1
|
Hasegawa M, Takeuchi Y, Saito T. Poly(ester imide)s with Low Linear Coefficients of Thermal Expansion and Low Water Uptake (VIII): Structure-Flame Retardancy Relationship. Polymers (Basel) 2024; 16:1967. [PMID: 39065284 PMCID: PMC11280571 DOI: 10.3390/polym16141967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
A series of ester-linked tetracarboxylic dianhydrides containing multiple para-phenylene units (TA-pPhs) was synthesized to obtain novel modified polyimides, namely poly(ester imide)s (PEsIs). The flame retardancy and film toughness of PEsIs tended to deteriorate with the structural extension of the repeating units (or monomers) via ester groups. To identify the structural factors necessary for achieving the highest flame retardancy rank (UL-94, V-0), we systematically investigated the structure-property relationships of a series of TA-pPh-based PEsIs. Among them, a PEsI derived from para-quaterphenylene-containing TA-pPh (TA-DPQP) and p-phenylenediamine (p-PDA) exhibited the best property combination, featuring an extremely high glass transition temperature (Tg), very low linear coefficient of thermal expansion (CTE), low water uptake (WA), ultralow linear coefficient of humidity (hygroscopic) expansion (CHE), unexpectedly high film toughness, and excellent flame retardancy (V-0 rank). Moreover, we examined the effects of substituents of TA-pPh and discussed the mode of action for the increased film toughness. This study also investigated the structure-property relationship for a series of PEsIs derived from isomeric naphthalene-containing tetracarboxylic dianhydrides. Some of the PEsIs obtained in this study, such as the TA-DPQP/p-PDA system, hold promise as novel high-temperature dielectric substrates for use in flexible printed circuits.
Collapse
Affiliation(s)
- Masatoshi Hasegawa
- Department of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | | | | |
Collapse
|
2
|
Aboughaly M, Babaei-Ghazvini A, Dhar P, Patel R, Acharya B. Enhancing the Potential of Polymer Composites Using Biochar as a Filler: A Review. Polymers (Basel) 2023; 15:3981. [PMID: 37836030 PMCID: PMC10575138 DOI: 10.3390/polym15193981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
This article discusses the scope biochar's uses; biochar is a sustainable organic material, rich in carbon, that can be synthesized from various types of biomass feedstock using thermochemical reactions such as pyrolysis or carbonization. Biochar is an eco-friendly filler material that can enhance polymer composites' mechanical, thermal, and electrical performances. In comparison to three inorganic fillers, namely carbon black, carbon nanotubes (CNT), and carbon filaments, this paper explores the optimal operating conditions for regulating biochar's physical characteristics, including pore size, macro- and microporosity, and mechanical, thermal, and electrical properties. Additionally, this article presents a comparative analysis of biochar yield from various thermochemical processes. Moreover, the review examines how the surface functionality, surface area, and particle size of biochar can influence its mechanical and electrical performance as a filler material in polymer composites at different biochar loads. The study showcases the outstanding properties of biochar and recommends optimal loads that can improve the mechanical, thermal, and electrical properties of polymer composites.
Collapse
Affiliation(s)
| | | | | | | | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (M.A.); (A.B.-G.); (P.D.); (R.P.)
| |
Collapse
|
3
|
Yim YJ, Kim BJ. Preparation and Characterization of Activated Carbon/Polymer Composites: A Review. Polymers (Basel) 2023; 15:3472. [PMID: 37631528 PMCID: PMC10459151 DOI: 10.3390/polym15163472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 08/27/2023] Open
Abstract
Activated carbon (AC) and activated carbon fibers (ACFs) are materials with a large specific surface area and excellent physical adsorption properties due to their rich porous structure, and they are used as electrode materials to improve the performance of adsorbents or capacitors. Recently, multiple studies have confirmed the applicability of AC/polymer compo-sites in various fields by exploiting the unique physical and chemical properties of AC. As the excellent mechanical properties, stability, antistatic and electromagnetic interference (EMI) shielding functions of activated carbon/polymer composite materials were confirmed in recent studies, it is expected that activated carbon can be utilized as an ideal reinforcing material for low-cost polymer composite materials. Therefore, in this review, we would like to describe the fabrication, characterization and applicability of AC/polymer composites.
