1
|
Tong MJ, Song MX, Liu Z, Yu W, Wang CZ, Cai CD, Zhang YK, Zhang YQ, Wang LP, Zhu ZZ, Yin XF, Yan ZQ. A Bionic Thermosensitive Sustainable Delivery System for Reversing the Progression of Osteoarthritis by Remodeling the Joint Homeostasis. Adv Healthc Mater 2024; 13:e2303792. [PMID: 38394066 DOI: 10.1002/adhm.202303792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Although the pathogenesis of osteoarthritis (OA) is unclear, inflammatory cytokines are related to its occurrence. However, few studies focused on the therapeutic strategies of regulating joint homeostasis by simultaneously remodeling the anti-inflammatory and immunomodulatory microenvironments. Fibroblast growth factor 18 (FGF18) is the only disease-modifying OA drug (DMOAD) with a potent ability and high efficiency in maintaining the phenotype of chondrocytes within cell culture models. However, its potential role in the immune microenvironment remains unknown. Besides, information on an optimal carrier, whose interface and chondral-biomimetic microenvironment mimic the native articular tissue, is still lacking, which substantially limits the clinical efficacy of FGF18. Herein, to simulate the cartilage matrix, chondroitin sulfate (ChS)-based nanoparticles (NPs) are integrated into poly(D, L-lactide)-poly(ethylene glycol)-poly(D, L-lactide) (PLEL) hydrogels to develop a bionic thermosensitive sustainable delivery system. Electrostatically self-assembled ChS and ε-poly-l-lysine (EPL) NPs are prepared for the bioencapsulation of FGF18. This bionic delivery system suppressed the inflammatory response in interleukin-1β (IL-1β)-mediated chondrocytes, promoted macrophage M2 polarization, and inhibited M1 polarization, thereby ameliorating cartilage degeneration and synovitis in OA. Thus, the ChS-based hydrogel system offers a potential strategy to regulate the chondrocyte-macrophage crosstalk, thus re-establishing the anti-inflammatory and immunomodulatory microenvironment for OA therapy.
Collapse
Affiliation(s)
- Min-Ji Tong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Meng-Xiong Song
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Zhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Wei Yu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chen-Zhong Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chuan-Dong Cai
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ying-Kai Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yue-Qi Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li-Peng Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhen-Zhong Zhu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiao-Fan Yin
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Zuo-Qin Yan
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
2
|
Shen Q, Guo Y, Wang K, Zhang C, Ma Y. A Review of Chondroitin Sulfate's Preparation, Properties, Functions, and Applications. Molecules 2023; 28:7093. [PMID: 37894574 PMCID: PMC10609508 DOI: 10.3390/molecules28207093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chondroitin sulfate (CS) is a natural macromolecule polysaccharide that is extensively distributed in a wide variety of organisms. CS is of great interest to researchers due to its many in vitro and in vivo functions. CS production derives from a diverse number of sources, including but not limited to extraction from various animals or fish, bio-synthesis, and fermentation, and its purity and homogeneity can vary greatly. The structural diversity of CS with respect to sulfation and saccharide content endows this molecule with distinct complexity, allowing for functional modification. These multiple functions contribute to the application of CS in medicines, biomaterials, and functional foods. In this article, we discuss the preparation of CS from different sources, the structure of various forms of CS, and its binding to other relevant molecules. Moreover, for the creation of this article, the functions and applications of CS were reviewed, with an emphasis on drug discovery, hydrogel formation, delivery systems, and food supplements. We conclude that analyzing some perspectives on structural modifications and preparation methods could potentially influence future applications of CS in medical and biomaterial research.
