Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Sachin Teotia
- Department of Biotechnology, Sharda University, Greater Noida, India
| | - Ting Lan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- *Correspondence: Ting Lan,
| | - Guiliang Tang
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI, United States
- Guiliang Tang,
| |
Collapse
|