1
|
Gondim FF, Rodrigues JGP, Aguiar VO, de Fátima Vieira Marques M, Monteiro SN. Biocomposites of Cellulose Isolated from Coffee Processing By-Products and Incorporation in Poly(Butylene Adipate-Co-Terephthalate) (PBAT) Matrix: An Overview. Polymers (Basel) 2024; 16:314. [PMID: 38337203 DOI: 10.3390/polym16030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
With its extensive production and consumption, the coffee industry generates significant amounts of lignocellulosic waste. This waste, primarily comprising coffee biomasses, is a potential source of cellulose. This cellulose can be extracted and utilized as a reinforcing agent in various biocomposites with polymer matrices, thereby creating high-value products. One such biodegradable polymer, Poly(butylene adipate-co-terephthalate) (PBAT), is notable for its properties that are comparable with low-density polyethylene, making it an excellent candidate for packaging applications. However, the wider adoption of PBAT is hindered by its relatively high cost and lower thermomechanical properties compared with conventional, non-biodegradable polymers. By reinforcing PBAT-based biocomposites with cellulose, it is possible to enhance their thermomechanical strength, as well as improve their water vapor and oxygen barrier capabilities, surpassing those of pure PBAT. Consequently, this study aims to provide a comprehensive review of the latest processing techniques for deriving cellulose from the coffee industry's lignocellulosic by-products and other coffee-related agro-industrial wastes. It also focuses on the preparation and characterization of cellulose-reinforced PBAT biocomposites.
Collapse
Affiliation(s)
- Fernanda Fabbri Gondim
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro (IMA/UFRJ), Technology Center, Bloco J, Lab. J-122, Ilha do Fundão, Avenida Horácio Macedo 2030, Rio de Janeiro 21941-598, Brazil
| | - João Gabriel Passos Rodrigues
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro (IMA/UFRJ), Technology Center, Bloco J, Lab. J-122, Ilha do Fundão, Avenida Horácio Macedo 2030, Rio de Janeiro 21941-598, Brazil
| | - Vinicius Oliveira Aguiar
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro (IMA/UFRJ), Technology Center, Bloco J, Lab. J-122, Ilha do Fundão, Avenida Horácio Macedo 2030, Rio de Janeiro 21941-598, Brazil
| | - Maria de Fátima Vieira Marques
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro (IMA/UFRJ), Technology Center, Bloco J, Lab. J-122, Ilha do Fundão, Avenida Horácio Macedo 2030, Rio de Janeiro 21941-598, Brazil
| | - Sergio Neves Monteiro
- Department of Materials Science, Military Institute of Engineering-IME, Praça General Tibúrcio 80, Urca, Rio de Janeiro 22290-270, Brazil
| |
Collapse
|
2
|
Karimi A, Rahmatabadi D, Baghani M. Direct Pellet Three-Dimensional Printing of Polybutylene Adipate-co-Terephthalate for a Greener Future. Polymers (Basel) 2024; 16:267. [PMID: 38257066 PMCID: PMC10820913 DOI: 10.3390/polym16020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The widespread use of conventional plastics in various industries has resulted in increased oil consumption and environmental pollution. To address these issues, a combination of plastic recycling and the use of biodegradable plastics is essential. Among biodegradable polymers, poly butylene adipate-co-terephthalate (PBAT) has attracted significant attention due to its favorable mechanical properties and biodegradability. In this study, we investigated the potential of using PBAT for direct pellet printing, eliminating the need for filament conversion. To determine the optimal printing temperature, three sets of tensile specimens were 3D-printed at varying nozzle temperatures, and their mechanical properties and microstructure were analyzed. Additionally, dynamic mechanical thermal analysis (DMTA) was conducted to evaluate the thermal behavior of the printed PBAT. Furthermore, we designed and printed two structures with different infill percentages (40% and 60%) to assess their compressive strength and energy absorption properties. DMTA revealed that PBAT's glass-rubber transition temperature is approximately -25 °C. Our findings demonstrate that increasing the nozzle temperature enhances the mechanical properties of PBAT. Notably, the highest nozzle temperature of 200 °C yielded remarkable results, with an elongation of 1379% and a tensile strength of 7.5 MPa. Moreover, specimens with a 60% infill density exhibited superior compressive strength (1338 KPa) and energy absorption compared with those with 40% infill density (1306 KPa). The SEM images showed that with an increase in the nozzle temperature, the quality of the print was greatly improved, and it was difficult to find microholes or even a layered structure for the sample printed at 200 °C.
