1
|
Rouhollahi M, Mohammadi T, Mohammadi M, Tofighy MA. Fabrication of nanocomposite membranes containing Ag/GO nanohybrid for phycocyanin concentration. Sci Rep 2024; 14:22538. [PMID: 39341953 PMCID: PMC11439055 DOI: 10.1038/s41598-024-73719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
In this research, silver/graphene oxide (Ag/GO) nanohybrid was first synthesized and used in production of polysulfone (PSF) ultrafiltration (UF) membranes via phase inversion method for concentrating phycocyanin (PC) and treating methylene blue (MB) dye effluent. Designing the experiment (DOE) using Box-Behnken method by Design Expert software helped to calculate the optimal values of the variables under study. The studied variables included PSF polymer concentration, polyvinyl pyrrolidone (PVP) pore-former concentration and Ag/GO nanohybrid content, which were investigated for their effects on pure water flux (PWF) and MB pigment rejection. According to the results of the DOE, the membrane containing 19.485 wt% PSF, 0.043 wt% PVP and 0.987 wt% Ag/GO was selected as the optimal membrane. Due to the high price of PC as drug, and the importance of removing MB pigment from the effluent of dyeing and textile industries, the membranes were first optimized with MB pigment and then the optimal membrane was used for concentrating PC. The results showed that PWF reaches from 40.05 L.m- 2.h- 1 (LMH) for the neat membrane to 156.73 LMH for the optimized membrane, which shows about 4 times improvement. Compared to the neat membrane, flux recovery ratio (FRR) of the optimized membrane increased by about 20% and its total fouling (Rt) decreased by about 10%. Also, the results showed that the optimized membrane can remove 81.6% of MB, as well as to reject 93.8% of PC.
Collapse
Affiliation(s)
- Mahdi Rouhollahi
- Center of Excellence for Membrane Research and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Research and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran.
| | - Mehdi Mohammadi
- Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Maryam Ahmadzadeh Tofighy
- Center of Excellence for Membrane Research and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| |
Collapse
|
2
|
Aghajanzadeh S, Sultana A, Mohammad Ziaiifar A, Khalloufi S. Formation of pores and bubbles and their impacts on the quality attributes of processed foods: A review. Food Res Int 2024; 188:114494. [PMID: 38823873 DOI: 10.1016/j.foodres.2024.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Pores and bubbles significantly influence the physical attributes (like texture, density, and structural integrity), organoleptic properties, and shelf life of processed foods. Hence, the quality of foods and their acceptance by the consumers could be influenced by the properties and prevalence of pores and bubbles within the food structure. Considering the importance of pores, this review aimed to comprehensively discuss the factors and mechanisms involved in the generation of pores and bubbles during the processing of different food products. Moreover, the characteristics and effects of pores on the properties of chocolates, cheeses, cereal-based foods (like cake, puffed grains, and pasta), dried, and fried products were discussed. The impacts of bubbles on the quality of foam-based products, foam creamers, and beverages were also explored. This review concludes that intrinsic factors (like food compositions, initial moisture content, and porosity) and extrinsic factors (like applied technologies, processing, and storage conditions) affect various properties of the pores and bubbles including their number, size, orientation, and distribution. These factors collectively shape the overall structure and quality of processed food products such as density, texture (hardness, cohesiveness, chewiness), and water holding capacity. The desirability or undesirability of pores and their characteristics depends on the type of products; hence, some practical hints were provided to mitigate their adverse effects or to enhance their formation in foods. For example, pores could increase the nutrient digestion and reduce the shelf life of the products by enhancing the risk of fat oxidation and microbial growth. In conclusion, this study provides a valuable resource for food scientists and industry professionals by discussing the effects of pores on food preservation, heat, and mass transfer (including oxygen, moisture, flavors, and nutrients). Understanding the dynamic changes in porosity during processing will be effective in customization of final product quality with desired attributes, ensuring tailored outcomes for specific applications.
Collapse
Affiliation(s)
- Sara Aghajanzadeh
- Dept. of Soils and Agri-Food Engineering, Laval University, Québec, Canada; Institute of Nutrition and Functional Foods, Québec, Canada
| | - Afroza Sultana
- Dept. of Soils and Agri-Food Engineering, Laval University, Québec, Canada; Institute of Nutrition and Functional Foods, Québec, Canada; Dept. of Food Processing and Engineering, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Aman Mohammad Ziaiifar
- Dept. of Food Process Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seddik Khalloufi
- Dept. of Soils and Agri-Food Engineering, Laval University, Québec, Canada; Institute of Nutrition and Functional Foods, Québec, Canada.
| |
Collapse
|
3
|
Arshad N, Batool SR, Razzaq S, Arshad M, Rasheed A, Ashraf M, Nawab Y, Nazeer MA. Recent advancements in polyurethane-based membranes for gas separation. ENVIRONMENTAL RESEARCH 2024; 252:118953. [PMID: 38636643 DOI: 10.1016/j.envres.2024.118953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Gas separation membranes are critical in a variety of environmental research and industrial applications. These membranes are designed to selectively allow some gases to flow while blocking others, allowing for the separation and purification of gases for a variety of applications. Therefore, the demand for fast and energy-efficient gas separation techniques is of central interest for many chemical and energy production diligences due to the intensified levels of greenhouse and industrial gases. This encourages the researchers to innovate techniques for capturing and separating these gases, including membrane separation techniques. Polymeric membranes play a significant role in gas separations by capturing gases from the fuel combustion process, purifying chemical raw material used for plastic production, and isolating pure and noncombustible gases. Polyurethane-based membrane technology offers an excellent knack for gas separation applications and has also been considered more energy-efficient than conventional phase change separation methodologies. This review article reveals a thorough delineation of the current developments and efforts made for PU membranes. It further explains its uses for the separation of valuable gases such as carbon dioxide (CO2), hydrogen (H2), nitrogen (N2), methane (CH4), or a mixture of gases from a variety of gas spillages. Polyurethane (PU) is an excellent choice of material and a leading candidate for producing gas-separating membranes because of its outstanding chemical chemistry, good mechanical abilities, higher permeability, and variable microstructure. The presence of PU improves several characteristics of gas-separating membranes. Selectivity and separation efficiency of PU-centered membranes are enhanced through modifications such as blending with other polymers, use of nanoparticles (silica, metal oxides, alumina, zeolite), and interpenetrating polymer networks (IPNs) formation. This manuscript critically analyzes the various gas transport methods and selection criteria for the fabrication of PU membranes. It also covers the challenges facing the development of PU-membrane-based separation procedures.
Collapse
Affiliation(s)
- Noureen Arshad
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Liberty Mills Limited, Karachi, 75700, Pakistan.
| | - Syeda Rubab Batool
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Sadia Razzaq
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Mubeen Arshad
- Department of Prosthodontics, Baqai Medical University, Karachi, 74600, Pakistan
| | - Abher Rasheed
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Munir Ashraf
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Functional Textile Research Group, National Textile University, Faisalabad, 37610, Pakistan
| | - Yasir Nawab
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; National Center for Composite Materials, National Textile University, Faisalabad, 37610, Pakistan
| | - Muhammad Anwaar Nazeer
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Biomaterials and Tissue Engineering Research Laboratory, National Textile University, Faisalabad, 37610, Pakistan.
| |
Collapse
|
4
|
Aquino M, Santoro S, Politano A, D’Andrea G, Siciliano A, Straface S, La Russa MF, Curcio E. Environmentally Friendly Photothermal Membranes for Halite Recovery from Reverse Osmosis Brine via Solar-Driven Membrane Crystallization. MEMBRANES 2024; 14:87. [PMID: 38668115 PMCID: PMC11052490 DOI: 10.3390/membranes14040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Modern society and industrial development rely heavily on the availability of freshwater and minerals. Seawater reverse osmosis (SWRO) has been widely adopted for freshwater supply, although many questions have arisen about its environmental sustainability owing to the disposal of hypersaline rejected solutions (brine). This scenario has accelerated significant developments towards the hybridization of SWRO with membrane distillation-crystallization (MD-MCr), which can extract water and minerals from spent brine. Nevertheless, the substantial specific energy consumption associated with MD-MCr remains a significant limitation. In this work, energy harvesting was secured from renewables by hotspots embodied in the membranes, implementing the revolutionary approach of brine mining via photothermal membrane crystallization (PhMCr). This method employs self-heating nanostructured interfaces under solar radiation to enhance water evaporation, creating a carefully controlled supersaturated environment responsible for the extraction of minerals. Photothermal mixed matrix photothermal membranes (MMMs) were developed by incorporating graphene oxide (GO) or carbon black (CB) into polyvinylidene fluoride (PVDF) solubilized in an eco-friendly solvent (i.e., triethyl phosphate (TEP)). MMMs were prepared using non-solvent-induced phase separation (NIPS). The effect of GO or GB on the morphology of MMMs and the photothermal behavior was examined. Light-to-heat conversion was used in PhMCr experiments to facilitate the evaporation of water from the SWRO brine to supersaturation, leading to sodium chloride (NaCl) nucleation and crystallization. Overall, the results indicate exciting perspectives of PhMCr in brine valorization for a sustainable desalination industry.
