1
|
Hu M, Cheng H, Feng Y. Rapid Continuous 3D Printing via Orthogonal Dual-Color Photoinitiation and Photoinhibition. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:476-484. [PMID: 38689917 PMCID: PMC11057690 DOI: 10.1089/3dp.2022.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Stereolithographic additive manufacturing technology has developed from point-by-point scanning exposure to layer-by-layer masking curing and even volumetric printing. Rapid prototyping is one of the important goals pursued by researchers. A continuous three-dimensional (3D) printing system based on the dual-color photoinitiation and photoinhibition is proposed with the aim of further improving printing speed. The process of continuous 3D printing is realized through the anti-polymerization layer between the cured part and the window generated by the ultraviolet (UV) light sheet (355 nm), and dynamic masking with the blue light (470 nm). The volume of the anti-polymerization layer can be adjusted by the intensity ratio of the incident lights (IUV, 0/Iblue,0) and the size of UV laser spot to enhance the reflow filling rate of the liquid resin. For the orthogonal Gaussian anti-polymerization layer, an intensity ratio of 28.6 allows for an inhibition volume of 97.1% of the desired rectangular anti-polymerization zone with a height of 1 mm. The simulation analysis of continuous 3D printing process by flow-structure interaction reveals that the increase of the thickness of the anti-polymerization layer effectively improves the filling rate of the resin and the cross-sectional area of printing, and reduces the stress of the cured part. The experiments with two different 3D structures printing demonstrate that the filling rate and the stress have virtually no effect on the printing process at a large-scale thickness of the anti-polymerization layer, and the printing speed is capable of reaching 200 μm/s. Certainly, the printing volume and complexity can be further improved with the improvement of the system and the optimization of the resin.
Collapse
Affiliation(s)
- Min Hu
- School of Optics and Photonic, Beijing Institute of Technology, Beijing, China
| | - Haobo Cheng
- School of Optics and Photonic, Beijing Institute of Technology, Beijing, China
- Shenzhen Research Institute, Beijing Institute of Technology, Shenzhen, China
| | - Yunpeng Feng
- School of Optics and Photonic, Beijing Institute of Technology, Beijing, China
- Shenzhen Research Institute, Beijing Institute of Technology, Shenzhen, China
| |
Collapse
|
2
|
Aditya L, Vu HP, Johir MAH, Mao S, Ansari A, Fu Q, Nghiem LD. Synthesizing cationic polymers and tuning their properties for microalgae harvesting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170423. [PMID: 38281644 DOI: 10.1016/j.scitotenv.2024.170423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
This study reports a facile technique to synthesize and tune the cationic polymer, poly(3-acrylamidopropyl)trimethylammonium chloride (PAPTAC), in terms of molecular weight and surface change for harvesting three microalgae species (Scenedesmus sp., P.purpureum, and C. vulgaris). The PAPTAC polymer was synthesised by UV-induced free-radical polymerisation. Polymer tuning was demonstrated by regulating the monomer concentration (60 to 360 mg/mL) and UV power (36 and 60 W) for polymerisation. The obtained PAPTAC polymer was evaluated for harvesting three different microalgae species and compared to a commercially available polymer. The highest flocculation efficiency for Scenedesmus sp. and P. purpureum was observed at a dosage of 25 mg-polymer/g of dry biomass by using PAPTAC-90, resulting in higher flocculation efficiency than the commercial polymer. Results in this study show evidence of effective neutralisation of the negative charge surface of microalgae cells by the produced cationic PAPTAC polymer and polymer bridging for effective flocculation. The obtained PAPTAC polymer was less effective for harvesting C. vulgaris, possibly due to other factors such as cell morphology and composition of extracellular polymeric substances of at the cell membrane that may also influence harvesting performance.
Collapse
Affiliation(s)
- Lisa Aditya
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Hang P Vu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Md Abu Hasan Johir
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Shudi Mao
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Ashley Ansari
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Qiang Fu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia.