Collapse
Affiliation(s)
- Armin Karimi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran P.O. Box 11155-9567, Iran (D.R.)
- Department of Aerospace Engineering, Sharif University of Technology, Tehran P.O. Box 11155-9567, Iran
| | - Davood Rahmatabadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran P.O. Box 11155-9567, Iran (D.R.)
| | - Mostafa Baghani
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran P.O. Box 11155-9567, Iran (D.R.)
| |
Collapse
|
3
|
Perin D, Dorigato A, Bertoldi E, Fambri L, Fredi G. A Green Treatment Mitigates the Limitations of Coffee Silver Skin as a Filler for PLA/PBSA Compatibilized Biocomposites. Molecules 2023; 29:226. [PMID: 38202809 PMCID: PMC10780561 DOI: 10.3390/molecules29010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The development of fully renewable and biodegradable composites for short-term applications was pursued by combining a compatibilized poly(lactic acid) (PLA)/poly(butylene succinate-co-adipate) (PBSA) (60:40 wt:wt) blend with coffee silver skin (CSS), an industrial byproduct from coffee processing. An epoxy-based reactive agent (Joncryl ADR-4468) was added as a compatibilizer. CSS was incorporated at 5, 10, and 20 wt% in the blend both in the as-received state and after a simple thermal treatment in boiling water, which was performed to mitigate the negative impact of this filler on the rheological and mechanical properties of the blend. The CSS treatment effectively increased the filler degradation temperature of 30-40 °C, enabling stable melt processing of the composites. It also improved filler-matrix adhesion, resulting in enhanced impact properties (up to +172% increase in impact energy compared to the untreated filler). Therefore, treated CSS demonstrated potential as an effective green reinforcement for PLA/PBSA blends for rigid packaging applications. Future works will focus on studying suitable surface modification of CSS to further increase the interfacial interaction and the tensile quasi-static properties, to fully exploit the capabilities of this renewable material toward the development of eco-friendly composites.
Collapse
Affiliation(s)
| | | | | | | | - Giulia Fredi
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (D.P.); (A.D.); (E.B.); (L.F.)
| |
Collapse
|
4
|
Pagliarini E, Totaro G, Saccani A, Gaggìa F, Lancellotti I, Di Gioia D, Sisti L. Valorization of coffee wastes as plant growth promoter in mulching film production: A contribution to a circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162093. [PMID: 36758689 DOI: 10.1016/j.scitotenv.2023.162093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Food waste valorization, considered as energy and/or chemicals source, via biorefinery or biotechnology, gained great attention in recent years, because of the fast depletion of primary resources, increased waste generation and landfilling worldwide. Coffee by-products for example (i.e. coffee pulp, coffee husks, silver skin, spent coffee, etc.) have been investigated in different forms either as a source of antioxidant and valuable chemicals and as a filler in composites. A new valorization route for coffee silver skin (CSS), up to now just sent to damping, is here investigated: particulate bio-composites based on poly(butylene succinate-co-adipate) (PBSA), an aliphatic biodegradable polyester commercially available, have been formulated with up to a 30 wt% of CSS, in order to prepare mulching films for agriculture. The bacterial analysis of the filler indeed, has underlined the presence of potential Plant Growth-Promoting Bacteria species, mainly ascribed to the Bacillus genus, which can survive both the roasting and the compounding processes. The obtained composites have been characterized mechanically and thermally and their hydrophilic nature has been investigated by measuring their contact angle. Eventually, the bacteria release from the composite films has been examined by means of in-vitro tests. The plant growth promoting capability of the films was preliminarily evaluated in pot experiments using lettuce as a model crop. The composite films were able to release the endogenous bacteria in the soil and to stimulate plant and root growth of the assayed crop. The possibility to produce functionalized biodegradable mulching films by recycling agricultural wastes can thus be forecast, highlighting potential multiple advantages in terms of soil preservation/fertilization, decrease of polymeric materials in mulching products, exploitation of a waste.