Collapse
Affiliation(s)
- Marco Aquino
- Department of Environmental Engineering, University of Calabria (DIAm-UNICAL), Via P. Bucci, CUBO 44/A, 87036 Rende, Italy; (M.A.); (G.D.); (A.S.); (S.S.); (E.C.)
| | - Sergio Santoro
- Department of Environmental Engineering, University of Calabria (DIAm-UNICAL), Via P. Bucci, CUBO 44/A, 87036 Rende, Italy; (M.A.); (G.D.); (A.S.); (S.S.); (E.C.)
| | - Antonio Politano
- Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy;
| | - Giuseppe D’Andrea
- Department of Environmental Engineering, University of Calabria (DIAm-UNICAL), Via P. Bucci, CUBO 44/A, 87036 Rende, Italy; (M.A.); (G.D.); (A.S.); (S.S.); (E.C.)
| | - Alessio Siciliano
- Department of Environmental Engineering, University of Calabria (DIAm-UNICAL), Via P. Bucci, CUBO 44/A, 87036 Rende, Italy; (M.A.); (G.D.); (A.S.); (S.S.); (E.C.)
| | - Salvatore Straface
- Department of Environmental Engineering, University of Calabria (DIAm-UNICAL), Via P. Bucci, CUBO 44/A, 87036 Rende, Italy; (M.A.); (G.D.); (A.S.); (S.S.); (E.C.)
| | - Mauro Francesco La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria (DiBEST-UNICAL), Via P. Bucci, CUBO 12/B, 87036 Rende, Italy;
| | - Efrem Curcio
- Department of Environmental Engineering, University of Calabria (DIAm-UNICAL), Via P. Bucci, CUBO 44/A, 87036 Rende, Italy; (M.A.); (G.D.); (A.S.); (S.S.); (E.C.)
| |
Collapse
|
5
|
Lee C, Kang SW. Influence of citric acid concentrations on the porosity and performance of cellulose acetate-based porous membranes: A comprehensive study. Int J Biol Macromol 2024; 263:130243. [PMID: 38378111 DOI: 10.1016/j.ijbiomac.2024.130243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
This study investigates the influence of citric acid concentration on the fabrication of porous cellulose acetate (CA) membranes using the Non-Solvent Induced Phase Separation (NIPS) method. A notable aspect is the precise control over membrane properties, particularly pore size and porosity, achieved solely through the adjustment of citric acid concentration, serving as the additive. Higher concentrations of citric acid increase pore size by rendering polymer chains more pliable, whereas lower concentrations lead to smaller, denser pores due to improved dispersion in the CA matrix and altered water interactions during phase separation. A decrease in porosity and Gurley values with reducing citric acid concentrations (from 5 × 10-2 to 1 × 10-3 M ratios) indicates less plasticization of CA chains. However, at very low concentrations (1 × 10-4 and 1 × 10-5), porosity increases, despite the presence of smaller pores, and Gurley values approach those of pure CA in terms of gas permeability. Fourier Transform Infrared (FT-IR) spectroscopy confirms the presence of citric acid and its interaction with carbonyl groups, consistent with the pore size observations from Scanning Electron Microscopy (SEM). Spectral data deconvolution reveals weakened carbonyl bonds due to the reduced presence of citric acid, correlating with the smaller pores observed in SEM. Thermal Gravimetric Analysis (TGA) demonstrates that composite membranes are more thermally stable than pure CA, attributed to the citric acid-induced crosslinking within the polymer chains. Stability increases with decreasing citric acid concentration, with some anomalies at the lowest levels. In conclusion, this study highlights the capability of adjusting citric acid concentration to tailor membrane properties, offering valuable insights for the creation of porous materials across diverse industrial applications.
Collapse
Affiliation(s)
- Chaeyeon Lee
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Sang Wook Kang
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
6
|
Elgarahy AM, Hammad A, Shehata M, Ayyad A, El-Qelish M, Elwakeel KZ, Maged A. Reliable sustainable management strategies for flare gas recovery: technical, environmental, modeling, and economic assessment: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27566-27608. [PMID: 38592635 DOI: 10.1007/s11356-024-32864-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
The gas flaring network is an inseparable constituent commonly present in most of the oil and gas refineries and petrochemical facilities conferring reliable operational parameters. The improper disposal of burn-off gases improperly results in environmental problems and loss of economic resources. In this regard, waste to energy transforming nexus, in accord with the "carbon neutrality" term, has potentially emerged as a reasonable pathway to preserve our planet. In a transdisciplinary manner, the present review article deeply outlines the different up-to-date strategies developed to recover the emitted gases (flaring minimization) into different value-added products. To analyze the recovery potential of flare gases, different technologies, and decision-making factors have been critically reviewed to find the best recovery methods. We recommend more straightforward recovery methods despite lower profits. In this regard, electricity generation seems to be an appropriate option for application in small amounts of flaring. However, several flare gas utilization processes such as syngas manufacturing, reinjection of gas into petroleum reservoirs, and production of natural gas liquid (NGL) are also recommended as options because of their economic significance, technological viability (both onshore and offshore), and environmental benefits. Moreover, the adopted computational multi-scale data assimilation for predictive modeling of flare gas recovery scenarios has been systematically reviewed, summarized, and inspected.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port Said, Egypt
| | - Ahmed Hammad
- Chemical Engineering Department, Faculty of Engineering, Port Said University, Port Said, Egypt
| | - Moustafa Shehata
- Mechanical Power Engineering Department, Faculty of Engineering, Port Said University, Port Said, Egypt
| | - Amir Ayyad
- Egyptian Methanex Methanol Company (EMethanex), Damietta, Egypt
| | - Mohamed El-Qelish
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia.
| | - Ali Maged
- Geology Department, Faculty of Science, Suez University, P.O. Box 43221, Suez, Egypt
- Institute of Process Engineering, Johannes Kepler University Linz, Altenberger Straße 69, 4040, Linz, Austria
| |
Collapse
|
7
|
Caliskan E, Shishatskiy S, Abetz V, Filiz V. Pioneering the preparation of porous PIM-1 membranes for enhanced water vapor flow. RSC Adv 2024; 14:9631-9645. [PMID: 38525056 PMCID: PMC10958458 DOI: 10.1039/d3ra08398e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
In this study, porous polymers of intrinsic microporosity (PIM-1) membranes were prepared by non-solvent induced phase inversion (NIPS) and investigated for water vapor transport in view of their application in membrane distillation (MD). Due to the lack of high boiling point solvents for PIM-1 that are also water miscible, the mixture of tetrahydrofuran (THF) and N-methyl-2-pyrrolidone (NMP) was found to be optimal for the formation of a membrane with a developed porous system both on the membrane surface and in the bulk. PIM-1 was synthesized by using low and high temperature methods to observe how molecular weight effects the membrane structure. Low molecular weight PIM-1 was produced at low temperatures, while high molecular weight PIM-1 was obtained at high temperatures. Several membranes were prepared, including PM-6, PM-9, and PM-11 from low molecular weight PIM-1, and PM-13 from high molecular weight PIM-1. Scanning electron microscopy (SEM) was used to image the surface and cross-section of different porous PIM-1 membranes. Among all the PIM-1 membranes (PM) obtained, PM-6, PM-9, PM-11 and PM-13 showed the most developed porous structure, while PM-13 showed large voids in the bulk of the membrane. Contact angle measurements showed that all PIM-1 porous membranes are highly hydrophobic. Liquid water flux measurements showed that PM-6, PM-9 and PM-11 showed minimal water fluxes due to small surface pore size, while PM-13 showed a high water flux due to a large surface pore size. Water vapor transport measurements showed high permeance values for all membranes, demonstrating the applicability of the developed membranes for MD. In addition, a thin film composite (TFC) membrane with PIM-1 selective layer was prepared and investigated for water vapor transport to compare with porous PIM-1 membranes. The TFC membrane showed an approximately 4-fold lower vapor permeance than porous membranes. Based on these results, we postulated that the use of porous PIM-1 membranes could be promising for MD due to their hydrophobic nature and the fact that the porous membranes allow vapor permeability through the membrane but not liquid water. The TFC membrane can be used in cases where the transfer of water-soluble contaminants must be absolutely avoided.
Collapse
Affiliation(s)
- Esra Caliskan
- Institute of Membrane Research, Helmholtz-Zentrum Hereon Max-Planck-Str. 1 Geesthacht 21502 Germany +49-41-5287-2425
| | - Sergey Shishatskiy
- Institute of Membrane Research, Helmholtz-Zentrum Hereon Max-Planck-Str. 1 Geesthacht 21502 Germany +49-41-5287-2425
| | - Volker Abetz
- Institute of Membrane Research, Helmholtz-Zentrum Hereon Max-Planck-Str. 1 Geesthacht 21502 Germany +49-41-5287-2425
- Institute of Physical Chemistry, University of Hamburg Martin-Luther-King-Platz 6 Hamburg 20146 Germany
| | - Volkan Filiz
- Institute of Membrane Research, Helmholtz-Zentrum Hereon Max-Planck-Str. 1 Geesthacht 21502 Germany +49-41-5287-2425
| |
Collapse
|
8
|
Tiwari SP, Shi W, Budhathoki S, Baker J, Sekizkardes AK, Zhu L, Kusuma VA, Hopkinson DP, Steckel JA. Creation of Polymer Datasets with Targeted Backbones for Screening of High-Performance Membranes for Gas Separation. J Chem Inf Model 2024; 64:638-652. [PMID: 38294781 DOI: 10.1021/acs.jcim.3c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
A simple approach was developed to computationally construct a polymer dataset by combining simplified molecular-input line-entry system (SMILES) strings of a targeted polymer backbone and a variety of molecular fragments. This method was used to create 14 polymer datasets by combining seven polymer backbones and molecules from two large molecular datasets (MOSES and QM9). Polymer backbones that were studied include four polydimethylsiloxane (PDMS) based backbones, poly(ethylene oxide) (PEO), poly(allyl glycidyl ether) (PAGE), and polyphosphazene (PPZ). The generated polymer datasets can be used for various cheminformatics tasks, including high-throughput screening for gas permeability and selectivity. This study utilized machine learning (ML) models to screen the polymers for CO2/CH4 and CO2/N2 gas separation using membranes. Several polymers of interest were identified. The results highlight that employing an ML model fitted to polymer selectivities leads to higher accuracy in predicting polymer selectivity compared to using the ratio of predicted permeabilities.
Collapse
Affiliation(s)
- Surya Prakash Tiwari
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, Pennsylvania 15236, United States
- NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, Pennsylvania 15236, United States
| | - Wei Shi
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, Pennsylvania 15236, United States
| | - Samir Budhathoki
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, Pennsylvania 15236, United States
- NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, Pennsylvania 15236, United States
| | - James Baker
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, Pennsylvania 15236, United States
- NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, Pennsylvania 15236, United States
| | - Ali K Sekizkardes
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, Pennsylvania 15236, United States
- NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, Pennsylvania 15236, United States
| | - Lingxiang Zhu
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, Pennsylvania 15236, United States
- NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, Pennsylvania 15236, United States
| | - Victor A Kusuma
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, Pennsylvania 15236, United States
- NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, Pennsylvania 15236, United States
| | - David P Hopkinson
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, Pennsylvania 15236, United States
| | - Janice A Steckel
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, Pennsylvania 15236, United States
| |
Collapse
|
9
|
Li L, Liu G, Zhang Q, Zhao H, Shi R, Wang C, Li Z, Zhou B, Zhang Y. Porous Structure of Polymer Films Optimized by Rationally Tuning Phase Separation for Passive All-Day Radiative Cooling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6504-6512. [PMID: 38267401 DOI: 10.1021/acsami.3c19173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Passive all-day radiative cooling (PARC) films with porous structures prepared via nonsolvent-induced phase separation (NIPS) have attracted considerable attention owing to their cost-effectiveness and wide applicability. The PARC performances of the films correlate with their porous structures. However, the porous structure formed using the NIPS process cannot be finely regulated. In this study, we prepared polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) films with porous structures optimized by rationally tuning the phase separation, which was achieved by adjusting the proportions of two good solvents with varying solubility parameters. The optimized PVDF-HFP film with a hierarchically porous structure exhibited a high solar reflectance of 97.7% and an infrared emissivity of 96.7%. The film with excellent durability achieved an average subambient cooling temperature of approximately 5.4 °C under a solar irradiance of 945 W·m-2 as well as a temperature of 11.2 °C at nighttime, thus demonstrating all-day radiative cooling. The results indicate that the proposed films present a promising platform for large-scale applications in green building cooling and achieving carbon neutrality.