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia.
| |
Collapse
|
3
|
Olszewska MA, Dev Kumar G, Hur M, Diez-Gonzalez F. Inactivation of dried cells and biofilms of Listeria monocytogenes by exposure to blue light at different wavelengths and the influence of surface materials. Appl Environ Microbiol 2023; 89:e0114723. [PMID: 37846990 PMCID: PMC10617584 DOI: 10.1128/aem.01147-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/31/2023] [Indexed: 10/18/2023] Open
Abstract
Antimicrobial blue light (aBL) in the 400-470 nm wavelength range has been reported to kill multiple bacteria. This study assessed its potential for mitigating an important foodborne pathogen, Listeria monocytogenes (Lm), focusing on surface decontamination. Three wavelengths were tested, with gallic acid as a photosensitizing agent (Ps), against dried cells obtained from bacterial suspensions, and biofilms on stainless-steel (SS) coupons. Following aBL exposure, standard microbiological analysis of inoculated coupons was conducted to measure viability. Statistical analysis of variance was performed. Confocal laser scanning microscopy was used to observe the biofilm structures. Within 16 h of exposure at 405 nm, viable Lm dried cells and biofilms were reduced by approx. 3 log CFU/cm2 with doses of 2,672 J/cm2. Application of Ps resulted in an additional 1 log CFU/cm2 at 668 J/cm2, but its effect was not consistent. The highest dose (960 J/cm2) at 420 nm reduced viable counts on the biofilms by 1.9 log CFU/cm2. At 460 nm, after 800 J/cm2, biofilm counts were reduced by 1.6 log CFU/cm2. The effect of material composition on Lm viability was also investigated. Irradiation at 405 nm (668 J/cm2) of cells dried on polystyrene resulted in one of the largest viability reductions (4.0 log CFU/cm2), followed by high-density polyethylene (3.5 log CFU/cm2). Increasing the dose to 4,008 J/cm2 from 405 nm (24 h), improved its efficacy only on SS and polyvinyl chloride. Biofilm micrographs displayed a decrease in biofilm biomass due to the removal of biofilm portions from the surface and a shift from live to dead cells suggesting damage to biofilm cell membranes. These results suggest that aBL is a potential intervention to treat Lm contamination on typical material surfaces used in food production.IMPORTANCECurrent cleaning and sanitation programs are often not capable of controlling pathogen biofilms on equipment surfaces, which transmit the bacteria to ready-to-eat foods. The presence of native plant microbiota and organic matter can protect pathogenic bacteria by reducing the efficacy of sanitizers as well as promoting biofilm formation. Post-operation washing and sanitizing of produce contact surfaces might not be adequate in eliminating the presence of pathogens and commensal bacteria. The use of a dynamic and harmless light technology during downtime and close of operation could serve as a useful tool in preventing biofilm formation and persistence. Antimicrobial blue light (aBL) technology has been explored for hospital disinfection with very promising results, but its application to control foodborne pathogens remains relatively limited. The use of aBL could be a complementary strategy to inactivate surfaces in restaurant or supermarket deli settings.
Collapse
Affiliation(s)
- Magdalena A. Olszewska
- Center for Food Safety, University of Georgia, Griffin, Georgia, USA
- Department of Industrial and Food Microbiology, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Minji Hur
- Center for Food Safety, University of Georgia, Griffin, Georgia, USA
| | | |
Collapse
|
4
|
Lin JT, Lee YZ, Lalevee J, Kao CH, Lin KH, Cheng DC. Modeling the Enhanced Efficacy and Curing Depth of Photo-Thermal Dual Polymerization in Metal (Fe) Polymer Composites for 3D Printing. Polymers (Basel) 2022; 14:1158. [PMID: 35335489 PMCID: PMC8949539 DOI: 10.3390/polym14061158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 01/25/2023] Open
Abstract
This article presents, for the first time, the efficacy and curing depth analysis of photo-thermal dual polymerization in metal (Fe) polymer composites for 3D printing of a three-component (A/B/M) system based on the proposed mechanism of our group, in which the co initiators A and B are Irgacure-369 and charge-transfer complexes (CTC), respectively, and the monomer M is filled by Fe. Our formulas show the depth of curing (Zc) is an increasing function of the light intensity, but a decreasing function of the Fe and photoinitiator concentrations. Zc is enhanced by the additive [B], which produces extra thermal radical for polymerization under high temperature. The heat (or temperature) increase in the system has two components: (i) due to the light absorption of Fe filler and (ii) heat released from the exothermic photopolymerization of the monomer. The heat is transported to the additive (or co-initiator) [B] to produce extra radicals and enhance the monomer conversion function (CF). The Fe filler leads to a temperature increase but also limits the light penetration, leading to lower CF and Zc, which could be overcome by the additive initiator [B] in thick polymers. Optimal Fe for maximal CF and Zc are explored theoretically. Measured data are analyzed based on our derived formulas.
