1
|
Yang X, Niu Y, Fan Y, Zheng T, Fan J. Green synthesis of Poria cocos polysaccharides-silver nanoparticles and their applications in food packaging. Int J Biol Macromol 2024; 269:131928. [PMID: 38688339 DOI: 10.1016/j.ijbiomac.2024.131928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
To reduce pollution caused by traditional plastic packaging and preparation of silver nanoparticles (AgNPs), this work aims to develop biological macromolecular packaging films with green synthesized AgNPs. In this study, a novel P. cocos polysaccharide (PCP) with a unique monosaccharide composition was extracted from Poria cocos (Schw.) Wolf. Then, this polysaccharide containing 24.68 % rhamnose was used as a stabilizer for the green synthesis of PCP-AgNPs for the first time. PCP-AgNPs exhibited excellent antibacterial activity against P. aeruginosa, E. coli, and S. aureus, with the highest antibacterial activity against E. coli (inhibition zone diameter = 11.14 ± 0.79 mm). Subsequently, PCP-AgNPs/chitosan (CS) film was successfully prepared by incorporating PCP-AgNPs into the CS film solution. Several experiments demonstrated that the addition of this nanomaterial promoted the formation of noncovalent interactions between CS and PCP-AgNPs, resulting in a more regular and denser film. Compared to the CS film and control group, the PCP-AgNPs/CS film significantly maintained the quality indexes of strawberries. Therefore, this composite film successfully extended the shelf life of strawberries. Regarding safety, these packaging films were not cytotoxic toward RAW264.7 cells. In conclusion, the environmentally friendly PCP-AgNPs/CS film has the potential to replace some traditional food packaging materials.
Collapse
Affiliation(s)
- Xiaoqian Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yun Niu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yingrun Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Tingting Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiangping Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
2
|
Kumari SVG, Pakshirajan K, Pugazhenthi G. Facile fabrication and characterization of novel antimicrobial and antioxidant poly (3-hydroxybutyrate)/essential oil composites for potential use in active food packaging applications. Int J Biol Macromol 2023; 252:126566. [PMID: 37648135 DOI: 10.1016/j.ijbiomac.2023.126566] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Poly (3-hydroxybutyrate) (PHB) is a bio-based biodegradable biopolymer with excellent potential to substitute petrochemical-based food packaging materials. Nevertheless, low elongation at break is one of the limiting factors for its commercial-scale application in the packaging field. Microbial contamination and lipid oxidation are the two main causes of food spoilage and pose huge challenges to the food industry. In this regard, essential oils are bioactive compounds that, in addition to providing antimicrobial and antioxidant properties, can improve the flexibility of biopolymers. Therefore, to overcome the aforementioned challenges, the current study aimed to fabricate novel PHB composite films loaded with essential oils, viz. grapeseed oil (GS), bergamot oil (BG), and ginger oil (GG), by a simple solution casting technique. To evaluate the potential of prepared PHB/essential oil composites for food packaging applications, extensive characterizations of their mechanical, structural, barrier, optical, and thermal properties were carried out. Interestingly, PHB/essential oil composites demonstrated good UV-blocking properties without affecting its transparency. PHB films loaded with 5 wt% GS showed a 30-fold enhancement in flexibility compared to pristine PHB. The DPPH radical scavenging activities of PHB/5GS, PHB/5BG, and PHB/5GG films are 53.17 ± 4.76, 50.70 ± 3.92 and 86.38 ± 2.73 %, respectively. The antibacterial activities of PHB/5GS, PHB/5BG, and PHB/5GG films against the model bacterium E. coli are 19.72 ± 0.97, 12.62 ± 2.23 and 29.98 ± 2.15 %, respectively, whereas, for S. aureus, the values are 61.56 ± 3.39, 30.28 ± 0.92 and 70.97 ± 0.26 %, respectively. Moreover, the overall migration values of the composite films in simulants representing hydrophilic, acidic, and lipophilic foods did not exceed the prescribed overall migration limit (10 mg/dm2).
Collapse
Affiliation(s)
- Satti Venu Gopala Kumari
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - G Pugazhenthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
3
|
Chalapud MC, Salgado-Cruz MDLP, Baümler ER, Carelli AA, Morales-Sánchez E, Calderón-Domínguez G, García-Hernández AB. Study of the Physical, Chemical, and Structural Properties of Low- and High-Methoxyl Pectin-Based Film Matrices Including Sunflower Waxes. MEMBRANES 2023; 13:846. [PMID: 37888018 PMCID: PMC10608882 DOI: 10.3390/membranes13100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
The development of bio-based materials remains one of the most important alternatives to plastic materials. Although research in this field is growing, reporting various materials and methodologies, it is still necessary to increase exploration. The aim of this work was to expand and complement previous research on the preparation and characterization of high- and low-methoxyl pectin films obtained by casting, with the addition of commercial and recovered sunflower waxes. The results showed that the addition of sunflower waxes to the pectin matrix generated some discontinuity in the aggregate, increasing the thickness and roughness of the film. However, due to their hydrophobic nature, the waxes contributed to lower vapor transmission rate values of the films. On the other hand, the low-methoxyl pectin films had a more crystalline structure, which could help to diminish water vapor permeability values, mechanical resistance and rigidity, and improve their elongation. Regarding chemical characteristics, most of the raw materials' chemical groups were found in the resulting films, and the presence of C-H bending due to pectin gelation was observed. Finally, the compatibility and contribution of pectin and sunflower waxes to the production of the films were demonstrated, as well as the possibility of using materials from industrial waste in food packaging applications.
Collapse
Affiliation(s)
- Mayra C. Chalapud
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Argentina; (M.C.C.); (E.R.B.); (A.A.C.)