Collapse
Affiliation(s)
- Linhu Li
- Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China
| | - Guimin Liu
- Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China
| | - Qing Zhang
- Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China
| | - Haichao Zhao
- Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China
| | - Ruidong Shi
- Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China
| | - Changlin Wang
- Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China
| | - Zihao Li
- Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China
| | - Boyi Zhou
- Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China
| | - Yong Zhang
- Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China
| |
Collapse
|
10
|
Mansour AM, Abou Hammad AB, El Nahrawy AM. Exploring nanoarchitectonics and optical properties of PAA-ZnO@BCP wide-band-gap organic semiconductors. Sci Rep 2024; 14:3060. [PMID: 38321100 PMCID: PMC10847419 DOI: 10.1038/s41598-024-53469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/31/2024] [Indexed: 02/08/2024] Open
Abstract
This work reports the formation of polyacrylic acid (PAA)-zinc oxide (ZnO)-bromocresol purple (BCP), (PAA-ZnO@ (0.00-0.01) BCP wide-bandgap organic semiconductors deposited onto glass substrates via a sol-gel polymerization process. These semiconductor films were deposited on glass substrates using a spin coating and then dried at 60 °C. The PAA-ZnO film appeared to be of amorphous phase, and films loaded with BCP revealed semicrystalline behavior. The surface of the films exhibited adherence and extended grains. The hydrogen bonds formed between PAA-ZnO and the BCP dye within the PAA-ZnO@BCP films was performed using FTIR-spectroscopy. The prepared nanocomposites demonstrate an indirect band transition which is affected slightly by adding ZnO and BCP dye. Optical parameters such as the absorption coefficient, the refractive index, the dielectric constant, optical conductivity, optical depth, and optical electronegativity of the prepared nanocomposites were studied as functions of incident light energy (wavelength). The PAA carbonyl group n-π* transition and BCP aromatic ring π-π* transitions were detected at about 285 (for all samples) and 432 nm (for BCP loaded samples), respectively. The superior photoluminescence characteristics observed in the BCP/PAA-Zn films excited with a wavelength of 250 nm indicated the successful loading of the BCP dye during the self-aggregation of the PAA-Zn film.
Collapse
Affiliation(s)
- A M Mansour
- Solid State Physics Department, Physics Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Ali B Abou Hammad
- Solid State Physics Department, Physics Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Amany M El Nahrawy
- Solid State Physics Department, Physics Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
11
|
Smith E, Lau WM, Abdelghany TM, Vukajlovic D, Novakovic K, Ng KW. Vac-and-fill: A micromoulding technique for fabricating microneedle arrays with vacuum-activated, hands-free mould-filling. Int J Pharm 2024; 650:123706. [PMID: 38103704 DOI: 10.1016/j.ijpharm.2023.123706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
We report a simple and reproducible micromoulding technique that dynamically fills microneedle moulds with a liquid formulation, using a plastic syringe, triggered by the application of vacuum ('vac-and-fill'). As pressure around the syringe drops, air inside the syringe pushes the plunger to uncover an opening in the syringe and fill the microneedle mould without manual intervention, therefore removing inter-operator variability. The technique was validated by monitoring the plunger movement and pressure at which the mould would be filled over 10 vacuum cycles for various liquid formulation of varying viscosity (water, glycerol, 20 % polyvinylpyrrolidone (PVP) solution or 40 % PVP solution). Additionally, the impact of re-using the disposable syringes on plunger movement, and thus the fill pressure, was investigated using a 20 % PVP solution. The fill pressure was consistent at 300-450 mbar. It produced well-formed and mechanically robust PVP, poly(methylvinylether/maleic anhydride) and hydroxyethylcellulose microneedles from liquid formulations. This simple and inexpensive technique of micromoulding eliminated the air entrapment and bubble formation, which prevent reproducible microneedle formation, in the resultant microneedle arrays. It provides a cost-effective alternative to the conventional micromoulding techniques, where the application of vacuum ('fill-and-vac') or centrifugation following mould-filling may be unsuitable, ineffective or have poor reproducibility.
Collapse
Affiliation(s)
- Emma Smith
- School of Pharmacy, Newcastle University, King George VI Building, Newcastle upon Tyne NE1 7RU, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Wing Man Lau
- School of Pharmacy, Newcastle University, King George VI Building, Newcastle upon Tyne NE1 7RU, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Tarek M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt; Institute of Education in Healthcare and Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresthill, Aberdeen AB25 2ZD, United Kingdom; School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE24HH, United Kingdom
| | - Djurdja Vukajlovic
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Katarina Novakovic
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Keng Wooi Ng
- School of Pharmacy, Newcastle University, King George VI Building, Newcastle upon Tyne NE1 7RU, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
12
|
Tuncay G, Türken T, Koyuncu İ. Investigation of different molecular weight Polyvinylidene Fluoride (PVDF) polymer for the fabrication and performance of braid hollow fiber membranes. ENVIRONMENTAL TECHNOLOGY 2024; 45:404-417. [PMID: 35946589 DOI: 10.1080/09593330.2022.2112092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
In the current study, braid reinforced membranes were fabricated from polyvinylidene fluoride (PVDF) polymers with two different molecular weights, and the blending of the polymers in a 1:1 ratio to upgrade the performance of the membrane. Characterization, filtration studies, and membrane bioreactor (MBR) application were done to evaluate membrane performance by applying the same operation conditions on each membrane. Characterization studies indicated that the fabricated membrane from blending polymers was a hydrophilic structure with a contact angle of 50.78° and smoother surface properties compared to the other fabricated membranes. According to the MBR results, at the end of the operation process, TMP levels of the membrane from the blending method are found 150 mbar, membrane from high molecular weight PVDF polymer had 250 mbar, and membrane from low molecular weight PVDF polymer had 800 mbar. As a consequence of the investigation, it is seen that the hydrophilic structure of the membrane allows the pollutant to adsorb less to the blend membrane surface, and the lower roughness is also a factor in reducing fouling.
Collapse
Affiliation(s)
- Gizem Tuncay
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
- Department of Environmental Engineering, Istanbul Technical University Istanbul, Turkey
| | - Türker Türken
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
- Department of Environmental Engineering, Istanbul Technical University Istanbul, Turkey
| | - İsmail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
- Department of Environmental Engineering, Istanbul Technical University Istanbul, Turkey
| |
Collapse
|
13
|
Zhang L, Zhang H, Zhou H, Tan Y, Zhang Z, Yang W, Zhao L, Zhao Z. A Ti 3C 2 MXene-integrated near-infrared-responsive multifunctional porous scaffold for infected bone defect repair. J Mater Chem B 2023; 12:79-96. [PMID: 37814804 DOI: 10.1039/d3tb01578e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Infected bone defect repair has long been a major challenge in orthopedic surgery. Apart from bacterial contamination, excessive generation of reactive oxygen species (ROS), and lack of osteogenesis ability also threaten the defect repair process. However, few strategies have been proposed to address these issues simultaneously. Herein, we designed and fabricated a near-infrared (NIR)-responsive, hierarchically porous scaffold to address these limitations in a synergetic manner. In this design, polymethyl methacrylate (PMMA) and polyethyleneimine (PEI) were used to fabricate the porous PMMA/PEI scaffolds via the anti-solvent vapor-induced phase separation (VIPS) process. Then, Ti3C2 MXenes were anchored on the scaffolds through the dopamine-assisted co-deposition process to obtain the PMMA/PEI/polydopamine (PDA)/MXene scaffolds. Under NIR laser irradiation, the scaffolds were able to kill bacteria through the direct contact-killing and synergetic photothermal effect of Ti3C2 MXenes and PDA. Moreover, MXenes and PDA also endowed the scaffolds with excellent ROS-scavenging capacity and satisfying osteogenesis ability. Our experimental results also confirmed that the PMMA/PEI/PDA/MXene scaffolds significantly promoted new bone formation in an infected mandibular defect model. We believe that our study provides new insights into the treatment of infected bone defects.
Collapse
Affiliation(s)
- Linli Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Other Research Platforms, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Hui Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Other Research Platforms, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Hongling Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Other Research Platforms, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yi Tan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Other Research Platforms, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhengmin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Lixing Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Other Research Platforms, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Other Research Platforms, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Lin LC, Chen SJ, Yu HY. Connecting Structural Characteristics and Material Properties in Phase-Separating Polymer Solutions: Phase-Field Modeling and Physics-Informed Neural Networks. Polymers (Basel) 2023; 15:4711. [PMID: 38139962 PMCID: PMC10748238 DOI: 10.3390/polym15244711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The formed morphology during phase separation is crucial for determining the properties of the resulting product, e.g., a functional membrane. However, an accurate morphology prediction is challenging due to the inherent complexity of molecular interactions. In this study, the phase separation of a two-dimensional model polymer solution is investigated. The spinodal decomposition during the formation of polymer-rich domains is described by the Cahn-Hilliard equation incorporating the Flory-Huggins free energy description between the polymer and solvent. We circumvent the heavy burden of precise morphology prediction through two aspects. First, we systematically analyze the degree of impact of the parameters (initial polymer volume fraction, polymer mobility, degree of polymerization, surface tension parameter, and Flory-Huggins interaction parameter) in a phase-separating system on morphological evolution characterized by geometrical fingerprints to determine the most influential factor. The sensitivity analysis provides an estimate for the error tolerance of each parameter in determining the transition time, the spinodal decomposition length, and the domain growth rate. Secondly, we devise a set of physics-informed neural networks (PINN) comprising two coupled feedforward neural networks to represent the phase-field equations and inversely discover the value of the embedded parameter for a given morphological evolution. Among the five parameters considered, the polymer-solvent affinity is key in determining the phase transition time and the growth law of the polymer-rich domains. We demonstrate that the unknown parameter can be accurately determined by renormalizing the PINN-predicted parameter by the change of characteristic domain size in time. Our results suggest that certain degrees of error are tolerable and do not significantly affect the morphology properties during the domain growth. Moreover, reliable inverse prediction of the unknown parameter can be pursued by merely two separate snapshots during morphological evolution. The latter largely reduces the computational load in the standard data-driven predictive methods, and the approach may prove beneficial to the inverse design for specific needs.