Collapse
Affiliation(s)
- Elia Pagliarini
- Department of Agricultural and Food Sciences, University of Bologna, Via Fanin 40, Bologna, Italy
| | - Grazia Totaro
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, Bologna, Italy.
| | - Andrea Saccani
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, Bologna, Italy
| | - Francesca Gaggìa
- Department of Agricultural and Food Sciences, University of Bologna, Via Fanin 40, Bologna, Italy
| | - Isabella Lancellotti
- Department of Engineering "E. Ferrari", University of Modena and Reggio Emilia, Via Vivarelli 10, Modena, Italy
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Via Fanin 40, Bologna, Italy
| | - Laura Sisti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, Bologna, Italy
| |
Collapse
|
5
|
Zhao H, Yu S, Zhang Y, Zhao G. Mechanical properties and structure of injection molded poly(hydroxybutyrate‐co‐hydroxyvalerate)/poly(butylene adipate‐co‐terephthalate) (
PHBV
/
PBAT
) blends. J Appl Polym Sci 2023. [DOI: 10.1002/app.53880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Haibin Zhao
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering Shandong University Jinan Shandong China
| | - Shuang Yu
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering Shandong University Jinan Shandong China
| | - Yaxin Zhang
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering Shandong University Jinan Shandong China
| | - Guoqun Zhao
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering Shandong University Jinan Shandong China
| |
Collapse
|
6
|
Popescu V, Prodan D, Cuc S, Saroşi C, Furtos G, Moldovan A, Carpa R, Bomboş D. Antimicrobial Poly (Lactic Acid)/Copper Nanocomposites for Food Packaging Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1415. [PMID: 36837045 PMCID: PMC9965928 DOI: 10.3390/ma16041415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Composites based on polylactic acid (PLA) and copper for food packaging applications were obtained. Copper clusters were synthesized in polyethylene glycols 400 and 600, respectively, using ascorbic acid as a reducing agent, by reactive milling. Copper clusters were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FT-IR), and Ultraviolet-Visible (UV-VIS) spectroscopy. Copper/PLA composites containing Proviplast as plasticizer were characterized by FT-IR spectroscopy, mechanical tests, Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), absorption of the saline solution, contact angle, and antibacterial properties. It was observed that the concentration of Copper/PEG influenced the investigated properties. The mechanical properties of the samples decreased with the increasing of Copper/PEG concentration. We recorded the phase transformation temperatures and identified the exothermic or endothermic processes. The lowest absorption values were recorded in the case of the sample containing 1% Cu. The contact angle decreases with the increase in the concentration of the PEG 600-Cu mixture in the recipes. The increase in the content of Cu clusters favors the decrease in the temperature, taking place 15% wt mass losses. The obtained composites showed antibacterial properties for all tested strains. These materials could be used as alternative materials for obtaining biodegradable food packaging.
Collapse
Affiliation(s)
- Violeta Popescu
- Faculty of Materials Engineering and the Environment, Technical University of Cluj-Napoca, Bd. Muncii 103-105, 400641 Cluj-Napoca, Romania
| | - Doina Prodan
- Raluca Ripan Institute of Research in Chemistry, Babes Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Stanca Cuc
- Raluca Ripan Institute of Research in Chemistry, Babes Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Codruţa Saroşi
- Raluca Ripan Institute of Research in Chemistry, Babes Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Gabriel Furtos
- Raluca Ripan Institute of Research in Chemistry, Babes Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Andrei Moldovan
- Faculty of Materials Engineering and the Environment, Technical University of Cluj-Napoca, Bd. Muncii 103-105, 400641 Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania
| | - Dorin Bomboş
- S.C. Medacril S.R.L, 8 Carpați Street, Mediaş, 551022 Sibiu, Romania
- Petroleum-Gas University of Ploieşti, 39 Bucuresti Blvd., 100680 Ploieşti, Romania
| |
Collapse
|
7
|
Influence of Biofillers on the Properties of Regrind Crystalline Poly(ethylene terephthalate) (CPET). Polymers (Basel) 2022; 14:polym14153210. [PMID: 35956723 PMCID: PMC9371099 DOI: 10.3390/polym14153210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
As the demand for plastics only increases, new methods are required to economically and sustainably increase plastic usage without landfill and environmental accumulation. In addition, the use of biofillers is encouraged as a way to reduce the cost of the final resin by incorporating agricultural and industrial waste by-products, such as rice hulls and coffee chaff to further reduce waste being sent to landfills. Crystalline poly(ethylene terephthalate) (CPET) is a resin commonly used for microwave and ovenable food packaging containers that have not been fully explored for recycling. In this article, we investigate how the incorporation of biofillers at 5% wt. and 10% wt. impacts critical polymer properties. The thermal and mechanical properties were not significantly altered with the presence of rice hulls or coffee chaff in the polymer matrix at 5% wt. loading, but some reduction in melt temperature, thermal stability, and maximum stress and strain was more noticed at 10% wt. The complex viscosity was also reduced with the introduction of biofillers. The levels of heavy metals of concern, such as Cd, Cr, and Pb, were below the regulatory limits applicable in the United States and Europe. Additional studies are suggested to improve the performance of CPET/biofiller blends by pre-treating the biofiller and using compatibilizers.