Collapse
Affiliation(s)
- Qingshan Shen
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanli Ma
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
| |
Collapse
|
3
|
Abourehab MAS, Baisakhiya S, Aggarwal A, Singh A, Abdelgawad MA, Deepak A, Ansari MJ, Pramanik S. Chondroitin sulfate-based composites: a tour d'horizon of their biomedical applications. J Mater Chem B 2022; 10:9125-9178. [PMID: 36342328 DOI: 10.1039/d2tb01514e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chondroitin sulfate (CS), a natural anionic mucopolysaccharide, belonging to the glycosaminoglycan family, acts as the primary element of the extracellular matrix (ECM) of diverse organisms. It comprises repeating units of disaccharides possessing β-1,3-linked N-acetyl galactosamine (GalNAc), and β-1,4-linked D-glucuronic acid (GlcA), and exhibits antitumor, anti-inflammatory, anti-coagulant, anti-oxidant, and anti-thrombogenic activities. It is a naturally acquired bio-macromolecule with beneficial properties, such as biocompatibility, biodegradability, and immensely low toxicity, making it the center of attention in developing biomaterials for various biomedical applications. The authors have discussed the structure, unique properties, and extraction source of CS in the initial section of this review. Further, the current investigations on applications of CS-based composites in various biomedical fields, focusing on delivering active pharmaceutical compounds, tissue engineering, and wound healing, are discussed critically. In addition, the manuscript throws light on preclinical and clinical studies associated with CS composites. A short section on Chondroitinase ABC has also been canvassed. Finally, this review emphasizes the current challenges and prospects of CS in various biomedical fields.
Collapse
Affiliation(s)
- Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al Qura University, Makkah 21955, Saudi Arabia. .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| | - Shreya Baisakhiya
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Sector 1, Rourkela, Odisha 769008, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Akanksha Aggarwal
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University, Rohtak-124021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - A Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600128, Tamil Nadu, India.
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
4
|
Chondroitin sulfate zinc with antibacterial properties and anti-inflammatory effects for skin wound healing. Carbohydr Polym 2022; 278:118996. [PMID: 34973799 DOI: 10.1016/j.carbpol.2021.118996] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022]
Abstract
A chondroitin sulfate zinc (CSZn) complex was prepared by an ion-exchange method. The purified product was characterized by energy-dispersive X-ray spectroscopy, high-performance chromatography, elemental analysis, Fourier transform infrared spectroscopy, inductively coupled mass spectrometry, and nuclear magnetic resonance spectroscopy. The CSZn demonstrated antibacterial activity against Escherichia coli and Staphylococcus aureus and satisfied MTT cell viability (NIH3T3 fibroblasts) at ≤50 μg/mL. RT-PCR demonstrated significant promotion by CSZn of fibroblast growth factor beta (β-FGF), collagen III (COLIIIα1), vascular endothelial growth factor (VEGF) and reduction of cytokines IL-6, IL-1β & TNF-alpha. An in vivo rat full-thickness wound healing model demonstrated significant wound healing of CSZn relative to controls of saline treatment, zinc chloride treatment and chondroitin treatment. CSZn has demonstrated promising antibacterial and wound healing properties making it deserving of consideration for more advanced wound healing applications.
Collapse
|
5
|
Trombino S, Curcio F, Cassano R, Curcio M, Cirillo G, Iemma F. Polymeric Biomaterials for the Treatment of Cardiac Post-Infarction Injuries. Pharmaceutics 2021; 13:1038. [PMID: 34371729 PMCID: PMC8309168 DOI: 10.3390/pharmaceutics13071038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac regeneration aims to reconstruct the heart contractile mass, preventing the organ from a progressive functional deterioration, by delivering pro-regenerative cells, drugs, or growth factors to the site of injury. In recent years, scientific research focused the attention on tissue engineering for the regeneration of cardiac infarct tissue, and biomaterials able to anatomically and physiologically adapt to the heart muscle have been proposed as valuable tools for this purpose, providing the cells with the stimuli necessary to initiate a complete regenerative process. An ideal biomaterial for cardiac tissue regeneration should have a positive influence on the biomechanical, biochemical, and biological properties of tissues and cells; perfectly reflect the morphology and functionality of the native myocardium; and be mechanically stable, with a suitable thickness. Among others, engineered hydrogels, three-dimensional polymeric systems made from synthetic and natural biomaterials, have attracted much interest for cardiac post-infarction therapy. In addition, biocompatible nanosystems, and polymeric nanoparticles in particular, have been explored in preclinical studies as drug delivery and tissue engineering platforms for the treatment of cardiovascular diseases. This review focused on the most employed natural and synthetic biomaterials in cardiac regeneration, paying particular attention to the contribution of Italian research groups in this field, the fabrication techniques, and the current status of the clinical trials.
Collapse
Affiliation(s)
| | | | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.T.); (F.C.); (G.C.); (F.I.)