Collapse
Affiliation(s)
| | | | - Hsiu-Yu Yu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; (L.-C.L.); (S.-J.C.)
| |
Collapse
|
15
|
Basko A, Lebedeva T, Yurov M, Ilyasova A, Elyashevich G, Lavrentyev V, Kalmykov D, Volkov A, Pochivalov K. Mechanism of PVDF Membrane Formation by NIPS Revisited: Effect of Precipitation Bath Nature and Polymer-Solvent Affinity. Polymers (Basel) 2023; 15:4307. [PMID: 37959987 PMCID: PMC10650574 DOI: 10.3390/polym15214307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
A new interpretation of the mechanism of the polyvinylidene fluoride (PVDF) membrane formation using the nonsolvent-induced phase separation (NIPS) method based on an analysis of the complete experimental phase diagram for the three-component mixture PVDF-dimethyl acetamide (DMAc)-water is proposed. The effects of the precipitation bath's harshness and thermodynamic affinity of the polymer's solvent on the morphology, crystalline structure, transport and physical-mechanical properties of the membranes are investigated. These characteristics were studied via scanning electron microscopy, wide-angle X-ray scattering, liquid-liquid porosimetry and standard methods of physico-mechanical analysis. It is established that an increase in DMAc concentration in the precipitation bath results in the growth of mean pore size from ~60 to ~150 nm and an increase in permeance from ~2.8 to ~8 L m-2 h-1 bar-1. It was observed that pore size transformations are accompanied by changes in the tensile strength of membranes from ~9 to ~11 and to 6 MPa, which were explained by the degeneration of finger-like pores and appearance of spherulitic structures in the samples. The addition of water to the dope solution decreased both the transport (mean pore size changed from ~55 to ~25 nm and permeance reduced from ~2.8 to ~0.5 L m-2 h-1 bar-1) and mechanical properties of the membranes (tensile strength decreased from ~9 to ~6 MPa). It is possible to conclude that the best membrane quality may be reached using pure DMAc as a solvent and a precipitation bath containing 10-30% wt. of DMAc, in addition to water.
Collapse
Affiliation(s)
- Andrey Basko
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| | - Tatyana Lebedeva
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| | - Mikhail Yurov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| | - Anna Ilyasova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| | - Galina Elyashevich
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 31 Bolshoy pr., 199004 St. Petersburg, Russia; (G.E.); (V.L.)
| | - Viktor Lavrentyev
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 31 Bolshoy pr., 199004 St. Petersburg, Russia; (G.E.); (V.L.)
| | - Denis Kalmykov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
- A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia;
| | - Alexey Volkov
- A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia;
| | - Konstantin Pochivalov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| |
Collapse
|
16
|
Asif I, Rafique U. Synthesis & fabrication of O-linked polymeric hybrids for recovery of textile dyes: Closed loop economy. ENVIRONMENTAL RESEARCH 2023; 236:116780. [PMID: 37527750 DOI: 10.1016/j.envres.2023.116780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
Dyes are an important resource employed for the production systems in textile, paper, paint and leather industry. An estimate of 200,000 tons of dyes are discharged as textile effluent each year worldwide. It becomes imperative to recover these dyes by treating the effluents using economically viable routes. The present research was undertaken with the objective to attain zero emission and zero waste through development of novel polymeric hybrids as adsorbents. For this purpose, metal moieties (Al3+, Si4+, Ti4+ and Zr4+) were hybridized with polyacrylic acid, and cellulose acetate for the uptake of selected dyes under optimized parameters. The structural elucidation of four synthesized hybrids (MP-Al, MP-Si, MP-Ti and MP-Zr) by FTIR, EDX and TGA confirmed O-linked grafting of metal moieties with polymers and thermally stable porous materials. SEM micrographic images displayed void spaces providing channels for effective adsorption. The batch experiments demonstrated removal of malachite green (77-96%) and congo red (70-82%) upon contact of initial 45 min on polymeric hybrids On the other hand, pristine polyacrylic acid and cellulose acetate showed remarkably low removal of dyes. The adsorption mechanism is proposed as physical in nature following type II isotherm. Further, Langmuir and Ho's pseudo second order fitness was evaluated. In order to determine the economic viability of the present research, the real textile dyes were recovered in three consecutive cycles of adsorption and chemical treatment of hybrids. The results propose a system with positive impact on economy by maximum utilization of hybrids as adsorbents and recovery of textile dyes for reuse in textile processing.
Collapse
Affiliation(s)
- Irum Asif
- Department of Environmental Sciences, Applied Chemistry Lab, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan.
| | - Uzaira Rafique
- Faculty of Science & Technology, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan.
| |
Collapse
|
17
|
Barhoum A, Deshmukh K, García-Betancourt ML, Alibakhshi S, Mousavi SM, Meftahi A, Sabery MSK, Samyn P. Nanocelluloses as sustainable membrane materials for separation and filtration technologies: Principles, opportunities, and challenges. Carbohydr Polym 2023; 317:121057. [PMID: 37364949 DOI: 10.1016/j.carbpol.2023.121057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
Membrane technology is of great interest in various environmental and industrial applications, where membranes are used to separate different mixtures of gas, solid-gas, liquid-gas, liquid-liquid, or liquid-solid. In this context, nanocellulose (NC) membranes can be produced with predefined properties for specific separation and filtration technologies. This review explains the use of nanocellulose membranes as a direct, effective, and sustainable way to solve environmental and industrial problems. The different types of nanocellulose (i.e., nanoparticles, nanocrystals, nanofibers) and their fabrication methods (i.e., mechanical, physical, chemical, mechanochemical, physicochemical, and biological) are discussed. In particular, the structural properties of nanocellulose membranes (i.e., mechanical strength, interactions with various fluids, biocompatibility, hydrophilicity, and biodegradability) are reviewed in relation to membrane performances. Advanced applications of nanocellulose membranes in reverse osmosis (RO), microfiltration (MF), nanofiltration (NF), and ultrafiltration (UF) are highlighted. The applications of nanocellulose membranes offer significant advantages as a key technology for air purification, gas separation, and water treatment, including suspended or soluble solids removal, desalination, or liquid removal using pervaporation membranes or electrically driven membranes. This review will cover the current state of research, future prospects, and challenges in commercializing nanocellulose membranes with respect to membrane applications.
Collapse
Affiliation(s)
- Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; School of Chemical Sciences, Dublin City University, D09 V209 Dublin, Ireland.
| | - Kalim Deshmukh
- New Technologies - Research Center, University of West Bohemia, Plzeň 30100, Czech Republic
| | | | | | | | - Amin Meftahi
- Department of Polymer and Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran; Nanotechnology Research Center, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | | | - Pieter Samyn
- SIRRIS - Department of Innovations in Circular Economy, Wetenschapspark 3, B-3590 Diepnbeek, Belgium
| |
Collapse
|
18
|
Zhang H, Zhao X. Enhanced Anti-Wetting Methods of Hydrophobic Membrane for Membrane Distillation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300598. [PMID: 37219004 PMCID: PMC10427381 DOI: 10.1002/advs.202300598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Increasing issues of hydrophobic membrane wetting occur in the membrane distillation (MD) process, stimulating the research on enhanced anti-wetting methods for membrane materials. In recent years, surface structural construction (i.e., constructing reentrant-like structures), surface chemical modification (i.e., coating organofluorides), and their combination have significantly improved the anti-wetting properties of the hydrophobic membranes. Besides, these methods change the MD performance (i.e., increased/decreased vapor flux and increased salt rejection). This review first introduces the characterization parameters of wettability and the fundamental principles of membrane surface wetting. Then it summarizes the enhanced anti-wetting methods, the related principles, and most importantly, the anti-wetting properties of the resultant membranes. Next, the MD performance of hydrophobic membranes prepared by different enhanced anti-wetting methods is discussed in desalinating different feeds. Finally, facile and reproducible strategies are aspired for the robust MD membrane in the future.
Collapse
Affiliation(s)
- Honglong Zhang
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| | - Xuan Zhao
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
19
|
Morales-Jiménez M, Palacio DA, Palencia M, Meléndrez MF, Rivas BL. Bio-Based Polymeric Membranes: Development and Environmental Applications. MEMBRANES 2023; 13:625. [PMID: 37504991 PMCID: PMC10383737 DOI: 10.3390/membranes13070625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
Nowadays, membrane technology is an efficient process for separating compounds with minimal structural abrasion; however, the manufacture of membranes still has several drawbacks to being profitable and competitive commercially under an environmentally friendly approach. In this sense, this review focuses on bio-based polymeric membranes as an alternative to solve the environmental concern caused by the use of polymeric materials of fossil origin. The fabrication of bio-based polymeric membranes is explained through a general description of elements such as the selection of bio-based polymers, the preparation methods, the usefulness of additives, the search for green solvents, and the characterization of the membranes. The advantages and disadvantages of bio-based polymeric membranes are discussed, and the application of bio-based membranes to recover organic and inorganic contaminants is also discussed.
Collapse
Affiliation(s)
- Mónica Morales-Jiménez
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR-Unidad Oaxaca), Instituto Politécnico Nacional, Calle Hornos 1003, Colonia Noche Buena, Santa Cruz Xoxocotlán 71230, Mexico
| | - Daniel A Palacio
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070371, Chile
| | - Manuel Palencia
- GI-CAT, Department of Chemistry, Faculty of Natural and Exact Science, Universidad del Valle, Cali 25360, Colombia
| | - Manuel F Meléndrez
- Departamento de Ingeniería de Materiales (DIMAT), Facultad de Ingeniería, Universidad de Concepción, Edmundo Larenas 270, Casilla 160-C, Concepción 4070371, Chile
- Unidad de Desarrollo Tecnológico, 2634 Av. Cordillera, Parque Industrial Coronel, P.O. Box 4051, Concepción 4191996, Chile
| | - Bernabé L Rivas
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070371, Chile
| |
Collapse
|
20
|
Casino P, López A, Peiró S, Rios S, Porta A, Agustí G, Terlevich D, Asensio D, Marqués AM, Piqué N. Polyethersulfone (PES) Filters Improve the Recovery of Legionella spp. and Enhance Selectivity against Interfering Microorganisms in Water Samples. Polymers (Basel) 2023; 15:2670. [PMID: 37376316 DOI: 10.3390/polym15122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In the analysis of water samples, the type of filtration membrane material can influence the recovery of Legionella species, although this issue has been poorly investigated. Filtration membranes (0.45 µm) from different materials and manufacturers (numbered as 1, 2, 3, 4, and 5) were compared: mixed cellulose esters (MCEs), nitrocellulose (NC), and polyethersulfone (PES). After membrane filtration of samples, filters were placed directly onto GVPC agar and incubated at 36 ± 2 °C. The highest mean counts of colony-forming units and colony sizes for Legionella pneumophila and Legionella anisa were obtained with PES filters (p < 0.001). All membranes placed on GVPC agar totally inhibited Escherichia coli and Enterococcus faecalis ATCC 19443 and ATCC 29212, whereas only the PES filter from manufacturer 3 (3-PES) totally inhibited Pseudomonas aeruginosa. PES membrane performance also differed according to the manufacturer, with 3-PES providing the best productivity and selectivity. In real water samples, 3-PES also produced a higher Legionella recovery and better inhibition of interfering microorganisms. These results support the use of PES membranes in methods where the filter is placed directly on the culture media and not only in procedures where membrane filtration is followed by a washing step (according to ISO 11731:2017).