Collapse
Affiliation(s)
- Jui-Teng Lin
- Medical Photon Inc., New Taipei City 242, Taiwan
| | - Yi-Ze Lee
- Department of Electrical and Engineering, National Taiwan University, Taipei 100, Taiwan;
| | | | - Chia-Hung Kao
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung 400, Taiwan;
| | - Kuan-Han Lin
- Department of Healthcare Administration, Asia University, Taichung City 413, Taiwan;
| | - Da-Chuan Cheng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 400, Taiwan
| |
Collapse
|
5
|
Lin JT, Lalevee J, Liu HW. Efficacy Analysis of In Situ Synthesis of Nanogold via Copper/Iodonium/Amine/Gold System under a Visible Light. Polymers (Basel) 2021; 13:4013. [PMID: 34833312 PMCID: PMC8622602 DOI: 10.3390/polym13224013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022] Open
Abstract
This article presents, for the first time, the kinetics and the general features of a photopolymerization system (under visible light), copper-complex/Iodonium/triethylamine/gold-chloride (orA/B/N/G), with initial concentrations of A0, B0, N0 and G0, based on the proposed mechanism of Tar et al. Analytic formulas were developed to explore the new features, including: (i) both free radical photopolymerization (FRP) efficacy and the production of nanogold (NG), which are proportional to the relative concentration ratios of (A0 + B0 + N0)/G0 and may be optimized for maximum efficacy; (ii) the two competing procedures of NG production and the efficacy of FRP, which can be tailored for an optimal system with nanogold in the polymer matrix; (iii) the FRP efficacy, which is contributed by three components given by the excited state of copper complex (T), and the radicals (R and S) produced by iodonium and amine, respectively; (iv) NG production, which is contributed by the coupling of T and radical (S) with gold ion; and (v) NG production, which has a transient state proportional to the light intensity and the concentration ratio A0/G0) + (N0/(K'M0), but also a steady-state independent of the light intensity.
Collapse
Affiliation(s)
- Jui-Teng Lin
- New Photon Corp., 10F, No. 55, Sect. 3, Xinbei Blvd, Xinzhuang, New Taipei City 242062, Taiwan;
| | - Jacques Lalevee
- CNRS, IS2M UMR 7361, Université de Haute-Alsace, F-68100 Mulhouse, France;
| | - Hsia-Wei Liu
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
6
|
Lin JT, Lalevee J, Cheng DC. A Critical Review for Synergic Kinetics and Strategies for Enhanced Photopolymerizations for 3D-Printing and Additive Manufacturing. Polymers (Basel) 2021; 13:2325. [PMID: 34301082 PMCID: PMC8309579 DOI: 10.3390/polym13142325] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
The synergic features and enhancing strategies for various photopolymerization systems are reviewed by kinetic schemes and the associated measurements. The important topics include (i) photo crosslinking of corneas for the treatment of corneal diseases using UVA-light (365 nm) light and riboflavin as the photosensitizer; (ii) synergic effects by a dual-function enhancer in a three-initiator system; (iii) synergic effects by a three-initiator C/B/A system, with electron-transfer and oxygen-mediated energy-transfer pathways; (iv) copper-complex (G1) photoredox catalyst in G1/Iod/NVK systems for free radical (FRP) and cationic photopolymerization (CP); (v) radical-mediated thiol-ene (TE) photopolymerizations; (vi) superbase photogenerator based-catalyzed thiol-acrylate Michael (TM) addition reaction; and the combined system of TE and TM using dual wavelength; (vii) dual-wavelength (UV and blue) controlled photopolymerization confinement (PC); (viii) dual-wavelength (UV and red) selectively controlled 3D printing; and (ix) three-wavelength selectively controlled in 3D printing and additive manufacturing (AM). With minimum mathematics, we present (for the first time) the synergic features and enhancing strategies for various systems of multi-components, initiators, monomers, and under one-, two-, and three-wavelength light. Therefore, this review provides not only the bridging between modeling and measurements, but also guidance for further experimental studies and new applications in 3D printings and additive manufacturing (AM), based on the innovative concepts (kinetics/schemes).