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.T.); (F.C.); (G.C.); (F.I.)
| | | | | |
Collapse
|
6
|
Chopra H, Kumar S, Singh I. Biopolymer-based Scaffolds for Tissue Engineering Applications. Curr Drug Targets 2021; 22:282-295. [PMID: 33143611 DOI: 10.2174/1389450121999201102140408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
Tissue engineering is governed by the use of cells and polymers. The cells may be accounted for the type of tissue to be targeted, while polymers may vary from natural to synthetic. The natural polymers have advantages such as non-immunogenic and complex structures that help in the formation of bonds in comparison to the synthetic ones. Various targeted drug delivery systems have been prepared using polymers and cells, such as nanoparticles, hydrogels, nanofibers, and microspheres. The design of scaffolds depends on the negative impact of material used on the human body and they have been prepared using surface modification technique or neo material synthesis. The dermal substitutes are a distinctive array that aims at the replacement of skin parts either through grafting or some other means. This review focuses on biomaterials for their use in tissue engineering. This article shall provide the bird's eye view of the scaffolds and dermal substitutes, which are naturally derived.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sandeep Kumar
- ASBASJSM College of Pharmacy, Bela, Ropar, Punjab, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
7
|
Budai-Szűcs M, Ruggeri M, Faccendini A, Léber A, Rossi S, Varga G, Bonferoni MC, Vályi P, Burián K, Csányi E, Sandri G, Ferrari F. Electrospun Scaffolds in Periodontal Wound Healing. Polymers (Basel) 2021; 13:307. [PMID: 33478155 PMCID: PMC7835852 DOI: 10.3390/polym13020307] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/25/2023] Open
Abstract
Periodontitis is a set of inflammatory conditions affecting the tissues surrounding the teeth predominantly sustained by bacterial infections. The aim of the work was the design and the development of scaffolds based on biopolymers to be inserted in the periodontal pocket to restore tissue integrity and to treat bacterial infections. Nanofibrous scaffolds were prepared by means of electrospinning. Gelatin was considered as base component and was associated to low and high molecular weight chitosans and alginate. The scaffolds were characterized by chemico-physical properties (morphology, solid state-FTIR and differential scanning calorimetry (DSC)-surface zeta potential and contact angle), and mechanical properties. Moreover, preclinical properties (cytocompatibility, fibroblast and osteoblast adhesion and proliferation and antimicrobial properties) were assessed. All the scaffolds were based on cylindrical and smooth nanofibers and preserved their nanofibrous structure upon hydration independently of their composition. They possessed a high degree of hydrophilicity and negative zeta potentials in a physiological environment, suitable surface properties to enhance cell adhesion and proliferation and to inhibit bacteria attachment. The scaffold based on gelatin and low molecular weight chitosan proved to be effective in vitro to support both fibroblasts and osteoblasts adhesion and proliferation and to impair the proliferation of Streptococcus mutans and Aggregatibacter actinomycetemcomitans, both pathogens involved in periodontitis.
Collapse
Affiliation(s)
- Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (M.B.-S.); (A.L.); (E.C.)
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| | - Angela Faccendini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| | - Attila Léber
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (M.B.-S.); (A.L.); (E.C.)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| | - Gábor Varga
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary;
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| | - Péter Vályi
- Department of Periodontology, Faculty of Dentistry, University of Szeged, H-6720 Szeged, Hungary;
| | - Katalin Burián
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary;
| | - Erzsébet Csányi
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (M.B.-S.); (A.L.); (E.C.)
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| |
Collapse
|
8
|
Mousa HM, Alfadhel H, Abouel Nasr E. Engineering and Characterization of Antibacterial Coaxial Nanofiber Membranes for Oil/Water Separation. Polymers (Basel) 2020; 12:E2597. [PMID: 33167337 PMCID: PMC7694370 DOI: 10.3390/polym12112597] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
In the present study, a coaxial nanofiber membrane was developed using the electrospinning technique. The developed membranes were fabricated from hydrophilic cellulose acetate (CA) polymer and hydrophobic polysulfone (PSf) polymer as a core and shell in an alternative way with addition of 0.1 wt.% of ZnO nanoparticles (NPs). The membranes were treated with a 2M NaOH solution to enhance hydrophilicity and thus increase water separation flux. Chemical and physical characterizations were performed, such as Fourier transform infrared (FTIR) spectroscopy, and surface wettability was measured by means of water contact angle (WCA), mechanical properties, surface morphology via field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and microscopy energy dispersive (EDS) mapping and point analysis. The results show higher mechanical properties for the coaxial nanofiber membranes which reached a tensile strength of 7.58 MPa, a Young's modulus of 0.2 MPa, and 23.4 M J.m-3 of toughness. However, treated mebranes show lower mechanical properties (tensile strength of 0.25 MPa, Young's modulus of 0.01 MPa, and 0.4 M J.m-3 of toughness). In addition, the core and shell nanofiber membranes showed a uniform distribution of coaxial nanofibers. Membranes with ZnO NPs showed a porous structure and elimination of nanofibers after treatment due to the formation of nanosheets. Interestingly, membranes changed from hydrophobic to hydrophilic (the WCA changed from 90 ± 8° to 14 ± 2°). Besides that, composite nanofiber membranes with ZnO NPs showed antibacterial activity against Escherichia coli. Furthermore, the water flux for the modified membranes was improved by 1.6 times compared to the untreated membranes.