Collapse
Affiliation(s)
- Yoon-Ji Yim
- Busan Textile Materials Research Center, Korea Dyeing and Finishing Technology Institute, Busan 46744, Republic of Korea;
| | - Byung-Joo Kim
- Department of Nano & Advanced Materials Engineering, Jeonju University, Jeonju 55069, Republic of Korea
| |
Collapse
|
4
|
Maccaferri E, Mazzocchetti L, Benelli T, Ortolani J, Brugo TM, Zucchelli A, Giorgini L. Is Graphene Always Effective in Reinforcing Composites? The Case of Highly Graphene-Modified Thermoplastic Nanofibers and Their Unfortunate Application in CFRP Laminates. Polymers (Basel) 2022; 14:polym14245565. [PMID: 36559932 PMCID: PMC9781409 DOI: 10.3390/polym14245565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Graphene (G) can effectively enhance polymers' and polymer composites' electric, thermal, and mechanical properties. Nanofibrous mats have been demonstrated to significantly increase the interlaminar fracture toughness of composite laminates, hindering delamination and, consequently, making such materials safer and more sustainable thanks to increased service life. In the present paper, poly(ethylene oxide) (PEO), polycaprolactone (PCL), and Nylon 66 nanofibers, plain or reinforced with G, were integrated into epoxy-matrix Carbon Fiber Reinforced Polymers (CFRPs) to evaluate the effect of polymers and polymers + G on the laminate mechanical properties. The main aim of this work is to compare the reinforcing action of the different nanofibers (polyether, polyester, and polyamide) and to disclose the effect of G addition. The polymers were chosen considering their thermal properties and, consequently, their mechanism of action against delamination. PEO and PCL, displaying a low melting temperature, melt, and mix during the curing cycle, act via matrix toughening; in this context, they are also used as tools to deploy G specifically in the interlaminar region when melting and mixing with epoxy resin. The high extent of modification stems from an attempt to deploy it in the interlaminar layer, thus diluting further in the resin. In contrast, Nylon 66 does not melt and maintain the nanostructure, allowing laminate toughening via nanofiber bridging. The flexural properties of the nanomodifed CFRPs were determined via a three-point bending (3PB) test, while delamination behavior in Mode I and Mode II was carried out using Double Cantilever Beam (DCB) and End-Notched Flexture (ENF) tests, respectively. The lack of a positive contribution of G in this context is an interesting point to raise in the field of nanoreinforced CFRP.
Collapse
Affiliation(s)
- Emanuele Maccaferri
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Correspondence: (E.M.); (L.M.)
| | - Laura Mazzocchetti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
- Correspondence: (E.M.); (L.M.)
| | - Tiziana Benelli
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Jacopo Ortolani
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Tommaso Maria Brugo
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
- Department of Industrial Engineering, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Andrea Zucchelli
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
- Department of Industrial Engineering, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Loris Giorgini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| |
Collapse
|
5
|
Šilhavík M, Kumar P, Zafar ZA, Král R, Zemenová P, Falvey A, Jiříček P, Houdková J, Červenka J. High-Temperature Fire Resistance and Self-Extinguishing Behavior of Cellular Graphene. ACS NANO 2022; 16:19403-19411. [PMID: 36367839 DOI: 10.1021/acsnano.2c09076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The ability to protect materials from fire is vital to many industrial applications and life safety systems. Although various chemical treatments and protective coatings have proven effective as flame retardants, they provide only temporary prevention, as they do not change the inherent flammability of a given material. In this study, we demonstrate that a simple change of the microstructure can significantly boost the fire resistance of an atomically thin material well above its oxidation stability temperature. We show that free-standing graphene layers arranged in a three-dimensional (3D) cellular network exhibit completely different flammability and combustion rates from a graphene layer placed on a substrate. Covalently cross-linked cellular graphene aerogels can resist flames in air up to 1500 °C for a minute without degrading their structure or properties. In contrast, graphene on a substrate ignites immediately above 550 °C and burns down in a few seconds. Raman spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric studies reveal that the exceptional fire-retardant and self-extinguishing properties of cellular graphene originate from the ability to prevent carbonyl defect formation and capture nonflammable carbon dioxide gas in the pores. Our findings provide important information for understanding graphene's fire-retardant mechanism in 3D structures/assemblies, which can be used to enhance flame resistance of carbon-based materials, prevent fires, and limit fire damage.