Collapse
Affiliation(s)
- Jui-Teng Lin
- New Vision Inc., 10F, No. 55, Sect.3, Xinbei Blvd, Xinzhuang, New Taipei City 242, Taiwan
| | - Jacques Lalevee
- CNRS, IS2M UMR 7361, Université de Haute-Alsace, F-68100 Mulhouse, France;
| | - Da-Chun Cheng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
7
|
Giacoletto N, Dumur F. Recent Advances in bis-Chalcone-Based Photoinitiators of Polymerization: From Mechanistic Investigations to Applications. Molecules 2021; 26:3192. [PMID: 34073491 PMCID: PMC8199041 DOI: 10.3390/molecules26113192] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 02/01/2023] Open
Abstract
Over the past several decades, photopolymerization has become an active research field, and the ongoing efforts to develop new photoinitiating systems are supported by the different applications in which this polymerization technique is involved-including dentistry, 3D and 4D printing, adhesives, and laser writing. In the search for new structures, bis-chalcones that combine two chalcones' moieties within a unique structure were determined as being promising photosensitizers to initiate both the free-radical polymerization of acrylates and the cationic polymerization of epoxides. In this review, an overview of the different bis-chalcones reported to date is provided. Parallel to the mechanistic investigations aiming at elucidating the polymerization mechanisms, bis-chalcones-based photoinitiating systems were used for different applications, which are detailed in this review.
Collapse
Affiliation(s)
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR UMR 7273, F-13397 Marseille, France
| |
Collapse
|
8
|
UV Polymerization of Methacrylates-Preparation and Properties of Novel Copolymers. Polymers (Basel) 2021; 13:polym13101659. [PMID: 34065176 PMCID: PMC8161330 DOI: 10.3390/polym13101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/05/2021] [Accepted: 05/18/2021] [Indexed: 11/25/2022] Open
Abstract
More environmentally friendly polymeric materials for use in corrosive conditions were obtained in the process of UV polymerization of terpene methacrylate monomers: geranyl methacrylate and citronellyl methacrylate and the commercially available monomer methyl methacrylate. Selected properties (solvent resistance, chemical resistance, glass transition temperature, thermal stability, and decomposition course during heating) were evaluated. It was found that the properties of the materials directly depended on the monomer percentage and the conditioning temperatures used. An increase in the geranyl or citronellyl methacrylate monomer content in the copolymers reduced the solubility and chemical resistance of the materials post-cured at 50 °C. The samples post-cured at 120 °C were characterized by high resistance to polar and non-polar solvents and the chemical environment, regardless of the percentage composition. The glass transition temperatures for samples conditioned at 120 °C increased with increasing content of methyl methacrylate in the copolymers. The thermal stability of copolymers depended on the conditioning temperatures used. It was greater than 200 °C for most copolymers post-cured at 120 °C. The process of pyrolysis of copolymers led to the emission of geranyl methacrylate, citronellyl methacrylate, and methyl methacrylate monomers as the main pyrolysis volatiles.