Collapse
Affiliation(s)
- Hamouda M. Mousa
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Husain Alfadhel
- Department of Mechanical Engineering, University of Portsmouth, Portsmouth PO1 2UP, UK;
| | - Emad Abouel Nasr
- Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia;
- Department of Mechanical Engineering, Faculty of Engineering, Helwan University, Cairo 11732, Egypt
| |
Collapse
|
9
|
Jeckson TA, Neo YP, Sisinthy SP, Gorain B. Delivery of Therapeutics from Layer-by-Layer Electrospun Nanofiber Matrix for Wound Healing: An Update. J Pharm Sci 2020; 110:635-653. [PMID: 33039441 DOI: 10.1016/j.xphs.2020.10.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/09/2023]
Abstract
Increasing incidences of chronic wounds urge the development of effective therapeutic wound treatment. As the conventional wound dressings are found not to comply with all the requirements of an ideal wound dressing, the development of alternative and effective dressings is demanded. Over the past few years, electrospun nanofiber has been recognized as a better system for wound dressing and hence has been studied extensively. Most of the electrospun nanofiber dressings were fabricated as single-layer structure mats. However, this design is less favorable for the effective healing of wounds mainly due to its burst release effect. To address this problem and to simulate the organized skin layer's structure and function, a multilayer structure of wound dressing had been proposed. This design enables a sustained release of the therapeutic agent(s), and more resembles the natural skin extracellular matrix. Multilayer structure is also referred to layer-by-layer (LbL), which has been established as an innovative method of drug incorporation and delivery, combines a high surface area of electrospun nanofibers with the multilayer structure mat. This review focuses on LbL multilayer electrospun nanofiber as a superior strategy in designing an optimal wound dressing.
Collapse
Affiliation(s)
- Tracey Anastacia Jeckson
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Yun Ping Neo
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Sreenivas Patro Sisinthy
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, University Kuala Lumpur (RCMP Uni-KL), Ipoh, Perak, Malaysia.
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia; Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
10
|
Kumar SSD, Abrahamse H. Advancement of Nanobiomaterials to Deliver Natural Compounds for Tissue Engineering Applications. Int J Mol Sci 2020; 21:E6752. [PMID: 32942542 PMCID: PMC7555266 DOI: 10.3390/ijms21186752] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Recent advancement in nanotechnology has provided a wide range of benefits in the biological sciences, especially in the field of tissue engineering and wound healing. Nanotechnology provides an easy process for designing nanocarrier-based biomaterials for the purpose and specific needs of tissue engineering applications. Naturally available medicinal compounds have unique clinical benefits, which can be incorporated into nanobiomaterials and enhance their applications in tissue engineering. The choice of using natural compounds in tissue engineering improves treatment modalities and can deal with side effects associated with synthetic drugs. In this review article, we focus on advances in the use of nanobiomaterials to deliver naturally available medicinal compounds for tissue engineering application, including the types of biomaterials, the potential role of nanocarriers, and the various effects of naturally available medicinal compounds incorporated scaffolds in tissue engineering.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
11
|
Comparative Study of Electrospun Scaffolds Containing Native GAGs and a GAG Mimetic for Human Mesenchymal Stem Cell Chondrogenesis. Ann Biomed Eng 2020; 48:2040-2052. [DOI: 10.1007/s10439-020-02499-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
|
12
|
Sandri G, Faccendini A, Longo M, Ruggeri M, Rossi S, Bonferoni MC, Miele D, Prina-Mello A, Aguzzi C, Viseras C, Ferrari F. Halloysite- and Montmorillonite-Loaded Scaffolds as Enhancers of Chronic Wound Healing. Pharmaceutics 2020; 12:E179. [PMID: 32093190 PMCID: PMC7076487 DOI: 10.3390/pharmaceutics12020179] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022] Open
Abstract
The increase in life expectancy and the increasing prevalence of diabetic disease and venous insufficiency lead to the increase of chronic wounds. The prevalence of ulcers ranges from 1% in the adult population to 3-5% in the over 65 years population, with 3-5.5% of the total healthcare expenditure, as recently estimated. The aim of this work was the design and the development of electrospun scaffolds, entirely based on biopolymers, loaded with montmorillonite (MMT) or halloysite (HNT) and intended for skin reparation and regeneration, as a 3D substrate mimicking the dermal ECM. The scaffolds were manufactured by means of electrospinning and were characterized for their chemico-physical and preclinical properties. The scaffolds proved to possess the capability to enhance fibroblast cells attachment and proliferation with negligible proinflammatory activity. The capability to facilitate the cell adhesion is probably due to their unique 3D structure which are assisting cell homing and would facilitate wound healing in vivo.