- Planta Piloto de Ingeniería Química–PLAPIQUI (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Ma. de la Paz Salgado-Cruz
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Ciudad de México 07738, Mexico;
| | - Erica R. Baümler
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Argentina; (M.C.C.); (E.R.B.); (A.A.C.)
- Planta Piloto de Ingeniería Química–PLAPIQUI (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Amalia A. Carelli
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Argentina; (M.C.C.); (E.R.B.); (A.A.C.)
- Planta Piloto de Ingeniería Química–PLAPIQUI (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Eduardo Morales-Sánchez
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Querétaro, Cerro Blanco No. 141, Col. Colinas del Cimatario, Santiago de Querétaro 76090, Mexico;
| | - Georgina Calderón-Domínguez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Ciudad de México 07738, Mexico;
| | - Alitzel B. García-Hernández
- Consejo Nacional de Humanidades Ciencias y Tecnologías-Centro de Investigación en Química Aplicada-Unidad Monterrey, Parque de Investigación e Innovación Tecnológica, Autopista al Aeropuerto KM 10, Av. Alianza Sur 303, Ciudad Apodaca 66647, Mexico;
| |
Collapse
|
4
|
Ruan H, Aulova A, Ghai V, Pandit S, Lovmar M, Mijakovic I, Kádár R. Polysaccharide-based antibacterial coating technologies. Acta Biomater 2023; 168:42-77. [PMID: 37481193 DOI: 10.1016/j.actbio.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofilm formation on surfaces. Polysaccharides are essential building blocks for life and an abundant renewable resource that have attracted much attention due to their intrinsic remarkable biological potential antibacterial activities. If converted into efficient antibacterial coatings that could be applied to a broad range of surfaces and applications, polysaccharide-based coatings could have a significant potential global impact. However, the ultimate success of polysaccharide-based antibacterial materials will be determined by their potential for use in manufacturing processes that are scalable, versatile, and affordable. Therefore, in this review we focus on recent advances in polysaccharide-based antibacterial coatings from the perspective of fabrication methods. We first provide an overview of strategies for designing polysaccharide-based antimicrobial formulations and methods to assess the antibacterial properties of coatings. Recent advances on manufacturing polysaccharide-based coatings using some of the most common polysaccharides and fabrication methods are then detailed, followed by a critical comparative overview of associated challenges and opportunities for future developments. STATEMENT OF SIGNIFICANCE: Our review presents a timely perspective by being the first review in the field to focus on advances on polysaccharide-based antibacterial coatings from the perspective of fabrication methods along with an overview of strategies for designing polysaccharide-based antimicrobial formulations, methods to assess the antibacterial properties of coatings as well as a critical comparative overview of associated challenges and opportunities for future developments. Meanwhile this work is specifically targeted at an audience focused on featuring critical information and guidelines for developing polysaccharide-based coatings. Including such a complementary work in the journal could lead to further developments on polysaccharide antibacterial applications.
Collapse
Affiliation(s)
- Hengzhi Ruan
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Alexandra Aulova
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Viney Ghai
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Martin Lovmar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wellspect Healthcare AB, 431 21 Mölndal, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Roland Kádár
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, 412 96 Göteborg, Sweden.
| |
Collapse
|
5
|
Giannakas AE, Karabagias VK, Moschovas D, Leontiou A, Karabagias IK, Georgopoulos S, Karydis-Messinis A, Zaharioudakis K, Andritsos N, Kehayias G, Avgeropoulos A, Proestos C, Salmas CE. Thymol@activated Carbon Nanohybrid for Low-Density Polyethylene-Based Active Packaging Films for Pork Fillets' Shelf-Life Extension. Foods 2023; 12:2590. [PMID: 37444330 DOI: 10.3390/foods12132590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Τhe replacement of food packaging additives and preservatives with bio-based antioxidant/antibacterial compounds has been a common practice in recent years following the trend of bioeconomy and nanotechnology. Such bio-additives are often enclosed in nanocarriers for a controlled release process. Following this trend in this work, a thymol (TO)-rich activated carbon (AC) nanohybrid was prepared and characterized physicochemically with various techniques. This TO@AC nanohybrid, along with the pure activated carbon, was extruded with low-density polyethylene (LDPE) to develop novel active packaging films. The codenames used in this paper were LDPE/xTO@AC and LDPE/xAC for the nanohybrid and the pure activated carbon, respectively. X-ray diffractometry, Fourier-transform infrared spectroscopy, and scanning electron microscopy measurements showed high dispersity of both the TO@AC nanohybrid and the pure AC in the LDPE matrix, resulting in enhanced mechanical properties. The active film with 15 wt.% of the TO@AC nanohybrid (LDPE/15TO@AC) exhibited a 230% higher water/vapor barrier and 1928% lower oxygen permeability than the pure LDPE film. For this active film, the highest antioxidant activity referred to the DPPH assay (44.4%), the lowest thymol release rate (k2 ≈ 1.5 s-1), and the highest antibacterial activity were recorded, resulting in a 2-day extension of fresh pork fillets' shelf-life.