Collapse
|
8
|
Development and Characterization of Polylactide Blends with Improved Toughness by Reactive Extrusion with Lactic Acid Oligomers. Polymers (Basel) 2022; 14:polym14091874. [PMID: 35567043 PMCID: PMC9104828 DOI: 10.3390/polym14091874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
In this work, we report the development and characterization of polylactide (PLA) blends with improved toughness by the addition of 10 wt.% lactic acid oligomers (OLA) and assess the feasibility of reactive extrusion (REX) and injection moulding to obtain high impact resistant injection moulded parts. To improve PLA/OLA interactions, two approaches are carried out. On the one hand, reactive extrusion of PLA/OLA with different dicumyl peroxide (DCP) concentrations is evaluated and, on the other hand, the effect of maleinized linseed oil (MLO) is studied. The effect of DCP and MLO content used in the reactive extrusion process is evaluated in terms of mechanical, thermal, dynamic mechanical, wetting and colour properties, as well as the morphology of the obtained materials. The impact strength of neat PLA (39.3 kJ/m2) was slightly improved up to 42.4 kJ/m2 with 10 wt.% OLA. Nevertheless, reactive extrusion with 0.3 phr DCP (parts by weight of DCP per 100 parts by weight of PLA–OLA base blend 90:10) led to a noticeable higher impact strength of 51.7 kJ/m2, while the reactive extrusion with 6 phr MLO gave an even higher impact strength of 59.5 kJ/m2, thus giving evidence of the feasibility of these two approaches to overcome the intrinsic brittleness of PLA. Therefore, despite MLO being able to provide the highest impact strength, reactive extrusion with DCP led to high transparency, which could be an interesting feature in food packaging, for example. In any case, these two approaches represent environmentally friendly strategies to improve PLA toughness.
Collapse
|
9
|
Recent Advances in Development of Waste-Based Polymer Materials: A Review. Polymers (Basel) 2022; 14:polym14051050. [PMID: 35267873 PMCID: PMC8914771 DOI: 10.3390/polym14051050] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/04/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Limited petroleum sources, suitable law regulations, and higher awareness within society has caused sustainable development of manufacturing and recycling of polymer blends and composites to be gaining increasing attention. This work aims to report recent advances in the manufacturing of environmentally friendly and low-cost polymer materials based on post-production and post-consumer wastes. Sustainable development of three groups of materials: wood polymer composites, polyurethane foams, and rubber recycling products were comprehensively described. Special attention was focused on examples of industrially applicable technologies developed in Poland over the last five years. Moreover, current trends and limitations in the future “green” development of waste-based polymer materials were also discussed.
Collapse
|
10
|
de Bomfim ASC, de Oliveira DM, Voorwald HJC, Benini KCCDC, Dumont MJ, Rodrigue D. Valorization of Spent Coffee Grounds as Precursors for Biopolymers and Composite Production. Polymers (Basel) 2022; 14:437. [PMID: 35160428 PMCID: PMC8840223 DOI: 10.3390/polym14030437] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
Spent coffee grounds (SCG) are a current subject in many works since coffee is the second most consumed beverage worldwide; however, coffee generates a high amount of waste (SCG) and can cause environmental problems if not discarded properly. Therefore, several studies on SCG valorization have been published, highlighting its waste as a valuable resource for different applications, such as biofuel, energy, biopolymer precursors, and composite production. This review provides an overview of the works using SCG as biopolymer precursors and for polymer composite production. SCG are rich in carbohydrates, lipids, proteins, and minerals. In particular, carbohydrates (polysaccharides) can be extracted and fermented to synthesize lactic acid, succinic acid, or polyhydroxyalkanoate (PHA). On the other hand, it is possible to extract the coffee oil and to synthesize PHA from lipids. Moreover, SCG have been successfully used as a filler for composite production using different polymer matrices. The results show the reasonable mechanical, thermal, and rheological properties of SCG to support their applications, from food packaging to the automotive industry.