Collapse
Affiliation(s)
- Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.L.); (M.R.); (S.R.); (M.C.B.); (D.M.); (F.F.)
| | - Angela Faccendini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.L.); (M.R.); (S.R.); (M.C.B.); (D.M.); (F.F.)
| | - Marysol Longo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.L.); (M.R.); (S.R.); (M.C.B.); (D.M.); (F.F.)
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Dublin, Ireland;
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.L.); (M.R.); (S.R.); (M.C.B.); (D.M.); (F.F.)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.L.); (M.R.); (S.R.); (M.C.B.); (D.M.); (F.F.)
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.L.); (M.R.); (S.R.); (M.C.B.); (D.M.); (F.F.)
| | - Dalila Miele
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.L.); (M.R.); (S.R.); (M.C.B.); (D.M.); (F.F.)
| | - Adriele Prina-Mello
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Dublin, Ireland;
| | - Carola Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain; (C.A.); (C.V.)
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain; (C.A.); (C.V.)
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.L.); (M.R.); (S.R.); (M.C.B.); (D.M.); (F.F.)
| |
Collapse
|
13
|
Yang J, Shen M, Wen H, Luo Y, Huang R, Rong L, Xie J. Recent advance in delivery system and tissue engineering applications of chondroitin sulfate. Carbohydr Polym 2019; 230:115650. [PMID: 31887904 DOI: 10.1016/j.carbpol.2019.115650] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
Chondroitin sulfate (CS) is a naturally derived bioactive macromolecule and the major component of extracellular matrix (ECM), which widely distributed in various organisms and has attracted much attention due to their significant bioactivities. It is regarded as a favorable biomaterial that has been applied extensively in field of drug delivery and tissue engineering due to its property of non-poisonous, biodegradation, biocompatible and as a major component of ECM. The present article reviews the structure and bioactivities of CS, from the preparation to structure analysis, and emphatically focuses on the biomaterial exertion in delivery system and tissue engineering. At the same time, the present application status and prospect of CS are analyzed and the biomaterial exertion of CS in delivery system and various tissue engineering are also comparatively discussed in view of biomaterial development.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Yu Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Rong Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liyuan Rong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
14
|
Sandri G, Rossi S, Bonferoni MC, Miele D, Faccendini A, Del Favero E, Di Cola E, Icaro Cornaglia A, Boselli C, Luxbacher T, Malavasi L, Cantu’ L, Ferrari F. Chitosan/glycosaminoglycan scaffolds for skin reparation. Carbohydr Polym 2019; 220:219-227. [DOI: 10.1016/j.carbpol.2019.05.069] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/11/2019] [Accepted: 05/23/2019] [Indexed: 01/01/2023]
|
15
|
Wang Y, Guo Z, Qian Y, Zhang Z, Lyu L, Wang Y, Ye F. Study on the Electrospinning of Gelatin/Pullulan Composite Nanofibers. Polymers (Basel) 2019; 11:polym11091424. [PMID: 31480275 PMCID: PMC6780768 DOI: 10.3390/polym11091424] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, gelatin and pullulan were successfully prepared as a novel type of protein-polysaccharide composite nanofibrous membrane by electrospinning at room temperature with deionized water as the solvent. The effects of gelatin content on the properties of the solution, as well as the morphology of the resultant nanofibers, were investigated. Scanning electron microscopy (SEM) was utilized to observe the surface morphology. Fourier transform infrared spectroscopy (FTIR) was used to study the interaction between gelatin and pullulan. Incorporation of pullulan with gelatin will improve the spinnability of the mixed aqueous solution due to lower surface tension. Moreover, the conductivity of the solution had a greater effect on the fiber diameters, and the as-spun fibers became thinner as the viscosity and the surface tension increased due to the addition of the polyelectrolyte gelatin. Gelatin and pullulan formed hydrogen bonds, and the intermolecular hydrogen bonds increased while the intramolecular hydrogen bond decreased, which resulted in better mechanical properties. The electrospun gelatin/pullulan nanofibers could mimic both the structure and the composition of the extracellular matrix, and thus could be applied in tissue engineering.