Collapse
Affiliation(s)
- Pablo Casino
- Department of Quality Control, Reactivos para Diagnóstico, S.L. (RPD), Josep Tura, 9H, Polígon Industrial Mas d'en Cisa, Sentmenat, 08181 Barcelona, Catalonia, Spain
| | - Asunción López
- Department of Quality Control, Reactivos para Diagnóstico, S.L. (RPD), Josep Tura, 9H, Polígon Industrial Mas d'en Cisa, Sentmenat, 08181 Barcelona, Catalonia, Spain
- Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain
| | - Sara Peiró
- Department of Quality Control, Reactivos para Diagnóstico, S.L. (RPD), Josep Tura, 9H, Polígon Industrial Mas d'en Cisa, Sentmenat, 08181 Barcelona, Catalonia, Spain
- Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain
| | - Santiago Rios
- Department of Statistics, Biology Faculty, Universitat de Barcelona, Av. Diagonal, 643, 08028 Barcelona, Catalonia, Spain
| | - Aldous Porta
- Department of Quality Control, Reactivos para Diagnóstico, S.L. (RPD), Josep Tura, 9H, Polígon Industrial Mas d'en Cisa, Sentmenat, 08181 Barcelona, Catalonia, Spain
| | - Gemma Agustí
- Department of Quality Control, Reactivos para Diagnóstico, S.L. (RPD), Josep Tura, 9H, Polígon Industrial Mas d'en Cisa, Sentmenat, 08181 Barcelona, Catalonia, Spain
| | - Daniela Terlevich
- Department of Quality Control, Reactivos para Diagnóstico, S.L. (RPD), Josep Tura, 9H, Polígon Industrial Mas d'en Cisa, Sentmenat, 08181 Barcelona, Catalonia, Spain
| | - Daniel Asensio
- Department of Quality Control, Reactivos para Diagnóstico, S.L. (RPD), Josep Tura, 9H, Polígon Industrial Mas d'en Cisa, Sentmenat, 08181 Barcelona, Catalonia, Spain
| | - Ana María Marqués
- Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain
| | - Núria Piqué
- Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària de la UB (INSA-UB), Universitat de Barcelona, 08921 Barcelona, Catalonia, Spain
| |
Collapse
|
21
|
Yuan S, Mai Z, Yang Z, Jin P, Zhang G, Zhu J, Matsuyama H, Van der Bruggen B. Incorporating tertiary amine and thioether in polyarylene sulfide sulfone membranes for multiple separations. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
22
|
Khdary NH, Almuarqab BT, El Enany G. Nanoparticle-Embedded Polymers and Their Applications: A Review. MEMBRANES 2023; 13:537. [PMID: 37233597 PMCID: PMC10220572 DOI: 10.3390/membranes13050537] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
There has been increasing interest in the study and development of nanoparticle-embedded polymeric materials and their applications to special membranes. Nanoparticle-embedded polymeric materials have been observed to have a desirable compatibility with commonly used membrane matrices, a wide range of functionalities, and tunable physicochemical properties. The development of nanoparticle-embedded polymeric materials has shown great potential to overcome the longstanding challenges faced by the membrane separation industry. One major challenge that has been a bottleneck to the progress and use of membranes is the balance between the selectivity and the permeability of the membranes. Recent developments in the fabrication of nanoparticle-embedded polymeric materials have focused on how to further tune the properties of the nanoparticles and membranes to improve the performance of the membranes even further. Techniques for improving the performance of nanoparticle-embedded membranes by exploiting their surface characteristics and internal pore and channel structures to a significant degree have been incorporated into the fabrication processes. Several fabrication techniques are discussed in this paper and used to produce both mixed-matrix membranes and homogenous nanoparticle-embedded polymeric materials. The discussed fabrication techniques include interfacial polymerization, self-assembly, surface coating, and phase inversion. With the current interest shown in the field of nanoparticle-embedded polymeric materials, it is expected that better-performing membranes will be developed soon.
Collapse
Affiliation(s)
- Nezar H. Khdary
- King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Basha T. Almuarqab
- King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Gaber El Enany
- Department of Physics, College of Science and Arts in Uglat Asugour, Qassim University, Buraydah 52571, Saudi Arabia;
| |
Collapse
|
23
|
Bano S, Pednekar M, Rameshkumar S, Borah D, Morris MA, Padamati RB, Cronly N. Fabrication and Evaluation of Filtration Membranes from Industrial Polymer Waste. MEMBRANES 2023; 13:445. [PMID: 37103872 PMCID: PMC10143593 DOI: 10.3390/membranes13040445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Polyvinylidene fluoride (PVDF) polymers are known for their diverse range of industrial applications and are considered important raw materials for membrane manufacturing. In view of circularity and resource efficiency, the present work mainly deals with the reusability of waste polymer 'gels' produced during the manufacturing of PVDF membranes. Herein, solidified PVDF gels were first prepared from polymer solutions as model waste gels, which were then subsequently used to prepare membranes via the phase inversion process. The structural analysis of fabricated membranes confirmed the retention of molecular integrity even after reprocessing, whereas the morphological analysis showed a symmetric bi-continuous porous structure. The filtration performance of membranes fabricated from waste gels was studied in a crossflow assembly. The results demonstrate the feasibility of gel-derived membranes as potential microfiltration membranes exhibiting a pure water flux of 478 LMH with a mean pore size of ~0.2 µm. To further evaluate industrial applicability, the performance of the membranes was tested in the clarification of industrial wastewater, and the membranes showed good recyclability with about 52% flux recovery. The performance of gel-derived membranes thus demonstrates the recycling of waste polymer gels for improving the sustainability of membrane fabrication processes.
Collapse
Affiliation(s)
- Saleheen Bano
- School of Chemistry, CRANN, Trinity College Dublin, D02 PN40 Dublin, Ireland
- AMBER, SFI Research Centre for Advanced Materials and BioEngineering Research, D02 PN40 Dublin, Ireland
| | - Mukesh Pednekar
- AMBER, SFI Research Centre for Advanced Materials and BioEngineering Research, D02 PN40 Dublin, Ireland
- School of Physics, CRANN, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Dairy Processing Technology Centre (DPTC), University of Limerick, V94 T9PX Limerick, Ireland
| | - Saranya Rameshkumar
- School of Chemistry, CRANN, Trinity College Dublin, D02 PN40 Dublin, Ireland
- AMBER, SFI Research Centre for Advanced Materials and BioEngineering Research, D02 PN40 Dublin, Ireland
| | - Dipu Borah
- School of Chemistry, CRANN, Trinity College Dublin, D02 PN40 Dublin, Ireland
- AMBER, SFI Research Centre for Advanced Materials and BioEngineering Research, D02 PN40 Dublin, Ireland
| | - Michael A. Morris
- School of Chemistry, CRANN, Trinity College Dublin, D02 PN40 Dublin, Ireland
- AMBER, SFI Research Centre for Advanced Materials and BioEngineering Research, D02 PN40 Dublin, Ireland
| | - Ramesh Babu Padamati
- School of Chemistry, CRANN, Trinity College Dublin, D02 PN40 Dublin, Ireland
- AMBER, SFI Research Centre for Advanced Materials and BioEngineering Research, D02 PN40 Dublin, Ireland
- Dairy Processing Technology Centre (DPTC), University of Limerick, V94 T9PX Limerick, Ireland
| | - Niamh Cronly
- School of Chemistry, CRANN, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
24
|
Nanofiltration Mixed Matrix Membranes from Cellulose Modified with Zn-Based Metal–Organic Frameworks for the Enhanced Water Treatment from Heavy Metal Ions. Polymers (Basel) 2023; 15:polym15061341. [PMID: 36987122 PMCID: PMC10052156 DOI: 10.3390/polym15061341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Nowadays, nanofiltration is actively used for water softening and disinfection, pre-treatment, nitrate, and color removal, in particular, for heavy metal ions removal from wastewater. In this regard, new, effective materials are required. In the present work, novel sustainable porous membranes from cellulose acetate (CA) and supported membranes consisting of CA porous substrate with a thin dense selective layer from carboxymethyl cellulose (CMC) modified with first-time synthesized Zn-based metal–organic frameworks (Zn(SEB), Zn(BDC)Si, Zn(BIM)) were developed to increase the efficiency of nanofiltration for the removal of heavy metal ions. Zn-based MOFs were characterized by sorption measurements, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The obtained membranes were studied by the spectroscopic (FTIR), standard porosimetry and microscopic (SEM and AFM) methods, and contact angle measurement. The CA porous support was compared with other, prepared in the present work, porous substrates from poly(m-phenylene isophthalamide) and polyacrylonitrile. Membrane performance was tested in the nanofiltration of the model and real mixtures containing heavy metal ions. The improvement of the transport properties of the developed membranes was achieved through Zn-based MOF modification due to their porous structure, hydrophilic properties, and different particle shapes.