Collapse
Affiliation(s)
- Aris E Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | | | - Dimitrios Moschovas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Areti Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Ioannis K Karabagias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Stavros Georgopoulos
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | | | | | - Nikolaos Andritsos
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - George Kehayias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Apostolos Avgeropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece
| | - Constantinos E Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
6
|
Dede S, Sadak O, Didin M, Gunasekaran S. Antimicrobial food packaging application of angelica root (Angelica sylvestris) oil-loaded electrospun biofibers. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Nastasi JR, Kontogiorgos V, Daygon VD, Fitzgerald MA. Pectin-based films and coatings with plant extracts as natural preservatives: A systematic review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Wangtueai S, Chaiyaso T, Rachtanapun P, Jantrawut P, Ruksiriwanich W, Seesuriyachan P, Leksawasdi N, Phimolsiripol Y, Techapun C, Phongthai S, Sommano SR, Ougizawa T, Regenstein JM, Jantanasakulwong K. Thermoplastic cassava starch blend with polyethylene-grafted-maleic anhydride and gelatin core-shell structure compatibilizer. Int J Biol Macromol 2022; 197:49-54. [PMID: 34921892 DOI: 10.1016/j.ijbiomac.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/05/2022]
Abstract
Thermoplastic starch (TPS) was prepared from cassava starch blended with glycerol (70:30 w/w). Gelatin (Gel) was incorporated into the TPS in water. The TPS/Gel was melt-blended with polyethylene-grafted-maleic anhydride (PEMAH). Maximum tensile strength of the TPS/PEMAH/Gel10 (29.3 MPa) increased significantly compared to the TPS/PEMAH blend (6.3 MPa), while elongation at break was 70%. The morphology of the TPS/PEMAH showed co-continuous morphology, while phase inversion occurred with the addition of Gel. The Gel was dispersed in the TPS matrix and covered the PEMAH. The TPS/PEMAH/Gel was nanoparticles (200 nm) in the TPS matrix. It showed two melting temperatures for PEMAH due to two structures with different crystal sizes. Melt viscosity of the TPS/PEMAH was enhanced with increasing Gel as the reaction induced chain extension. FTIR and rheology measurements confirmed the reaction between -NH groups of Gel and MAH groups of PEMAH. This reaction improved interfacial adhesion, morphology, and the mechanical properties of the blends.
Collapse
Affiliation(s)
- Sutee Wangtueai
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Thanongsak Chaiyaso
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phisit Seesuriyachan
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Noppol Leksawasdi
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yuthana Phimolsiripol
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Charin Techapun
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand
| | - Suphat Phongthai
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sarana Rose Sommano
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Plant Bioactive Compound Laboratory (BAC), Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Toshiaki Ougizawa
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Kittisak Jantanasakulwong
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
9
|
Rachtanapun P, Homsaard N, Kodsangma A, Phongthai S, Leksawasdi N, Phimolsiripol Y, Seesuriyachan P, Chaiyaso T, Chotinan S, Jantrawut P, Ruksiriwanich W, Wangtueai S, Sommano SR, Tongdeesoontorn W, Sringarm K, Jantanasakulwong K. Effects of storage temperature on the quality of eggs coated by cassava starch blended with carboxymethyl cellulose and paraffin wax. Poult Sci 2022; 101:101509. [PMID: 34788715 PMCID: PMC8591495 DOI: 10.1016/j.psj.2021.101509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/11/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023] Open
Abstract
A blend of cassava starch (CS), carboxymethyl cellulose (CMC), and paraffin was prepared as a coating material to maintain the quality of eggs during 4 wk of storage at different temperatures. The efficacy of the CS/CMC/paraffin (6/1/0.5% w/v) coating was investigated in terms of the Haugh unit (HU), weight loss, pH, and microbial load at the end of storage. The best egg storage temperature was 4°C, which maintained an HU of grade AA in coated and uncoated eggs for 4 wk. Lower weight loss (2.14%) was observed in coated eggs at 4°C storage than at 30°C storage (3.26%). The pH in the albumen of coated and uncoated eggs at 4°C increased from 6.84 to 6.88 and 7.01 to 7.03, respectively, after 4 wk of storage. No microbes were detected in the coated and uncoated eggs at 4°C. The maximum microbial count was 728 ± 35 cfu/mL in uncoated eggs at 30°C storage. Egg coating prevented microbial contamination of eggs stored at 30°C for 4 wk. The freshness of the eggs did not affect the nutrient content. The egg-coating material effectively maintained egg quality, prevented microbial contamination of eggs, and increased the shelf life of eggs at storage temperatures of 25 and 30°C.
Collapse
Affiliation(s)
- Pornchai Rachtanapun
- School of Agro‒Industry, Faculty of Agro‒Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattagarn Homsaard
- School of Agro‒Industry, Faculty of Agro‒Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Araya Kodsangma
- School of Agro‒Industry, Faculty of Agro‒Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Suphat Phongthai
- School of Agro‒Industry, Faculty of Agro‒Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Noppol Leksawasdi
- School of Agro‒Industry, Faculty of Agro‒Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Yuthana Phimolsiripol
- School of Agro‒Industry, Faculty of Agro‒Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Phisit Seesuriyachan
- School of Agro‒Industry, Faculty of Agro‒Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Thanongsak Chaiyaso
- School of Agro‒Industry, Faculty of Agro‒Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Suwit Chotinan
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sutee Wangtueai
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon, 74000, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory (BAC), Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | - Korawan Sringarm
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kittisak Jantanasakulwong
- School of Agro‒Industry, Faculty of Agro‒Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
10
|
Rachtanapun P, Homsaard N, Kodsangma A, Leksawasdi N, Phimolsiripol Y, Phongthai S, Khemacheewakul J, Seesuriyachan P, Chaiyaso T, Chotinan S, Jantrawut P, Ruksiriwanich W, Wangtueai S, Sommano SR, Tongdeesoontorn W, Jantanasakulwong K. Effect of Egg-Coating Material Properties by Blending Cassava Starch with Methyl Celluloses and Waxes on Egg Quality. Polymers (Basel) 2021; 13:polym13213787. [PMID: 34771344 PMCID: PMC8587928 DOI: 10.3390/polym13213787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
An egg-coating material was developed to extend the shelf-life and freshness of eggs by blending cassava starch (CS) with gelling agents and waxes. The effects of the properties of this egg coating on egg quality were investigated. Hydroxypropyl methylcellulose (HPMC), carboxymethyl cellulose (CMC), beeswax, and paraffin wax were used. CS blended with low-molecular-weight paraffin (Paraffin(L)) and CMC coating material displayed a tensile strength of 4 MPa, 34% elongation at break, 0.0039 g day−1 m−2 water vapor permeability, and a water contact angle of 89° at 3 min. Eggs coated with CS/CMC/Paraffin(L) solutions had a Haugh unit value of 72 (AA grade) and exhibited a weight loss of 2.4% in 4 weeks. CMC improved the compatibility of CS and Paraffin(L). This improvement and the hydrophobicity of Paraffin(L) provided suitable mechanical and water-resistance properties to the coating material that helped to maintain the quality of the coated AA-grade eggs with low weight loss for 4 weeks.