Collapse
Affiliation(s)
- Yuanduo Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ziyang Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yongfang Qian
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Zhen Zhang
- Sinomatech Membrane Material Company, Nanjing 211112, China
| | - Lihua Lyu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ying Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fang Ye
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
16
|
Chitosan/Glycosaminoglycan Scaffolds: The Role of Silver Nanoparticles to Control Microbial Infections in Wound Healing. Polymers (Basel) 2019; 11:polym11071207. [PMID: 31330974 PMCID: PMC6680995 DOI: 10.3390/polym11071207] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 01/30/2023] Open
Abstract
Cutaneous wounds represent a major issue in medical care, with approximately 300 million chronic and 100 million traumatic wound patients worldwide, and microbial infections slow the healing process. The aim of this work was to develop electrospun scaffolds loaded with silver nanoparticles (AgNPs) to enhance cutaneous healing, preventing wound infections. AgNPs were directly added to polymeric blends based on chitosan (CH) and pullulan (PUL) with hyaluronic acid (HA) or chondroitin sulfate (CS) to be electrospun obtaining nanofibrous scaffolds. Moreover, a scaffold based on CH and PUL and loaded with AgNPs was prepared as a comparison. The scaffolds were characterized by chemico-physical properties, enzymatic degradation, biocompatibility, and antimicrobial properties. All the scaffolds were based on nanofibers (diameters about 500 nm) and the presence of AgNPs was evidenced by TEM and did not modify their morphology. The scaffold degradation was proven by means of lysozyme. Moreover, the AgNPs loaded scaffolds were characterized by a good propensity to promote fibroblast proliferation, avoiding the toxic effect of silver. Furthermore, scaffolds preserved AgNP antimicrobial properties, although silver was entrapped into nanofibers. Chitosan/chondroitin sulfate scaffold loaded with AgNPs demonstrated promotion of fibroblast proliferation and to possess antimicrobial properties, thus representing an interesting tool for the treatment of chronic wounds.
Collapse
|
17
|
Mani MP, Jaganathan SK, Prabhakaran P, Nageswaran G, Krishnasamy NP. Electrospun polyurethane patch in combination with cedarwood and cobalt nitrate for cardiac applications. J Appl Polym Sci 2019. [DOI: 10.1002/app.48226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mohan Prasath Mani
- School of Biomedical Engineering and Health Sciences, Faculty of EngineeringUniversiti Teknologi Malaysia Skudai 81310 Malaysia
| | - Saravana Kumar Jaganathan
- Department for Management of Science and Technology DevelopmentTon Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied SciencesTon Duc Thang University Ho Chi Minh City Vietnam
- IJNUTM Cardiovascular Engineering center, School of Biomedical Engineering and Health Sciences, Faculty of EngineeringUniversiti Teknologi Malaysia Skudai 81310 Malaysia
| | - Praseetha Prabhakaran
- Department of Biosciences, Faculty of ScienceUniversiti Teknologi Malaysia Skudai 81310 Johor Malaysia
| | - Gomathi Nageswaran
- Department of ChemistryIndian Institute of Space Science and Technology Trivandrum 695547 Kerala India
| | - Navaneetha Pandiyaraj Krishnasamy
- Surface Engineering Laboratory, Department of PhysicsSri Shakthi Institute of Engineering and Technology, L&T By Pass, Chinniyam Palayam (Post) Coimbatore 641062 India
| |
Collapse
|
18
|
Demina TS, Kuryanova AS, Aksenova NA, Shubnyy AG, Popyrina TN, Sokovikov YV, Istranova EV, Ivanov PL, Timashev PS, Akopova TA. Chitosan-g-oligo/polylactide copolymer non-woven fibrous mats containing protein: from solid-state synthesis to electrospinning. RSC Adv 2019; 9:37652-37659. [PMID: 35542266 PMCID: PMC9075748 DOI: 10.1039/c9ra07667k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022] Open
Abstract
Amphiphilic chitosan-g-oligo/polylactide graft-copolymers were synthesized through solid-state reactive co-extrusion and used for fabrication of fibrous non-woven mats via the electrospinning technique using chloroform as a solvent.