Collapse
|
25
|
Chan KY, Li CL, Wang DM, Lai JY. Formation of Porous Structures and Crystalline Phases in Poly(vinylidene fluoride) Membranes Prepared with Nonsolvent-Induced Phase Separation-Roles of Solvent Polarity. Polymers (Basel) 2023; 15:polym15051314. [PMID: 36904555 PMCID: PMC10007550 DOI: 10.3390/polym15051314] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
PVDF membranes were prepared with nonsolvent-induced phase separation, using solvents with various dipole moments, including HMPA, NMP, DMAc and TEP. Both the fraction of the polar crystalline phase and the water permeability of the prepared membrane increased monotonously with an increasing solvent dipole moment. FTIR/ATR analyses were conducted at the surfaces of the cast films during membrane formation to provide information on if the solvents were present as the PVDF crystallized. The results reveal that, with HMPA, NMP or DMAc being used to dissolve PVDF, a solvent with a higher dipole moment resulted in a lower solvent removal rate from the cast film, because the viscosity of the casting solution was higher. The lower solvent removal rate allowed a higher solvent concentration on the surface of the cast film, leading to a more porous surface and longer solvent-governed crystallization. Because of its low polarity, TEP induced non-polar crystals and had a low affinity for water, accounting for the low water permeability and the low fraction of polar crystals with TEP as the solvent. The results provide insight into how the membrane structure on a molecular scale (related to the crystalline phase) and nanoscale (related to water permeability) was related to and influenced by solvent polarity and its removal rate during membrane formation.
Collapse
Affiliation(s)
- Kuan-Ying Chan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Ling Li
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu County 310401, Taiwan
| | - Da-Ming Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +886-2-3366-3006; Fax: +886-2-2362-3040
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
26
|
Chiral Binaphthol Fluorescent Materials Based on a Novel Click Reaction. Symmetry (Basel) 2023. [DOI: 10.3390/sym15030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Because of easy functionalization, low cost, and large-scale fabrication, pure organic fluorescent polymers are widely applied in light-emitting display, bio-fluorescence-enhanced imaging, explosive detection, and other fields. Among these applications, due to their unique optical rotation characteristics, chiral fluorescent polymer materials are part of fluorescent polymers which could be used in chiral molecular detection and separation, biological target detection, etc. In this work, we designed and synthesized the first chiral organic fluorescent polysulfate materials through sulfur fluoride exchange polymerization (new click chemistry) by asymmetric binaphthol molecular. The chiral fluorescent polysulfate were synthesized by R/S [1,1′-binaphthalene]-2,2′-diol(Binol.), propane-2,2-diylbis(4,1-phenylene) bis(sulfurofluoridate) (FO2S–BA–SO2F) and 4,4′-(propane-2,2-diyl)diphenol(BA.) through step-by-step polymerization reaction under alkali present. It was found that the local crystallization of pure bisphenol A polysulfate was broken by the asymmetric axial chiral BINOL molecule inserted in it and let the polymer into the amorphous state. Fluorescent chiral molecules are uniformly dispersed in the polymer; the 120 µm film prepared by the film scraper was transparent and had good luminescence characteristics under ultraviolet light. After fluorescence detection, the excitation wavelength is 450 nm, and the emission wavelength is 480 and 517 nm.
Collapse
|
27
|
Wang M, Liu K, Yu J, Zhang Q, Zhang Y, Valix M, Tsang DC. Challenges in Recycling Spent Lithium-Ion Batteries: Spotlight on Polyvinylidene Fluoride Removal. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200237. [PMID: 36910467 PMCID: PMC10000285 DOI: 10.1002/gch2.202200237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/22/2023] [Indexed: 06/14/2023]
Abstract
In the recycling of retired lithium-ion batteries (LIBs), the cathode materials containing valuable metals should be first separated from the current collector aluminum foil to decrease the difficulty and complexity in the subsequent metal extraction. However, strong the binding force of organic binder polyvinylidene fluoride (PVDF) prevents effective separation of cathode materials and Al foil, thus affecting metal recycling. This paper reviews the composition, property, function, and binding mechanism of PVDF, and elaborates on the separation technologies of cathode material and Al foil (e.g., physical separation, solid-phase thermochemistry, solution chemistry, and solvent chemistry) as well as the corresponding reaction behavior and transformation mechanisms of PVDF. Due to the characteristic variation of the reaction systems, the dissolution, swelling, melting, and degradation processes and mechanisms of PVDF exhibit considerable differences, posing new challenges to efficient recycling of spent LIBs worldwide. It is critical to separate cathode materials and Al foil and recycle PVDF to reduce environmental risks from the recovery of retired LIBs resources. Developing fluorine-free alternative materials and solid-state electrolytes is a potential way to mitigate PVDF pollution in the recycling of spent LIBs in the EV era.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
- Research Centre for Environmental Technology and ManagementThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
| | - Kang Liu
- Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
- Research Centre for Environmental Technology and ManagementThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
| | - Jiadong Yu
- State Key Joint Laboratory of Environment Simulation and Pollution ControlSchool of EnvironmentTsinghua UniversityBeijing100084China
| | - Qiaozhi Zhang
- Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
- Research Centre for Environmental Technology and ManagementThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
| | - Yuying Zhang
- Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
- Research Centre for Environmental Technology and ManagementThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
| | - Marjorie Valix
- School of Chemical and Biomolecular EngineeringUniversity of SydneyDarlingtonNSW2008Australia
| | - Daniel C.W. Tsang
- Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
- Research Centre for Environmental Technology and ManagementThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
| |
Collapse
|
28
|
Advances in cell coculture membranes recapitulating in vivo microenvironments. Trends Biotechnol 2023; 41:214-227. [PMID: 36030108 DOI: 10.1016/j.tibtech.2022.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/05/2022] [Accepted: 07/25/2022] [Indexed: 01/24/2023]
Abstract
Porous membranes play a critical role in in vitro heterogeneous cell coculture systems because they recapitulate the in vivo microenvironment to mediate physical and biochemical crosstalk between cells. While the conventionally available Transwell® system has been widely used for heterogeneous cell coculture, there are drawbacks to precise control over cell-cell interactions and separation for implantation. The size and numbers of the pores and the thickness of the porous membranes are crucial in determining the efficiency of paracrine signaling and direct junctions between cocultured cells, and significantly impact on the performance of heterogeneous cell cultures. These opportunities and challenges have motivated the design of advanced coculture platforms through improvement of the structural and functional properties of porous membranes.
Collapse
|
29
|
Non-Solvent- and Temperature-Induced Phase Separations of Polylaurolactam Solutions in Benzyl Alcohol as Methods for Producing Microfiltration Membranes. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The possibility of obtaining porous films through solutions of polylaurolactam (PA12) in benzyl alcohol (BA) was considered. The theoretical calculation of the phase diagram showed the presence of the upper critical solution temperature (UCST) for the PA12/BA system at 157 °C. The PA12 completely dissolved in BA at higher temperatures, but the resulting solutions underwent phase separation upon cooling down to 120–140 °C because of the PA12’s crystallization. The viscosity of the 10–40% PA12 solutions increased according to a power law but remained low and did not exceed 5 Pa·s at 160 °C. Regardless of the concentration, PA12 formed a dispersed phase when its solutions were cooled, which did not allow for the obtention of strong films. On the contrary, the phase separation of the 20–30% PA12 solutions under the action of a non-solvent (isopropanol) leads to the formation of flexible microporous films. The measurement of the porosity, wettability, strength, permeability, and rejection of submicron particles showed the best results for a porous film produced from a 30% solution by non-solvent-induced phase separation. This process makes it possible to obtain a membrane material with a 240 nm particle rejection of 99.6% and a permeate flow of 1.5 kg/m2hbar for contaminated water and 69.9 kg/m2hbar for pure water.
Collapse
|
30
|
Ampawan S, Phreecha N, Chantarak S, Chinpa W. Selective separation of dyes by green composite membrane based on polylactide with carboxylated cellulose microfiber from empty fruit bunch. Int J Biol Macromol 2023; 225:1607-1619. [PMID: 36435461 DOI: 10.1016/j.ijbiomac.2022.11.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
A bio-based membrane was prepared by a non-solvent induced phase separation process. A polylactide (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) polymer blend was mixed with functionalized cellulose microfiber from empty fruit bunch (EFB) modified with maleic anhydride (MEFB). MEFB reduced the water contact angle and increased the porosity of the membrane. In a batch adsorption process, the pseudo-second order and Langmuir isotherm models best described the adsorption of the cationic dye methylene blue (MB) on PLA/PBAT and PLA/PBAT-MEFB membranes. In a dynamic adsorption process, pure water flux was higher through the PLA/PBAT-MEFB membrane (1214 L m-2 h-1) than the PLA/PBAT membrane (371 L m-2 h-1). The PLA/PBAT-MEFB membrane removed 97.2 % of MB while the PLA/PBAT membrane removed only 58.7 %. The hydrophilicity of the membrane and its adsorption efficiency toward MB were improved by the abundant carboxyl groups in MEFB. A filtration test using a mixed dye solution of anionic methyl orange (MO) and MB showed that the PLA/PBAT-MEFB membrane rapidly adsorbed MB while permitting MO to pass through. Moreover, this membrane could be easily regenerated and maintained a satisfactory separation performance over several cycles. Based on the membrane performance and its economical preparation, the proposed biocomposite membrane could be used for selective filtration and wastewater treatment.
Collapse
Affiliation(s)
- Sasimaporn Ampawan
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Nathawut Phreecha
- Office of Scientific Instrument and Testing, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sirinya Chantarak
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Watchanida Chinpa
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
31
|
Wang X, Chen D, He T, Zhou Y, Tian L, Wang Z, Cui Z. Preparation of Lateral Flow PVDF Membrane via Combined Vapor- and Non-Solvent-Induced Phase Separation (V-NIPS). MEMBRANES 2023; 13:91. [PMID: 36676897 PMCID: PMC9861150 DOI: 10.3390/membranes13010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
A large pore size Poly(vinylidene fluoride) (PVDF) membrane was prepared by the V-NIPS method using PVDF/N, N-dimethylacetamide (DMAc)/Polyvinyl pyrrolidone (PVP)/Polyethylene glycol (PEG) system. Firstly, the effect of different additive ratios on the membrane morphology and pore size was studied, and it was found that when the PVP:PEG ratio was 8:2, PVDF membranes with a relatively large pore size tend to be formed; the pore size is about 7.5 µm. Then, the effects of different exposure time on the membrane morphology and pore size were investigated, and it was found that as the vapor temperature increased, the pores on the surface of the membrane first became slightly smaller and then increased. Finally, the effects of different vapor temperatures on the membrane properties were discussed. The results showed that the as-prepared membrane exhibited suitable capillary flow rate and similar performance compared with a commercially available membrane in colloidal gold tests. The likely cause is that the amount of negative charge is less and the capillary migration rate is too fast. This paper provides a reference for the preparation of PVDF colloidal gold detection membrane.