Collapse
Affiliation(s)
- Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae-Hea, Mueang, Chiang Mai 50100, Thailand; (P.R.); (N.H.); (A.K.); (N.L.); (Y.P.); (S.P.); (J.K.); (P.S.); (T.C.)
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (S.C.); (P.J.); (W.R.); (S.W.); (S.R.S.)
| | - Nattagarn Homsaard
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae-Hea, Mueang, Chiang Mai 50100, Thailand; (P.R.); (N.H.); (A.K.); (N.L.); (Y.P.); (S.P.); (J.K.); (P.S.); (T.C.)
| | - Araya Kodsangma
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae-Hea, Mueang, Chiang Mai 50100, Thailand; (P.R.); (N.H.); (A.K.); (N.L.); (Y.P.); (S.P.); (J.K.); (P.S.); (T.C.)
| | - Noppol Leksawasdi
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae-Hea, Mueang, Chiang Mai 50100, Thailand; (P.R.); (N.H.); (A.K.); (N.L.); (Y.P.); (S.P.); (J.K.); (P.S.); (T.C.)
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (S.C.); (P.J.); (W.R.); (S.W.); (S.R.S.)
| | - Yuthana Phimolsiripol
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae-Hea, Mueang, Chiang Mai 50100, Thailand; (P.R.); (N.H.); (A.K.); (N.L.); (Y.P.); (S.P.); (J.K.); (P.S.); (T.C.)
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (S.C.); (P.J.); (W.R.); (S.W.); (S.R.S.)
| | - Suphat Phongthai
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae-Hea, Mueang, Chiang Mai 50100, Thailand; (P.R.); (N.H.); (A.K.); (N.L.); (Y.P.); (S.P.); (J.K.); (P.S.); (T.C.)
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (S.C.); (P.J.); (W.R.); (S.W.); (S.R.S.)
| | - Julaluk Khemacheewakul
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae-Hea, Mueang, Chiang Mai 50100, Thailand; (P.R.); (N.H.); (A.K.); (N.L.); (Y.P.); (S.P.); (J.K.); (P.S.); (T.C.)
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (S.C.); (P.J.); (W.R.); (S.W.); (S.R.S.)
| | - Phisit Seesuriyachan
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae-Hea, Mueang, Chiang Mai 50100, Thailand; (P.R.); (N.H.); (A.K.); (N.L.); (Y.P.); (S.P.); (J.K.); (P.S.); (T.C.)
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (S.C.); (P.J.); (W.R.); (S.W.); (S.R.S.)
| | - Thanongsak Chaiyaso
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae-Hea, Mueang, Chiang Mai 50100, Thailand; (P.R.); (N.H.); (A.K.); (N.L.); (Y.P.); (S.P.); (J.K.); (P.S.); (T.C.)
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (S.C.); (P.J.); (W.R.); (S.W.); (S.R.S.)
| | - Suwit Chotinan
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (S.C.); (P.J.); (W.R.); (S.W.); (S.R.S.)
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensak Jantrawut
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (S.C.); (P.J.); (W.R.); (S.W.); (S.R.S.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warintorn Ruksiriwanich
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (S.C.); (P.J.); (W.R.); (S.W.); (S.R.S.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sutee Wangtueai
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (S.C.); (P.J.); (W.R.); (S.W.); (S.R.S.)
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand
| | - Sarana Rose Sommano
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (S.C.); (P.J.); (W.R.); (S.W.); (S.R.S.)
- Plant Bioactive Compound Laboratory (BAC), Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Kittisak Jantanasakulwong
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae-Hea, Mueang, Chiang Mai 50100, Thailand; (P.R.); (N.H.); (A.K.); (N.L.); (Y.P.); (S.P.); (J.K.); (P.S.); (T.C.)
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (S.C.); (P.J.); (W.R.); (S.W.); (S.R.S.)
- Correspondence: ; Tel.: +66-(0)53948274; Fax: +66-(0)53948230
| |
Collapse
|
11
|
Biopolymer Hydrogel Scaffolds Containing Doxorubicin as A Localized Drug Delivery System for Inhibiting Lung Cancer Cell Proliferation. Polymers (Basel) 2021; 13:polym13203580. [PMID: 34685337 PMCID: PMC8540863 DOI: 10.3390/polym13203580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/02/2022] Open
Abstract
A hydrogel scaffold is a localized drug delivery system that can maintain the therapeutic level of drug concentration at the tumor site. In this study, the biopolymer hydrogel scaffold encapsulating doxorubicin was fabricated from gelatin, sodium carboxymethyl cellulose, and gelatin/sodium carboxymethyl cellulose mixture using a lyophilization technique. The effects of a crosslinker on scaffold morphology and pore size were determined using scanning electron microscopy. The encapsulation efficiency and the release profile of doxorubicin from the hydrogel scaffolds were determined using UV-Vis spectrophotometry. The anti-proliferative effect of the scaffolds against the lung cancer cell line was investigated using an MTT assay. The results showed that scaffolds made from different types of natural polymer had different pore configurations and pore sizes. All scaffolds had high encapsulation efficiency and drug-controlled release profiles. The viability and proliferation of A549 cells, treated with gelatin, gelatin/SCMC, and SCMC scaffolds containing doxorubicin significantly decreased compared with control. These hydrogel scaffolds might provide a promising approach for developing a superior localized drug delivery system to kill lung cancer cells.