Collapse
Affiliation(s)
- Anne Shayene Campos de Bomfim
- Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP-São Paulo State University, Guaratinguetá 12516-410, São Paulo, Brazil; (A.S.C.d.B.); (D.M.d.O.); (H.J.C.V.); (K.C.C.d.C.B.)
| | - Daniel Magalhães de Oliveira
- Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP-São Paulo State University, Guaratinguetá 12516-410, São Paulo, Brazil; (A.S.C.d.B.); (D.M.d.O.); (H.J.C.V.); (K.C.C.d.C.B.)
| | - Herman Jacobus Cornelis Voorwald
- Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP-São Paulo State University, Guaratinguetá 12516-410, São Paulo, Brazil; (A.S.C.d.B.); (D.M.d.O.); (H.J.C.V.); (K.C.C.d.C.B.)
| | - Kelly Cristina Coelho de Carvalho Benini
- Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP-São Paulo State University, Guaratinguetá 12516-410, São Paulo, Brazil; (A.S.C.d.B.); (D.M.d.O.); (H.J.C.V.); (K.C.C.d.C.B.)
| | - Marie-Josée Dumont
- Bioresource Engineering Department, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | - Denis Rodrigue
- Department of Chemical Engineering and CERMA, Université Laval, Quebec, QC G1V0A6, Canada
| |
Collapse
|
11
|
Wu Y, Jin Y, Huang J, Tian H, Weng Y. Toughening of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) by phenyl terminated hyperbranched polyesters with higher thermal stability. J Appl Polym Sci 2022. [DOI: 10.1002/app.51551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- You Wu
- School of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Yujuan Jin
- School of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Jian Huang
- School of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
| | - Huafeng Tian
- School of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Yunxuan Weng
- School of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| |
Collapse
|
12
|
Abstract
In recent years, the circular economy and sustainability have gained attention in the food industry aimed at recycling food industrial waste and residues. For example, several plant-based materials are nowadays used in packaging and biofuel production. Among them, by-products and waste from coffee processing constitute a largely available, low cost, good quality resource. Coffee production includes many steps, in which by-products are generated including coffee pulp, coffee husks, silver skin and spent coffee. This review aims to analyze the reasons why coffee waste can be considered as a valuable source in recycling strategies for the sustainable production of bio-based chemicals, materials and fuels. It addresses the most recent advances in monomer, polymer and plastic filler productions and applications based on the development of viable biorefinery technologies. The exploration of strategies to unlock the potential of this biomass for fuel productions is also revised. Coffee by-products valorization is a clear example of waste biorefinery. Future applications in areas such as biomedicine, food packaging and material technology should be taken into consideration. However, further efforts in techno-economic analysis and the assessment of the feasibility of valorization processes on an industrial scale are needed.
Collapse
|
13
|
Meléndez-Rodríguez B, Torres-Giner S, Reis MAM, Silva F, Matos M, Cabedo L, Lagarón JM. Blends of Poly(3-Hydroxybutyrate- co-3-Hydroxyvalerate) with Fruit Pulp Biowaste Derived Poly(3-Hydroxybutyrate- co-3-Hydroxyvalerate- co-3-Hydroxyhexanoate) for Organic Recycling Food Packaging. Polymers (Basel) 2021; 13:1155. [PMID: 33916564 PMCID: PMC8038484 DOI: 10.3390/polym13071155] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
In the present study, a new poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) [P(3HB-co-3HV-co-3HHx)] terpolyester with approximately 68 mol% of 3-hydroxybutyrate (3HB), 17 mol% of 3-hydroxyvalerate (3HV), and 15 mol% of 3-hydroxyhexanoate (3HHx) was obtained via the mixed microbial culture (MMC) technology using fruit pulps as feedstock, a processing by-product of the juice industry. After extraction and purification performed in a single step, the P(3HB-co-3HV-co-3HHx) powder was melt-mixed, for the first time, in contents of 10, 25, and 50 wt% with commercial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Thereafter, the resultant doughs were thermo-compressed to obtain highly miscible films with good optical properties, which can be of interest in rigid and semirigid organic recyclable food packaging applications. The results showed that the developed blends exhibited a progressively lower melting enthalpy with increasing the incorporation of P(3HB-co-3HV-co-3HHx), but retained the PHB crystalline morphology, albeit with an inferred lower crystalline density. Moreover, all the melt-mixed blends were thermally stable up to nearly 240 °C. As the content of terpolymer increased in the blends, the mechanical response of their films showed a brittle-to-ductile transition. On the other hand, the permeabilities to water vapor, oxygen, and, more notably, limonene were seen to increase. On the overall, this study demonstrates the value of using industrial biowaste derived P(3HB-co-3HV-co-3HHx) terpolyesters as potentially cost-effective and sustainable plasticizing additives to balance the physical properties of organic recyclable polyhydroxyalkanoate (PHA)-based food packaging materials.