Collapse
Affiliation(s)
- Xiaoyun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Dejian Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Ting He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Yue Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| | - Li Tian
- Nanjing Jiuying Membrane Technologies Co., Ltd., Nanjing 211899, China
| | - Zhaohui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| | - Zhaoliang Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
32
|
Effect of solvents in the formation of PES-based asymmetric flat sheet membranes in phase inversion method: phase separation and rheological studies. IRANIAN POLYMER JOURNAL 2023. [DOI: 10.1007/s13726-022-01131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Abdulhamid MA, Muzamil K. Recent progress on electrospun nanofibrous polymer membranes for water and air purification: A review. CHEMOSPHERE 2023; 310:136886. [PMID: 36265699 DOI: 10.1016/j.chemosphere.2022.136886] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Developing new polymer membranes with excellent thermal, mechanical, and chemical stability has shown great potential for various environmental remediation applications such as wastewater treatment and air filtration. Polymer membranes have been widely investigated over the past years and utilized to overcome severe ecological issues. Membrane-based technologies play a critical role in water purification and air filtration with the ability to act efficiently and sustainably. Electrospun nanofiber membranes have displayed excellent performance in removing various contaminants from water, such as bacteria, dyes, heavy metals, and oil. These nanofibrous membranes have shown good potential to filter the air from tiny particles, volatile organic compounds, and toxic gases. The performance of polymer membranes can be enhanced by fine-tuning polymer structure, varying surface properties, and strengthening overall membrane porosity. In this review, we discuss the involvement of electrospun nanofibrous membranes in different environmental remediation applications. It further reviews the recent progress of polymer membrane development by utilizing nanoparticles and naturally occurring polymers.
Collapse
Affiliation(s)
- Mahmoud A Abdulhamid
- Sustainable and Resilient Materials Lab, Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering and Geosciences (CPG), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| | - Khatri Muzamil
- Nano Fusion Technology Research Lab, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster of Cutting-Edge Research (ICCER), Shishu University, Tokida 3-15-1, Ueda, 386-8567, Japan
| |
Collapse
|
34
|
Mohanadas D, Nordin PMI, Rohani R, Dzulkharnien NSF, Mohammad AW, Mohamed Abdul P, Abu Bakar S. A Comparison between Various Polymeric Membranes for Oily Wastewater Treatment via Membrane Distillation Process. MEMBRANES 2022; 13:46. [PMID: 36676853 PMCID: PMC9864798 DOI: 10.3390/membranes13010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Oily wastewater (OW) is detrimental towards the environment and human health. The complex composition of OW needs an advanced treatment, such as membrane technology. Membrane distillation (MD) gives the highest rejection percentage of pollutants in wastewater, as the membrane only allows the vapor to pass its microporous membrane. However, the commercial membranes on the market are less efficient in treating OW, as they are prone to fouling. Thus, the best membrane must be identified to treat OW effectively. This study tested and compared the separation performance of different membranes, comparing the pressure-driven performance between the membrane filtration and MD. In this study, several ultrafiltration (UF) and nanofiltration (NF) membranes (NFS, NFX, XT, MT, GC and FILMTEC) were tested for their performance in treating OW (100 ppm). The XT and MT membranes (UF membrane) with contact angles of 70.4 ± 0.2° and 69.6 ± 0.26°, respectively, showed the best performance with high flux and oil removal rate. The two membranes were then tested for long-term performance for two hours with 5000 ppm oil concentration using membrane pressure-filtration and MD. The XT membrane displayed a better oil removal percentage of >99%. MD demonstrated a better removal percentage; the flux reduction was high, with average flux reduction of 82% compared to the membrane pressure-filtration method, which experienced a lower flux reduction of 25%. The hydrophilic MT and XT membranes have the tendency to overcome fouling in both methods. However, for the MD method, wetting occurred due to the feed penetrating the membrane pores, causing flux reduction. Therefore, it is important to identify the performance and characteristics of the prepared membrane, including the best membrane treatment method. To ensure that the MD membrane has good anti-fouling and anti-wetting properties, a simple and reliable membrane surface modification technique is required to be explored. The modified dual layer membrane with hydrophobic/hydrophilic properties is expected to produce effective separation in MD for future study.
Collapse
Affiliation(s)
- Dharshini Mohanadas
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Puteri Mimie Isma Nordin
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Rosiah Rohani
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Research Centre for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Nur Syafiqah Farhanah Dzulkharnien
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Research Centre for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Peer Mohamed Abdul
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Research Centre for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Suriani Abu Bakar
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Perak, Malaysia
| |
Collapse
|
35
|
Rahimnejad M, Rasouli F, Jahangiri S, Ahmadi S, Rabiee N, Ramezani Farani M, Akhavan O, Asadnia M, Fatahi Y, Hong S, Lee J, Lee J, Hahn SK. Engineered Biomimetic Membranes for Organ-on-a-Chip. ACS Biomater Sci Eng 2022; 8:5038-5059. [PMID: 36347501 DOI: 10.1021/acsbiomaterials.2c00531] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Organ-on-a-chip (OOC) systems are engineered nanobiosystems to mimic the physiochemical environment of a specific organ in the body. Among various components of OOC systems, biomimetic membranes have been regarded as one of the most important key components to develop controllable biomimetic bioanalysis systems. Here, we review the preparation and characterization of biomimetic membranes in comparison with the features of the extracellular matrix. After that, we review and discuss the latest applications of engineered biomimetic membranes to fabricate various organs on a chip, such as liver, kidney, intestine, lung, skin, heart, vasculature and blood vessels, brain, and multiorgans with perspectives for further biomedical applications.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, School of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.,Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Fariba Rasouli
- Bioceramics and Implants Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14174-66191, Iran
| | - Sepideh Jahangiri
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia.,Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Marzieh Ramezani Farani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Sanghoon Hong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Jungho Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
36
|
Zahmatkesh S, Rezakhani Y, Arabi A, Hasan M, Ahmad Z, Wang C, Sillanpää M, Al-Bahrani M, Ghodrati I. An approach to removing COD and BOD based on polycarbonate mixed matrix membranes that contain hydrous manganese oxide and silver nanoparticles: A novel application of artificial neural network based simulation in MATLAB. CHEMOSPHERE 2022; 308:136304. [PMID: 36096310 DOI: 10.1016/j.chemosphere.2022.136304] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/20/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to determine the efficacy of novel ultrafiltration and mixed matrix membrane (MMM) composed of hydrous manganese oxide (HMO) and silver nanoparticles (Ag-NPs) for the removal of biological oxygen demand (BOD) and chemical oxygen demand (COD). In the polycarbonate (PC) MMM, the weight percent of HMO and Ag-NP has been increased from 5% to 10%. A neural network (ANN) was used in this study to compare PC-HMO and Ag-NP. MMM was evaluated in combination with HMO and Ag-NP loadings in order to assess their effects on pure water flux, mean pore size, porosity, and efficacy in removing BOD and COD. HMO and Ag-NPs can decrease membrane porosity in the casting solution while increasing mean pore size. According to the study's findings, the artificial neural network model appears to be highly appropriate for predicting the removal of BOD and COD. To develop a successful model, a suitable input dataset was selected, which consisted of BOD and COD. An ideal model architecture for MMM was proposed based on an optimal number of hidden layers (2 layers) and neurons (5-8 neurons). Experiments and predicted data show a strong correlation between the developed models. BOD was predicted with an excellent R2 and a low root mean square error (RMSE) of 0.99 and 0.05%, respectively, while COD was predicted with an excellent R2 and a low RMSE of 0.99 and 0.09%, respectively. Based on the results, Ag-NP was found to be an excellent candidate for the preparation of MMMs as well as convenient for the removal of BOD and COD from polluted water sources.
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran.
| | - Yousof Rezakhani
- Department of Civil Engineering, Pardis Branch, Islamic Azad University, Pardis, Iran
| | - Alireza Arabi
- Center for Processing and Characterization of Nanostructured Materials, School of Mechanical Engineering, University of Tehran, P.O.B.14399-57131,1450, Iran
| | - Mudassir Hasan
- College of Engineering, Department of Chemical Engineering, King Khalid University, Abha, 61411, Saudi Arabia
| | - Zubair Ahmad
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Mika Sillanpää
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang, 314213, PR China
| | - Mohammed Al-Bahrani
- Air Conditioning and Refrigeration Techniques Engineering Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Iman Ghodrati
- Department of Computer Engineering, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| |
Collapse
|
37
|
Pochivalov KV, Basko AV, Lebedeva TN, Ilyasova AN, Shandryuk GA, Snegirev VV, Artemov VV, Ezhov AA, Kudryavtsev YV. A New Look at the Structure and Thermal Behavior of Polyvinylidene Fluoride-Camphor Mixtures. Polymers (Basel) 2022; 14:polym14235214. [PMID: 36501608 PMCID: PMC9735715 DOI: 10.3390/polym14235214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
An experimental quasi-equilibrium phase diagram of the polyvinylidene fluoride (PVDF)-camphor mixture is constructed using an original optical method. For the first time, it contains a boundary curve that describes the dependence of camphor solubility in the amorphous regions of PVDF on temperature. It is argued that this diagram cannot be considered a full analogue of the eutectic phase diagrams of two low-molar-mass crystalline substances. The phase diagram is used to interpret the polarized light hot-stage microscopy data on cooling the above mixtures from a homogeneous state to room temperature and scanning electron microscopy data on the morphology of capillary-porous bodies formed upon camphor removal. Based on our calorimetry and X-ray studies, we put in doubt the possibility of incongruent crystalline complex formation between PVDF and camphor previously suggested by Dasgupta et al. (Macromolecules 2005, 38, 5602-5608). We also describe and discuss the high-temperature crystalline structure of racemic camphor, which is not available in the modern literature.