Collapse
|
12
|
Chaiyaso T, Rachtanapun P, Thajai N, Kiattipornpithak K, Jantrawut P, Ruksiriwanich W, Seesuriyachan P, Leksawasdi N, Phimolsiripol Y, Techapun C, Sommano SR, Ougizawa T, Yakul K, Jantanasakulwong K. Sericin cocoon bio-compatibilizer for reactive blending of thermoplastic cassava starch. Sci Rep 2021; 11:19945. [PMID: 34620941 PMCID: PMC8497493 DOI: 10.1038/s41598-021-99417-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 11/20/2022] Open
Abstract
Cassava starch was blended with glycerol to prepare thermoplastic starch (TPS). Thermoplastic starch was premixed with sericin (TPSS) by solution mixing and then melt-blended with polyethylene grafted maleic anhydride (PEMAH). The effect of sericin on the mechanical properties, morphology, thermal properties, rheology, and reaction mechanism was investigated. The tensile strength and elongation at break of the TPSS10/PEMAH blend were improved to 12.2 MPa and 100.4%, respectively. The TPS/PEMAH morphology presented polyethylene grafted maleic anhydride particles (2 μm) dispersed in the thermoplastic starch matrix, which decreased in size to approximately 200 nm when 5% sericin was used. The melting temperature of polyethylene grafted maleic anhydride (121 °C) decreased to 111 °C because of the small crystal size of the polyethylene grafted maleic anhydride phase. The viscosity of TPS/PEMAH increased with increasing sericin content because of the chain extension. Fourier-transform infrared spectroscopy confirmed the reaction between the amino groups of sericin and the maleic anhydride groups of polyethylene grafted maleic anhydride. This reaction reduced the interfacial tension between thermoplastic starch and polyethylene grafted maleic anhydride, which improved the compatibility, mechanical properties, and morphology of the blend.
Collapse
Affiliation(s)
- Thanongsak Chaiyaso
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Nanthicha Thajai
- Faculty of Science, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Krittameth Kiattipornpithak
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Phisit Seesuriyachan
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Noppol Leksawasdi
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Yuthana Phimolsiripol
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Charin Techapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Sarana Rose Sommano
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Plant Bioactive Compound Laboratory (BAC), Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Toshiaki Ougizawa
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Kamon Yakul
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Kittisak Jantanasakulwong
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand.
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand.
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand.
| |
Collapse
|
13
|
Leksawasdi N, Chaiyaso T, Rachtanapun P, Thanakkasaranee S, Jantrawut P, Ruksiriwanich W, Seesuriyachan P, Phimolsiripol Y, Techapun C, Sommano SR, Ougizawa T, Jantanasakulwong K. Corn starch reactive blending with latex from natural rubber using Na + ions augmented carboxymethyl cellulose as a crosslinking agent. Sci Rep 2021; 11:19250. [PMID: 34584182 PMCID: PMC8479073 DOI: 10.1038/s41598-021-98807-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/07/2021] [Indexed: 11/08/2022] Open
Abstract
A mixture of corn starch and glycerol plasticizer (CSG) was blended with latex natural rubber (LNR) and carboxymethyl cellulose (CMC). The addition of 10 phr of CMC improved the Young's modulus (6.7 MPa), tensile strength (8 MPa), and elongation at break (80%) of the CSG/LNR blend. The morphology of the CSG/LNR/CMC blends showed a uniform distribution of LNR particles (1-3 µm) in the CSG matrix. The addition of CMC enhanced the swelling ability and water droplet contact angle of the blends owing to the swelling properties, interfacial crosslinking, and amphiphilic structure of CMC. Fourier transform infrared spectroscopy confirmed the reaction between the C=C bond of LNR and the carboxyl groups (-COO-) of CMC, in which the Na+ ions in CMC acted as a catalyst. Notably, the mechanical properties of the CSG/LNR/CMC blend were improved owing to the miscibility of CSG/CMC and the CMC/LNR interfacial reaction. The CSG/LNR/CMC biodegradable polymer with high mechanical properties and interfacial tension can be used for packaging, agriculture, and medical applications.
Collapse
Affiliation(s)
- Noppol Leksawasdi
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Thanongsak Chaiyaso
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Sarinthip Thanakkasaranee
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Phisit Seesuriyachan
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Yuthana Phimolsiripol
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Charin Techapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Sarana Rose Sommano
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Plant Bioactive Compound Laboratory (BAC), Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
| | - Toshiaki Ougizawa
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Kittisak Jantanasakulwong
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand.
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand.
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand.
| |
Collapse
|
14
|
Li A, Khan IN, Khan IU, Yousaf AM, Shahzad Y. Gellan Gum-Based Bilayer Mucoadhesive Films Loaded with Moxifloxacin Hydrochloride and Clove Oil for Possible Treatment of Periodontitis. Drug Des Devel Ther 2021; 15:3937-3952. [PMID: 34556975 PMCID: PMC8453438 DOI: 10.2147/dddt.s328722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
Background/Objective Periodontitis is a widely spread oral infection and various antibiotics are utilized for its treatment, but high oral doses and development of antibiotic resistance limit their use. This study was aimed at development of natural polymer-based mucoadhesive bilayer films loaded with moxifloxacin hydrochloride (Mox) and clove essential oil (CEO) to potentially combat bacterial infection associated with periodontitis. Methods Films were synthesized by double solvent casting technique having an antibiotic in the gellan gum-based primary layer with clove oil in a hydroxyethyl cellulose-based secondary layer. Results Prepared films were transparent, flexible, and showed high antibacterial response against both gram-positive and gram-negative bacteria. The films showed excellent pharmaceutical attributes in terms of drug content, folding endurance, swelling index, and mucoadhesive strength. Solid state characterization of formulation showed successful incorporation of drug and oil in separate layers of hydrogel structure. An in-vitro release study showed an initial burst release of drug followed by sustained release for up to 48 hours. Conclusion The prepared mucoadhesive bilayer buccal films could be used as a potential therapeutic option for the management of periodontitis.