Collapse
Affiliation(s)
- Beatriz Meléndez-Rodríguez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (B.M.-R.); (S.T.-G.)
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (B.M.-R.); (S.T.-G.)
| | - Maria A. M. Reis
- UCIBIO-REQUIMTE-Applied Molecular Biosciences Unit, Chemistry Department, Faculty of Sciences and Technology, New University of Lisbon, 1099-085 Lisbon, Portugal; (M.A.M.R.); (F.S.); (M.M.)
| | - Fernando Silva
- UCIBIO-REQUIMTE-Applied Molecular Biosciences Unit, Chemistry Department, Faculty of Sciences and Technology, New University of Lisbon, 1099-085 Lisbon, Portugal; (M.A.M.R.); (F.S.); (M.M.)
| | - Mariana Matos
- UCIBIO-REQUIMTE-Applied Molecular Biosciences Unit, Chemistry Department, Faculty of Sciences and Technology, New University of Lisbon, 1099-085 Lisbon, Portugal; (M.A.M.R.); (F.S.); (M.M.)
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), 12071 Castellón, Spain;
| | - José María Lagarón
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (B.M.-R.); (S.T.-G.)
| |
Collapse
|
14
|
Oliveira G, Passos CP, Ferreira P, Coimbra MA, Gonçalves I. Coffee By-Products and Their Suitability for Developing Active Food Packaging Materials. Foods 2021; 10:foods10030683. [PMID: 33806924 PMCID: PMC8005104 DOI: 10.3390/foods10030683] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/30/2023] Open
Abstract
The coffee industry generates a wide variety of by-products derived from green coffee processing (pulp, mucilage, parchment, and husk) and roasting (silverskin and spent coffee grounds). All these fractions are simply discarded, despite their high potential value. Given their polysaccharide-rich composition, along with a significant number of other active biomolecules, coffee by-products are being considered for use in the production of plastics, in line with the notion of the circular economy. This review highlights the chemical composition of coffee by-products and their fractionation, evaluating their potential for use either as polymeric matrices or additives for developing plastic materials. Coffee by-product-derived molecules can confer antioxidant and antimicrobial activities upon plastic materials, as well as surface hydrophobicity, gas impermeability, and increased mechanical resistance, suitable for the development of active food packaging. Overall, this review aims to identify sustainable and eco-friendly strategies for valorizing coffee by-products while offering suitable raw materials for biodegradable plastic formulations, emphasizing their application in the food packaging sector.
Collapse
Affiliation(s)
- Gonçalo Oliveira
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Cláudia P. Passos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Paula Ferreira
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
| | - Manuel A. Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Idalina Gonçalves
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
- Correspondence:
| |
Collapse
|
15
|
Sustainable Materials and their Contribution to the Sustainable Development Goals (SDGs): A Critical Review Based on an Italian Example. Molecules 2021; 26:molecules26051407. [PMID: 33807763 PMCID: PMC7961538 DOI: 10.3390/molecules26051407] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
The Sustainable Development Goals (SDGs) have been proposed to give a possible future to humankind. Due to the multidimensional characteristic of sustainability, SDGs need research activities with a multidisciplinary approach. This work aims to provide a critical review of the results concerning sustainable materials obtained by Italian researchers affiliated to the National Interuniversity Consortium of Materials Science and Technology (INSTM) and their contribution to reaching specific indicators of the 17 SDGs. Data were exposed by using the Web of Science (WoS) database. In the investigated period (from 2016 to 2020), 333 works about sustainable materials are found and grouped in one of the following categories: chemicals (33%), composites (11%), novel materials for pollutants sequestration (8%), bio-based and food-based materials (10%), materials for green building (8%), and materials for energy (29%). This review contributes to increasing the awareness of several of the issues concerning sustainable materials but also to encouraging the researchers to focus on SDGs’ interconnections. Indeed, the mapping of the achievements can be relevant to the decision-makers to identify the opportunities that materials can offer to achieve the final goals. In this frame, a “Sustainable Materials Partnership for SDGs” is envisaged for more suitable resource management in the future.