Collapse
Affiliation(s)
- Konstantin V. Pochivalov
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya ul. 1, Ivanovo 153045, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, St. Petersburg 199004, Russia
| | - Andrey V. Basko
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya ul. 1, Ivanovo 153045, Russia
| | - Tatyana N. Lebedeva
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya ul. 1, Ivanovo 153045, Russia
| | - Anna N. Ilyasova
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya ul. 1, Ivanovo 153045, Russia
| | - Georgiy A. Shandryuk
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, Moscow 119991, Russia
| | - Vyacheslav V. Snegirev
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1–2, Moscow 119991, Russia
| | - Vladimir V. Artemov
- Shubnikov Institute of Crystallography, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, Leninskii pr. 59, Moscow 119333, Russia
| | - Alexander A. Ezhov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, Moscow 119991, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1–2, Moscow 119991, Russia
- Shubnikov Institute of Crystallography, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, Leninskii pr. 59, Moscow 119333, Russia
| | - Yaroslav V. Kudryavtsev
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, Moscow 119991, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119071, Russia
- Correspondence:
| |
Collapse
|
38
|
Synthesis of phenolphthalein/bisphenol A‐based poly(arylene ether nitrile) copolymers: Preparation and properties of films. J Appl Polym Sci 2022. [DOI: 10.1002/app.53407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Basko A, Pochivalov K. Current State-of-the-Art in Membrane Formation from Ultra-High Molecular Weight Polyethylene. MEMBRANES 2022; 12:membranes12111137. [PMID: 36422129 PMCID: PMC9696610 DOI: 10.3390/membranes12111137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 05/12/2023]
Abstract
One of the materials that attracts attention as a potential material for membrane formation is ultrahigh molecular weight polyethylene (UHMWPE). One potential material for membrane formation is ultrahigh molecular weight polyethylene (UHMWPE). The present review summarizes the results of studies carried out over the last 30 years in the field of preparation, modification and structure and property control of membranes made from ultrahigh molecular weight polyethylene. The review also presents a classification of the methods of membrane formation from this polymer and analyzes the conventional (based on the analysis of incomplete phase diagrams) and alternative (based on the analysis of phase diagrams supplemented by a boundary line reflecting the polymer swelling degree dependence on temperature) physicochemical concepts of the thermally induced phase separation (TIPS) method used to prepare UHMWPE membranes. It also considers the main ways to control the structure and properties of UHMWPE membranes obtained by TIPS and the original variations of this method. This review discusses the current challenges in UHMWPE membrane formation, such as the preparation of a homogeneous solution and membrane shrinkage. Finally, the article speculates about the modification and application of UHMWPE membranes and further development prospects. Thus, this paper summarizes the achievements in all aspects of UHMWPE membrane studies.
Collapse
|
40
|
Sabadasch V, Dirksen M, Fandrich P, Cremer J, Biere N, Anselmetti D, Hellweg T. Pd Nanoparticle-Loaded Smart Microgel-Based Membranes as Reusable Catalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49181-49188. [PMID: 36256601 DOI: 10.1021/acsami.2c14415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, palladium-loaded smart membranes made by UV cross-linking of thermoresponsive microgels are prepared to obtain a reusable, catalytically active material which can, for example, be implemented in chemical reactors. The membranes are examined with respect to their coverage of a supporting mesh via atomic force microscopy measurements. Force indentation mapping was performed in the dried, collapsed state and in the swollen state in water to determine the Young modulus. Furthermore, we compare the catalytic activity of the membrane with the corresponding suspended colloidal nanoparticle microgel hybrids. For this purpose, the reduction of 4-nitrophenol is an established model reaction to quantify the catalytic activity by UV-vis spectroscopy. The membrane is embedded inside a continuous stirred tank reactor equipped for continuous monitoring of the reaction progress. Although catalysis with membranes shows lower catalytic activity than freely dispersed particles, membranes allow straightforward separation and recycling of the catalyst. The fabricated membranes in this work show no decrease in catalytic activity between several cycles, unlike free particles. The feasible and durable deposition of catalytically active inter-cross-linked microgel particles on commercial nylon meshes as supporting scaffolds, as demonstrated in this work, is promising for up-scaling of continuous industrial processes.
Collapse
Affiliation(s)
- Viktor Sabadasch
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Maxim Dirksen
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Pascal Fandrich
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Julian Cremer
- Department of Physics, Experimental Biophysics & Applied Nanosciences, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Niklas Biere
- Department of Physics, Experimental Biophysics & Applied Nanosciences, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Dario Anselmetti
- Department of Physics, Experimental Biophysics & Applied Nanosciences, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Thomas Hellweg
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| |
Collapse
|
41
|
Hexagonal boron nitride nanosheets incorporated photocatalytic polyvinylidene fluoride mixed matrix membranes for textile wastewater treatment via vacuum-assisted distillation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Tan DY, Hashimoto T, Takizawa S. 3D modeling of PVDF membrane aging using scanning electron microscope and OpenCV image analysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Zhou JY, Shen Y, Yin MJ, Wang ZP, Wang N, Qin Z, An QF. Polysulfate membrane prepared with a novel porogen for enhanced ultrafiltration performance. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
44
|
Abd El-Aziz ME, Morsi SMM, Kamal KH, Khattab TA. Preparation of Isopropyl Acrylamide Grafted Chitosan and Carbon Bionanocomposites for Adsorption of Lead Ion and Methylene Blue. Polymers (Basel) 2022; 14:polym14214485. [PMID: 36365479 PMCID: PMC9656127 DOI: 10.3390/polym14214485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 01/11/2023] Open
Abstract
Wastewater, which is rich with heavy elements, dyes, and pesticides, represents one of the most important environmental pollutants. Thus, it has been significant to fabricate environmentally friendly polymers with high adsorption ability for those pollutants. Herein, crosslinked chitosan (C-Cs) was prepared using isopropyl acrylamide and methylene bisacrylamide. Carbon nanoparticles (C-NPs) were also obtained by the treatment of the agricultural wastes, which was used with C-Cs to prepare C-Cs/C-NPs nanocomposite (C-Cs/C-NC). Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and transmission electron microscope (TEM) were used to investigate the prepared adsorbent. C-Cs, C-NPs, and C-Cs/C-NC were used in water treatment for the adsorption of lead ions (Pb+2) and methylene blue (MB). The adsorption process occurred by the prepared samples was investigated under different conditions, including contact time, as well as different doses and concentrations of adsorbents. The findings exhibited that the adsorption of Pb+2 and MB by C-Cs/C-NC was higher than C-Cs and C-NPs. In addition, the kinetic and isotherm models were studied, where the results showed that the adsorption of Pb+2 and MB by various adsorbents obeys pseudo-second-order and Langmuir isotherms, respectively.
Collapse
Affiliation(s)
- Mahmoud Essam Abd El-Aziz
- Polymer and Pigments Department, National Research Centre, 33 El Bohoth St., Dokki, Giza P.O. Box 12622, Egypt
| | - Samir M. M. Morsi
- Polymer and Pigments Department, National Research Centre, 33 El Bohoth St., Dokki, Giza P.O. Box 12622, Egypt
| | - Kholod H. Kamal
- Water Pollution Research Department, National Research Centre, 33 El Bohouth St., Dokki, Giza P.O. Box 12622, Egypt
| | - Tawfik A. Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, 33 El Bohoth St., Dokki, Giza P.O. Box 12622, Egypt
- Correspondence: ; Tel.: +20-1011014356
| |
Collapse
|
45
|
Cefazolin Loaded Oxidized Regenerated Cellulose/Polycaprolactone Bilayered Composite for Use as Potential Antibacterial Dural Substitute. Polymers (Basel) 2022; 14:polym14204449. [PMID: 36298027 PMCID: PMC9607362 DOI: 10.3390/polym14204449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Oxidized regenerated cellulose/polycaprolactone bilayered composite (ORC/PCL bilayered composite) was investigated for use as an antibacterial dural substitute. Cefazolin at the concentrations of 25, 50, 75 and 100 mg/mL was loaded in the ORC/PCL bilayered composite. Microstructure, density, thickness, tensile properties, cefazolin loading content, cefazolin releasing profile and antibacterial activity against S. aureus were measured. It was seen that the change in concentration of cefazolin loading affected the microstructure of the composite on the rough side, but not on the dense or smooth side. Cefazolin loaded ORC/PCL bilayered composite showed greater densities, but lower thickness, compared to those of drug unloaded composite. Tensile modulus was found to be greater and increased with increasing cefazolin loading, but tensile strength and strain at break were lower compared to the drug unloaded composite. In vitro cefazolin release in artificial cerebrospinal fluid (aCSF) consisted of initial burst release on day 1, followed by a constant small release of cefazolin. The antibacterial activity was observed to last for up to 4 days depending on the cefazolin loading. All these results suggested that ORC/PCL bilayered composite could be modified to serve as an antibiotic carrier for potential use as an antibacterial synthetic dura mater.
Collapse
|
46
|
Hasegawa H, Kida T, Yamaguchi M. Novel Transparent Films Composed of Bisphenol-A Polycarbonate and Copolyester. Polymers (Basel) 2022; 14:polym14194146. [PMID: 36236093 PMCID: PMC9570573 DOI: 10.3390/polym14194146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
In this paper, the structure and properties of transparent films composed of bisphenol-A polycarbonate (PC) and a commercially available copolyester, poly(1,4-cyclohexanedimethanol-co-2,2,4,4-tetramethyl-1,3-cyclobutanediol-co-terephthalate) (CPE), were studied. Both PC and CPE films are known to be transparent with good mechanical toughness. It was found that PC/CPE (50/50) showed miscibility in both the molten and solid states, indicating that there is a high possibility for the blend system to be miscible in the whole blend ratios. Because of the miscibility, the blend films showed no light scattering originating from phase separation. The mechanical properties of the films, such as Young’s modulus, yield stress, and strain at break, were determined by the blend ratio, and the glass transition temperature increased with the PC content, which corresponded well with the values predicted by the Fox equation. These results demonstrate that the thermal and mechanical properties of the films can only be controlled by the blend ratio. Since these transparent films showed excellent mechanical toughness irrespective of the blend ratios, they can be employed in various applications.
Collapse
Affiliation(s)
- Hiroyuki Hasegawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai, Nomi 923-1292, Japan
- Research & Business Development Center, Dai Nippon Printing Co., Ltd., Midorigahara, Tsukuba 300-2646, Japan
| | - Takumitsu Kida
- School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai, Nomi 923-1292, Japan
| | - Masayuki Yamaguchi
- School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai, Nomi 923-1292, Japan
- Correspondence: ; Tel.: +81-761-51-1621; Fax: +81-761-51-1149
| |
Collapse
|
47
|
Abd‐Elhamid AI, Nayl AA. Nanomaterials in Filtration. NANOTECHNOLOGY FOR ENVIRONMENTAL REMEDIATION 2022:77-101. [DOI: 10.1002/9783527834143.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
48
|
Self-healable poly-(acrylic acid)@Fe/Ni hybrid hydrogel membrane for Cr(VI) removal from industrial wastewater. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
49
|
Gu B, Kondic L, Cummings L. Network-based membrane filters: Influence of network and pore size variability on filtration performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Kumar S, Shandilya M, Uniyal P, Thakur S, Parihar N. Efficacy of polymeric nanofibrous membranes for proficient wastewater treatment. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|