Collapse
Affiliation(s)
- Aiqin Li
- Department of Stomatology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ifrah Nabi Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore, Pakistan
| |
Collapse
|
15
|
Rachtanapun P, Kodsangma A, Homsaard N, Nadon S, Jantrawut P, Ruksiriwanich W, Seesuriyachan P, Leksawasdi N, Phimolsiripol Y, Chaiyaso T, Phongthai S, Sommano SR, Techapun C, Ougizawa T, Kittikorn T, Wangtueai S, Regenstein JM, Jantanasakulwong K. Thermoplastic mung bean starch/natural rubber/sericin blends for improved oil resistance. Int J Biol Macromol 2021; 188:283-289. [PMID: 34343586 DOI: 10.1016/j.ijbiomac.2021.07.187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Oil resistant thermoplastic elastomers (TPE) were prepared using mung bean thermoplastic starch (MTPS) blending with rubbers and sericin. Sericin was incorporated into MTPS as a compatibilizer. MTPS with sericin (MTPSS) was blended with natural rubber (NR) and epoxidized NR (ENR). Sericin at 5% improved the tensile strength (10 MPa), elastic recovery (52%) and morphology of the MTPSS/ENR blend. The mechanical properties, elastic recovery and morphology of the MTPSS5/NR blend were improved by the addition of ENR. The MTPSS/ENR showed palm (28%) and motor oils (8%) swelling resistance because of the hydrophilicity of MTPS and high polarity of ENR. The MTPSS/ENR/NR showed gasoline swelling resistance (104%) because of the hydrophilicity of MTPS and low polarity of NR. FTIR confirmed a reaction between the -NH groups of sericin and the epoxy groups of ENR. This reaction improved the compatibility, mechanical properties, elastic recovery, morphology and oils swelling resistance of the blends.
Collapse
Affiliation(s)
- Pornchai Rachtanapun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Araya Kodsangma
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Nattagarn Homsaard
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sudarut Nadon
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phisit Seesuriyachan
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Noppol Leksawasdi
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Yuthana Phimolsiripol
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Thanongsak Chaiyaso
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Suphat Phongthai
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory (BAC), Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Charin Techapun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Toshiaki Ougizawa
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-Ku, Tokyo 152-8552, Japan
| | - Thosak Kittikorn
- Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sutee Wangtueai
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Kittisak Jantanasakulwong
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
16
|
McKay S, Sawant P, Fehlberg J, Almenar E. Antimicrobial activity of orange juice processing waste in powder form and its suitability to produce antimicrobial packaging. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:230-239. [PMID: 33310599 DOI: 10.1016/j.wasman.2020.11.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Orange peel essential oil is a common value-added product from orange juice processing waste. It is antimicrobial and used to produce antimicrobial films and coatings. This study reports the first development of antimicrobial films using orange peel as powder (OPP) instead of the extracted essential oil. The OPP amount needed for antimicrobial films was determined by studying the OPP effects on conidia germination inhibition (minimum inhibitory concentration (MIC)) and mycelial growth reduction for Botrytis cinerea, Aspergillus niger, and Penicillium sp. This amount was incorporated into linear low-density polyethylene using plastic processing machinery. The resulting LLDPE/OPP composite film was characterized for antimicrobial activity against Botrytis cinerea, antimicrobial compound release, and mechanical, barrier, and optical properties. We found the same OPP MIC (8.4 mg OPP/mL air) for the three fungi although their mycelial growth kinetics and conidia germination inhibition periods varied with OPP amount differently. 21.1 mg OPP/mL air completely inhibited the germination of Penicillium sp., B. cinerea, and A. niger conidia for 3, 2, and 1 days. The antimicrobial film was a LLDPE/OPP composite with 46% plastic replacement that reduced B. cinerea growth by 30% over a 7-day storage period at 23 °C, less than OPP due to limonene/citral reduction during processing. Plastic replacement resulted in films with the barrier and mechanical properties of plastics commonly used in food packaging. This study demonstrates the OPP antimicrobial capacity against food spoilage microorganisms and its suitability to produce antimicrobial packaging for food applications and presents a novel approach to utilizing orange juice processing waste.