Collapse
|
16
|
Hejna A. Potential applications of by-products from the coffee industry in polymer technology - Current state and perspectives. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 121:296-330. [PMID: 33406477 DOI: 10.1016/j.wasman.2020.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Coffee is one of the most popular beverages in the world, and its popularity is continuously growing, which can be expressed by almost doubling production over the last three decades. Cultivation, processing, roasting, and brewing coffee are known for many years. These processes generate significant amounts of by-products since coffee bean stands for around 50% of the coffee cherry. Therefore, considering the current pro-ecological trends, it is essential to develop the utilization methods for the other 50% of the coffee cherry. Among the possibilities, much attention is drawn to polymer chemistry and technology. This industry branch may efficiently consume different types of lignocellulosic materials to use them as fillers for polymer composites or as intermediate sources of particular chemical compounds. Moreover, due to their chemical composition, coffee industry by-products may be used as additives modifying the oxidation resistance, antimicrobial, or antifungal properties of polymeric materials. These issues should be considered especially important in the case of biodegradable polymers, whose popularity is growing over the last years. This paper summarizes the literature reports related to the generation and composition of the coffee industry by-products, as well as the attempts of their incorporation into polymer technology. Moreover, potential directions of research based on the possibilities offered by the coffee industry by-products are presented.
Collapse
Affiliation(s)
- Aleksander Hejna
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
17
|
Coffee Silverskin as a Multifunctional Waste Filler for High-Density Polyethylene Green Composites. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5020044] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work aims to describe the coffee silverskin effect as a lignocellulosic waste filler for high-density polyethylene (HDPE) composites development. The main task was to determine various modification effects resulting from the complex chemical composition of coffee silverskin containing compounds with potential antioxidative properties, including caffeine, polyphenols, tannins, or melanoidins. The processing, thermal, physicochemical, and thermomechanical properties of the HDPE-based composites with different filler content (1–20 wt%) were evaluated. Comprehensively realized thermomechanical analysis revealed the filler’s reinforcing effects on the HDPE matrix while defining problems with obtaining adequate adhesion in the interfacial area. At the same time, studies have shown a very beneficial effect of the silverskin addition on the thermal properties of composites, that even the smallest addition allows for a significant increase in the thermooxidative resistance of HDPE composites assessed using the oxidation induction time from 20 min for HDPE up to 140 min for the composites with 20 wt% of the filler. The obtained research results allow classifying the coffee silverskin waste filler, not only as a filler intended for the production of composites with a high degree of filling but also as an additive that significantly changes the properties of polyethylene in the case of using low concentrations. This can have a very beneficial impact on the development of novel wood polymer (WPC) and natural fiber composites (NFC).
Collapse
|
18
|
Thermoformed Containers Based on Starch and Starch/Coffee Waste Biochar Composites. ENERGIES 2020. [DOI: 10.3390/en13226034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biodegradable containers support zero-waste initiatives when alternative end-of-life scenarios are available (e.g., composting, bio digestion). Thermoplastic starch (TPS) has emerged as a readily biodegradable and inexpensive biomaterial that can replace traditional plastics in applications such as food service ware and packaging. This study has two aims. First, demonstrate the thermoformability of starch/polycaprolactone (PCL) as a thermoplastic material with varying starch loadings. Second, incorporate biochar as a sustainable filler that can potentially lower the cost and enhance compostability. Biochar is a stable form of carbon produced by thermochemical conversion of organic biomass, such as food waste, and its incorporation into consumer products could promote a circular economy. Thermoformed samples were successfully made with starch contents from 40 to 60 wt.% without biochar. Increasing the amount of starch increased the viscosity of the material, which in turn affected the compression molding (sheet manufacturing) and thermoforming conditions. PCL content reduced the extent of biodegradation in soil burial experiments and increased the strength and elongation at break of the material. A blend of 50:50 starch:PCL was selected for incorporating biochar. Thermoformed containers were manufactured with 10, 20, and 30 wt.% biochar derived from waste coffee grounds. The addition of biochar decreased the elongation at break but did not significantly affect the modulus of elasticity or tensile strength. The results demonstrate the feasibility of using starch and biochar for the manufacturing of thermoformed containers.