Collapse
|
9
|
Giacoletto N, Ibrahim-Ouali M, Dumur F. Recent advances on squaraine-based photoinitiators of polymerization. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110427] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
|
11
|
Dumur F. Recent advances on visible light photoinitiators of polymerization based on Indane-1,3-dione and related derivatives. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110178] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Enhancing blue-light-initiated photopolymerization in a three-component system: kinetic and modeling of conversion strategies. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02398-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Topa M, Ortyl J. Moving Towards a Finer Way of Light-Cured Resin-Based Restorative Dental Materials: Recent Advances in Photoinitiating Systems Based on Iodonium Salts. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4093. [PMID: 32942676 PMCID: PMC7560344 DOI: 10.3390/ma13184093] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
The photoinduced polymerization of monomers is currently an essential tool in various industries. The photopolymerization process plays an increasingly important role in biomedical applications. It is especially used in the production of dental composites. It also exhibits unique properties, such as a short time of polymerization of composites (up to a few seconds), low energy consumption, and spatial resolution (polymerization only in irradiated areas). This paper describes a short overview of the history and classification of different typical monomers and photoinitiating systems such as bimolecular photoinitiator system containing camphorquinone and aromatic amine, 1-phenyl-1,2-propanedione, phosphine derivatives, germanium derivatives, hexaarylbiimidazole derivatives, silane-based derivatives and thioxanthone derivatives used in the production of dental composites with their limitations and disadvantages. Moreover, this article represents the challenges faced when using the latest inventions in the field of dental materials, with a particular focus on photoinitiating systems based on iodonium salts. The beneficial properties of dental composites cured using initiation systems based on iodonium salts have been demonstrated.
Collapse
Affiliation(s)
- Monika Topa
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Joanna Ortyl
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
| |
Collapse
|
14
|
Noirbent G, Dumur F. Recent advances on naphthalic anhydrides and 1,8-naphthalimide-based photoinitiators of polymerization. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109702] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Pigot C, Noirbent G, Brunel D, Dumur F. Recent advances on push–pull organic dyes as visible light photoinitiators of polymerization. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109797] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Lin J, Cheng D, Chen K, Chiu Y, Liu H. Enhancing UV Photopolymerization by a Red‐light Preirradiation: Kinetics and Modeling Strategies for Reduced Oxygen Inhibition. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jui‐Teng Lin
- New Vision, Inc., New Taipei City 242 Taiwan Republic of China
| | - Da‐Chuan Cheng
- Department of Biomedical Imaging and Radiological ScienceChina Medical University Taichung City 404, Taiwan Republic of China
| | - Kuo‐Ti Chen
- Graduate Institute of Applied Science and EngineeringFu Jen Catholic University New Taipei City 242, Taiwan Republic of China
| | - Yin‐Chen Chiu
- Graduate Institute of Applied Science and EngineeringFu Jen Catholic University New Taipei City 242, Taiwan Republic of China
| | - Hsia‐Wei Liu
- Department of Life ScienceFu Jen Catholic University New Taipei City 242, Taiwan Republic of China
| |
Collapse
|
17
|
Concurrent Modelling and Experimental Investigation of Material Properties and Geometries Produced by Projection Microstereolithography. Polymers (Basel) 2020; 12:polym12030506. [PMID: 32110926 PMCID: PMC7182805 DOI: 10.3390/polym12030506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 02/01/2023] Open
Abstract
Projection microstereolithography additive manufacturing (PµSLA-AM) systems utilize free radical photopolymerization to selectively transform liquid resins into accurate and complex, shaped, solid parts upon UV light exposure. The material properties are coupled with geometrical accuracy, implying that optimizing one response will affect the other. Material properties can be enhanced by the post-curing process, while geometry is controlled during manufacturing. This paper uses designed experiments and analytical curing models concurrently to investigate the effects of process parameters on the green material properties (after manufacturing and before applying post curing), and the geometrical accuracy of the manufactured parts. It also presents a novel accumulated energy model that considers the light absorbance of the liquid resin and solid polymer. An essential definition, named the irradiance affected zone (IAZ), is introduced to estimate the accumulated energy for each layer and to assess the feasibility of the geometries. Innovative methodologies are used to minimize the effect of irradiance irregularities on the responses and to characterize the light absorbance of liquid and cured resin. Analogous to the working curve, an empirical model is proposed to define the critical energies required to start developing the different material properties. The results of this study can be used to develop an appropriate curing scheme, to approximate an initial solution and to define constraints for projection microstereolithography geometry optimization algorithms.
Collapse
|