Collapse
Affiliation(s)
- Tatiana S. Demina
- Enikolopov Institute of Synthetic Polymeric Materials
- Russian Academy of Sciences
- Moscow 117393
- Russia
- Institute for Regenerative Medicine
| | - Anastasia S. Kuryanova
- Institute for Regenerative Medicine
- Sechenov University
- Moscow 119991
- Russia
- Semenov Institute of Chemical Physics
| | - Nadejda A. Aksenova
- Institute for Regenerative Medicine
- Sechenov University
- Moscow 119991
- Russia
- Semenov Institute of Chemical Physics
| | - Andrey G. Shubnyy
- Institute on Photon Technologies
- Federal Scientific Research Centre “Crystallography and Photonics”
- Russian Academy of Sciences
- Moscow 142190
- Russia
| | - Tatiana N. Popyrina
- Enikolopov Institute of Synthetic Polymeric Materials
- Russian Academy of Sciences
- Moscow 117393
- Russia
| | | | - Elena V. Istranova
- Institute for Regenerative Medicine
- Sechenov University
- Moscow 119991
- Russia
| | - Pavel L. Ivanov
- Enikolopov Institute of Synthetic Polymeric Materials
- Russian Academy of Sciences
- Moscow 117393
- Russia
| | - Peter S. Timashev
- Institute for Regenerative Medicine
- Sechenov University
- Moscow 119991
- Russia
- Semenov Institute of Chemical Physics
| | - Tatiana A. Akopova
- Enikolopov Institute of Synthetic Polymeric Materials
- Russian Academy of Sciences
- Moscow 117393
- Russia
| |
Collapse
|
19
|
Vigani B, Rossi S, Milanesi G, Bonferoni MC, Sandri G, Bruni G, Ferrari F. Electrospun Alginate Fibers: Mixing of Two Different Poly(ethylene oxide) Grades to Improve Fiber Functional Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E971. [PMID: 30477265 PMCID: PMC6315736 DOI: 10.3390/nano8120971] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022]
Abstract
The aim of the present work was to investigate how the molecular weight (MW) of poly(ethylene oxide) (PEO), a synthetic polymer able to improve alginate (ALG) electrospinnability, could affect ALG-based fiber morphology and mechanical properties. Two PEO grades, having different MWs (high, h-PEO, and low, l-PEO) were blended with ALG: the concentrations of both PEOs in each mixture were defined so that each h-PEO/l-PEO combination would show the same viscosity at high shear rate. Seven ALG/h-PEO/l-PEO mixtures were prepared and characterized in terms of viscoelasticity and conductivity and, for each mixture, a complex parameter rH/rL was calculated to better identify which of the two PEO grades prevails over the other in terms of exceeding the critical entanglement concentration. Thereafter, each mixture was electrospun by varying the process parameters; the fiber morphology and mechanical properties were evaluated. Finally, viscoelastic measurements were performed to verify the formation of intermolecular hydrogen bonds between the two PEO grades and ALG. rH/rL has been proved to be the parameter that better explains the effect of the electrospinning conditions on fiber dimension. The addition of a small amount of h-PEO to l-PEO was responsible for a significant increase in fiber mechanical resistance, without affecting the nano-scale fiber size. Moreover, the mixing of h-PEO and l-PEO improved the interaction with ALG, resulting in an increase in chain entanglement degree that is functional in the electrospinning process.
Collapse
Affiliation(s)
- Barbara Vigani
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy.
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy.
| | - Giulia Milanesi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy.
| | | | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy.
| | - Giovanna Bruni
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy.
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|