Collapse
|
19
|
Accelerated Weathering Effects on Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) and PHBV/TiO 2 Nanocomposites. Polymers (Basel) 2020; 12:polym12081743. [PMID: 32764247 PMCID: PMC7464598 DOI: 10.3390/polym12081743] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 11/25/2022] Open
Abstract
The effect of accelerated weathering on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and PHBV-based nanocomposites with rutile titanium (IV) dioxide (PHBV/TiO2) was investigated. The accelerated weathering test applied consecutive steps of UV irradiation (at 340 nm and 0.76 W m−2 irradiance) and moisture at 50 °C following the ASTM D4329 standard for up to 2000 h of exposure time. The morphology, chemical structure, crystallization, as well as the mechanical and thermal properties were studied. Samples were characterized after 500, 1000, and 2000 h of exposure time. Different degradation mechanisms were proposed to occur during the weathering exposure and were confirmed based on the experimental data. The PHBV surface revealed cracks and increasing roughness with the increasing exposure time, whereas the PHBV/TiO2 nanocomposites showed surface changes only after 2000 h of accelerated weathering. The degradation of neat PHBV under moisture and UV exposure occurred preferentially in the amorphous phase. In contrast, the presence of TiO2 in the nanocomposites retarded this process, but the degradation would occur simultaneously in both the amorphous and crystalline segments of the polymer after long exposure times. The thermal stability, as well as the temperature and rate of crystallization, decreased in the absence of TiO2. TiO2 not only provided UV protection, but also restricted the physical mobility of the polymer chains, acting as a nucleating agent during the crystallization process. It also slowed down the decrease in mechanical properties. The mechanical properties were shown to gradually decrease for the PHBV/TiO2 nanocomposites, whereas a sharp drop was observed for the neat PHBV after an accelerated weathering exposure. Atomic force microscopy (AFM), using the amplitude modulation–frequency modulation (AM–FM) tool, also confirmed the mechanical changes in the surface area of the PHBV and PHBV/TiO2 samples after accelerated weathering exposure. The changes in the physical and chemical properties of PHBV/TiO2 confirm the barrier activity of TiO2 for weathering attack and its retardation of the degradation process.
Collapse
|
20
|
Bio-Polyethylene-Based Composites Reinforced with Alkali and Palmitoyl Chloride-Treated Coffee Silverskin. Molecules 2019; 24:molecules24173113. [PMID: 31461962 PMCID: PMC6749558 DOI: 10.3390/molecules24173113] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 11/26/2022] Open
Abstract
This work investigates the feasibility of using coffee silverskin (CSS) as a reinforcing agent in biobased polyethylene (BioPE) composites, by adding it in bulk and thin film samples. The effect of two different treatments, alkali bleaching (CSS_A) and esterification with palmitoyl chloride (CSS_P), on mechanical, thermal, morphological and water absorption behavior of produced materials at different CSS loading (10, 20 and 30 wt %) was investigated. A reactive graft copolymerization of BioPE with maleic anhydride was considered in the case of alkali treated CSS. It was found that, when introduced in bulk samples, improvement in the elastic modulus and a reduction in strain at maximum stress were observed with the increase in CSS fraction for the untreated and treated CSS composites, while the low aspect ratio of the CSS particles and their poor adhesion with the polymeric matrix were responsible for reduced ductility in films, decreasing crystallinity values and reduction of elastic moduli. When CSS_A and CSS_P are introduced in the matrix, a substantial reduction in the water uptake is also obtained in films, mainly due to presence of maleated PE, that builds up some interactions to eliminate the amounts of OH groups and hydrophobized CSS, due to the weakened absorption capacity of the functionalized CSS.
Collapse
|