Collapse
Affiliation(s)
- Sydney McKay
- School of Packaging, Michigan State University, East Lansing, MI, USA
| | - Pramit Sawant
- School of Packaging, Michigan State University, East Lansing, MI, USA
| | - Jack Fehlberg
- School of Packaging, Michigan State University, East Lansing, MI, USA
| | - Eva Almenar
- School of Packaging, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
17
|
Andriotis EG, Papi RM, Paraskevopoulou A, Achilias DS. Synthesis of D-Limonene Loaded Polymeric Nanoparticles with Enhanced Antimicrobial Properties for Potential Application in Food Packaging. NANOMATERIALS 2021; 11:nano11010191. [PMID: 33451168 PMCID: PMC7828745 DOI: 10.3390/nano11010191] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/24/2022]
Abstract
Mini-emulsion polymerization was applied for the synthesis of cross-linked polymeric nanoparticles comprised of methyl methacrylate (MMA) and Triethylene Glycol Dimethacrylate (TEGDMA) copolymers, used as matrix-carriers for hosting D-limonene. D-limonene was selected as a model essential oil, well known for its pleasant odor and its enhanced antimicrobial properties. The synthesized particles were assessed for their morphology and geometric characteristics by Dynamic Light Scattering (DLS) and Scanning Electron Microscopy (SEM), which revealed the formation of particles with mean diameters at the nanoscale (D[3,2] = 0.135 μm), with a spherical shape, while the dried particles formed larger clusters of several microns (D[3,2] = 80.69 μm). The percentage of the loaded D-limonene was quantified by Thermogravimetric Analysis (TGA), complemented by Gas Chromatography-Mass Spectrometry analysis coupled with a pyrolysis unit (Py/GC-MS). The results showed that the volatiles emitted by the nanoparticles were composed mainly of D-limonene (10% w/w of dry particles). Particles subjected to higher temperatures tended to decompose. The mechanism that governs the release of D-limonene from the as-synthesized particles was studied by fitting mathematical models to the release data obtained by isothermal TGA analysis of the dry particles subjected to accelerated conditions. The analysis revealed a two-stage release of the volatiles, one governed by D-limonene release and the other governed by TEGDMA release. Finally, the antimicrobial potency of the D-limonene-loaded particles was demonstrated, indicating the successful synthesis of polymeric nanoparticles loaded with D-limonene, owing to enhanced antimicrobial properties. The overall performance of these nanoparticles renders them a promising candidate material for the formation of self-sterilized surfaces with enhanced antimicrobial activity and potential application in food packaging.
Collapse
Affiliation(s)
- Eleftherios G. Andriotis
- Laboratory of Polymer and Dyes Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Rigini M. Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Adamantini Paraskevopoulou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitris S. Achilias
- Laboratory of Polymer and Dyes Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-2310-997822
| |
Collapse
|
18
|
Characterization, biological evaluation and molecular docking of mulberry fruit pectin. Sci Rep 2020; 10:21789. [PMID: 33311512 PMCID: PMC7732840 DOI: 10.1038/s41598-020-78086-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022] Open
Abstract
Contemplating the exemplary benefits of pectin on human health, we precisely characterized and evaluated the antibacterial and anticancer activities from purified Mulberry Fruit Pectins (MFP). Here, we tested BR-2 and S-13 varieties of mulberry fruit pectins against six bacterial strains and two human cancer cell lines (HT-29 and Hep G-2), using MIC and an in vitro cell-based assay respectively. The BR-2 mulberry fruit pectin performs superior to S-13 by inhibiting strong bacterial growth (MIC = 500–1000 μg/mL) against tested bacterial strains and cytotoxic activities at the lowest concentration (10 µg/ml) against the Hep G-2 cell line. However, both tested drugs failed to exhibit cytotoxicity on the human colon cancer cell line (HT-29). Based on molecular interaction through docking, pectin binds effectively with the receptors (1e3g, 3t0c, 5czz, 6j7l, 6v40, 5ibs, 5zsy, and 6ggb) and proven to be a promising antimicrobial and anti-cancer agents. The pursuit of unexploited drugs from mulberry fruit pectin will potentially combat against bacterial and cancer diseases. Finally, future perspectives of MFP for the treatment of many chronic diseases will help immensely due to their therapeutic properties.
Collapse
|
19
|
Mahmood H, Khan IU, Asif M, Khan RU, Asghar S, Khalid I, Khalid SH, Irfan M, Rehman F, Shahzad Y, Yousaf AM, Younus A, Niazi ZR, Asim M. In vitro and in vivo evaluation of gellan gum hydrogel films: Assessing the co impact of therapeutic oils and ofloxacin on wound healing. Int J Biol Macromol 2020; 166:483-495. [PMID: 33130262 DOI: 10.1016/j.ijbiomac.2020.10.206] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022]
Abstract
Herein, we report co-encapsulation of ofloxacin with tea tree or lavender oil in gellan gum based hydrogel films by solvent casting ionotropic gelation method as wound dressing. Prepared films were transparent, flexible, and displayed antioxidant activity with superior antibacterial response against common inhabitants of wound i.e. gram positive and negative bacteria. Solid-state characterization of optimized formulation (OL3 and OT3) revealed successful incorporation of drug and oils in hydrogel structure without any noticeable interaction. In vitro release studies showed an initial burst release but remaining portion released in controlled manner over 48 h from the films and furthermore, presence of oils did not affected the ofloxacin release. Optimized formulation containing ofloxacin and 25% w/w lavender/tea tree oil showed 98% wound contraction in rats after ten days of treatment. Histological images displayed completely healed epidermis. Taken together, our prepared hydrogel films demonstrated favorable features with appreciable antibacterial, wound healing activity and could be useful for the treatment of full thickness wounds.
Collapse
Affiliation(s)
- Huma Mahmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Pakistan
| | - Rizwan Ullah Khan
- Department of Pathology, Prince Faisal Cancer Centre, Buraydah Al Qassim, Saudi Arabia
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ikrima Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Fauzia Rehman
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan; School of Pharmacy, The University of Faisalabad, Faisalabad, Pakistan
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Adnan Younus
- Global Medical Solutions Hospital Management LLC, Abu Dhabi, United Arab Emirates
| | - Zahid Rasul Niazi
- Department of Pharmacology, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, KPK, Pakistan
| | - Muhammad Asim
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
20
|
Ciriminna R, Fidalgo A, Meneguzzo F, Presentato A, Scurria A, Nuzzo D, Alduina R, Ilharco LM, Pagliaro M. Pectin: A Long‐Neglected Broad‐Spectrum Antibacterial. ChemMedChem 2020; 15:2228-2235. [DOI: 10.1002/cmdc.202000518] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati CNR via U. La Malfa 153 90146 Palermo Italy
| | - Alexandra Fidalgo
- Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais 1 Lisboa 1049-001 Portugal
| | - Francesco Meneguzzo
- Istituto per la Bioeconomia via Madonna del Piano 10 Sesto Fiorentino 50019 Italy
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies University of Palermo 90028 Palermo Italy
| | - Antonino Scurria
- Istituto per lo Studio dei Materiali Nanostrutturati CNR via U. La Malfa 153 90146 Palermo Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l'Innovazione Biomedica CNR via U. La Malfa 153 90146 Palermo Italy
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies University of Palermo 90028 Palermo Italy
| | - Laura M. Ilharco
- Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais 1 Lisboa 1049-001 Portugal
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati CNR via U. La Malfa 153 90146 Palermo Italy
| |
Collapse
|
21
|
Chaiwarit T, Rachtanapun P, Kantrong N, Jantrawut P. Preparation of Clindamycin Hydrochloride Loaded De-Esterified Low-Methoxyl Mango Peel Pectin Film Used as a Topical Drug Delivery System. Polymers (Basel) 2020; 12:polym12051006. [PMID: 32349233 PMCID: PMC7284784 DOI: 10.3390/polym12051006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/27/2022] Open
Abstract
In this study, we aimed to develop a low-mexthoxyl pectin (LMP) from mango peel pectin through a de-esterification method for use as a film forming agent. The prepared de-esterified pectin (DP) was compared to commercial LMP (cLMP) which possessed a 29% degree of esterification (DE). Mango peel pectin was extracted from ripe Nam Dokmai mango peel using the microwave-assisted extraction method. Pectin derived from the mango peel was classified as a high mexthoxyl pectin (79% DE) with 75% of galacturonic acid (GalA) content. A de-esterification experiment was designed by central composite design to plot the surface response curve. Our prepared DP was classified as LMP (DE 29.40%) with 69% GalA. In addition, the Fourier-transform infrared spectrophotometer (FTIR) spectra of the DP were similar to cLMP and the pectin backbone was not changed by the de-esterification process. Strikingly, the cLMP and DP films showed non-significant differences between their physical properties (p > 0.05) with respect to the puncture strength (13.72 N/mm2 and 11.13 N/mm2 for the cLMP and DP films, respectively), percent elongation (2.75% and 2.52% for the cLMP and DP films, respectively), and Young’s modulus (67.69 N/mm2 and 61.79 N/mm2 for the cLMP and DP films, respectively). The de-esterified pectin containing clindamycin HCl (DPC) and low-methoxyl pectin containing clindamycin HCl (cLMPC) films demonstrated 93.47% and 98.79% of drug loading content. The mechanical properties of the cLMPC and DPC films were improved possibly due to their crystal structures and a plasticizing effect of clindamycin HCl loaded into the films. The DPC film exhibited a drug release profile similar to that of the cLMPC film. Our anti-bacterial test of the films found that the cLMPC film showed 41.11 and 76.30 mm inhibitory clear zones against Staphylococcusaureus and Cutibacteriumacnes, respectively. The DPC film showed 40.78 and 74.04 mm clear zones against S.aureus and C.acnes, respectively. The antibacterial activities of the cLMPC and DPC films were not significantly different from a commercial clindamycin solution. The results of this study suggest that mango peel pectin can be de-esterified and utilized as an LMP and the de-esterified pectin has the potential for use as a film forming agent, similar to cLMP. In addition, the remarkable use of de-esterified mango peel pectin to prepare films, as shown by our study, holds a great promise as an alternative material for anti-bacterial purposes.
Collapse
Affiliation(s)
- Tanpong Chaiwarit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pornchai Rachtanapun
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Nutthapong Kantrong
- Department of Restorative Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand
- Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: (N.K.); or (P.J.); Tel.: +66-4320-2405 (N.K.); +66-5394-4309 (P.J.)
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Correspondence: (N.K.); or (P.J.); Tel.: +66-4320-2405 (N.K.); +66-5394-4309 (P.J.)
| |
Collapse
|
22
|
Díez-Pascual AM. Antimicrobial Polymer-Based Materials for Food Packaging Applications. Polymers (Basel) 2020; 12:polym12040731. [PMID: 32218105 PMCID: PMC7240702 DOI: 10.3390/polym12040731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ana María Díez-Pascual
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, Institute of Chemistry Research "Andrés M. del Río" (IQAR), University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.6, 28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
23
|
Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235136] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pectin was first dissolved in distilled water and blended with low contents of polyethylene oxide 2000 (PEO2000) as the carrier polymer to produce electrospun fibers. The electrospinning of the water solution of pectin at 9.5 wt% containing 0.5 wt% PEO2000 was selected as it successfully resulted in continuous and non-defected ultrathin fibers with the highest pectin content. However, annealing of the resultant pectin-based fibers, tested at different conditions, developed films with low mechanical integrity, high porosity, and also dark color due to their poor thermal stability. Then, to improve the film-forming process of the electrospun mats, two plasticizers, namely glycerol and polyethylene glycol 900 (PEG900), were added to the selected pectin solution in the 2–3 wt% range. The optimal annealing conditions were found at 150 °C with a pressure of 12 kN load for 1 min when applied to the electrospun pectin mats containing 5 wt% PEO2000 and 30 wt% glycerol and washed previously with dichloromethane. This process led to completely homogenous films with low porosity and high transparency due to a phenomenon of fibers coalescence. Finally, the selected electrospun pectin-based film was applied as an interlayer between two external layers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by the electrospinning coating technology and the whole structure was annealed to produce a fully bio-based and biodegradable multilayer film with enhanced barrier performance to water vapor and limonene.
Collapse
|