Collapse
Affiliation(s)
- Martin Šilhavík
- Department of Thin Films and Nanostructures, Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague, Czech Republic
| | - Prabhat Kumar
- Department of Thin Films and Nanostructures, Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague, Czech Republic
| | - Zahid Ali Zafar
- Department of Thin Films and Nanostructures, Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague, Czech Republic
- Department of Physical Chemistry and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 00 Prague, Czech Republic
| | - Robert Král
- Department of Optical Materials, Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague, Czech Republic
| | - Petra Zemenová
- Department of Optical Materials, Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague, Czech Republic
| | - Alexandra Falvey
- Department of Optical Materials, Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague, Czech Republic
| | - Petr Jiříček
- Department of Optical Materials, Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague, Czech Republic
| | - Jana Houdková
- Department of Optical Materials, Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague, Czech Republic
| | - Jiří Červenka
- Department of Thin Films and Nanostructures, Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague, Czech Republic
| |
Collapse
|
6
|
Sykam K, Donempudi S, Basak P. 1,2,
3‐Triazole
rich polymers for flame retardant application: A review. J Appl Polym Sci 2022. [DOI: 10.1002/app.52771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kesavarao Sykam
- Polymers & Functional Materials Division CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad India
| | - Shailaja Donempudi
- Polymers & Functional Materials Division CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad India
| | - Pratyay Basak
- Polymers & Functional Materials Division CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad India
| |
Collapse
|
7
|
Tengku Yasim-Anuar TA, Yee-Foong LN, Lawal AA, Ahmad Farid MA, Mohd Yusuf MZ, Hassan MA, Ariffin H. Emerging application of biochar as a renewable and superior filler in polymer composites. RSC Adv 2022; 12:13938-13949. [PMID: 35558839 PMCID: PMC9092426 DOI: 10.1039/d2ra01897g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Biochar is conventionally and widely used for soil amendment or as an adsorbent for water treatment. Nevertheless, the need for transition to renewable materials has resulted in an expansion of biochar for use as a filler for polymer composites. The aim is to enhance the physical, chemical, mechanical and rheological properties of the polymer composite. The reinforcement of biochar into a polymer matrix however is still new, and limited reports are focusing on the effects of biochar towards polymer composite properties. Hence, this review highlights the unique properties of biochar and its effect on the crystallization, thermal, flammability, electrical conductivity, and mechanical properties of polymer composites. This review does not solely summarize recent studies on biochar-polymer-based composites, but also offers insights into a new direction of biochar as a renewable and superior polymer filler in the future.
Collapse
Affiliation(s)
- Tengku Arisyah Tengku Yasim-Anuar
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
- Nextgreen Pulp & Paper Sdn. Bhd., Green Technology Park Paloh Inai 26600 Pekan Pahang Malaysia
| | - Lawrence Ng Yee-Foong
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Abubakar Abdullahi Lawal
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
- Department of Agricultural and Environmental Resources Engineering, Faculty of Engineering, University of Maiduguri Maiduguri Borno State Nigeria
| | - Mohammed Abdillah Ahmad Farid
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Mohd Zulkhairi Mohd Yusuf
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Hidayah Ariffin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| |
Collapse
|
8
|
Lin CF, Karlsson O, Kim I, Myronycheva O, Mensah RA, Försth M, Das O, Mantanis GI, Jones D, Sandberg D. Fire Retardancy and Leaching Resistance of Furfurylated Pine Wood (Pinus sylvestris L.) Treated with Guanyl-Urea Phosphate. Polymers (Basel) 2022; 14:polym14091829. [PMID: 35567003 PMCID: PMC9104981 DOI: 10.3390/polym14091829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Guanyl-urea phosphate (GUP) was introduced into furfurylated wood in order to improve fire retardancy. Modified wood was produced via vacuum-pressure impregnation of the GUP–furfuryl alcohol (FA) aqueous solution, which was then polymerized at elevated temperature. The water leaching resistance of the treated wood was tested according to European standard EN 84, while the leached water was analyzed using ultra-performance liquid chromatography (UPLC) and inductively coupled plasma–sector field mass spectrometry (ICP-SFMS). This new type of furfurylated wood was further characterized in the laboratory by evaluating its morphology and elemental composition using optical microscopy and electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM-EDX). The chemical functionality was detected using infrared spectroscopy (FTIR), and the fire resistance was tested using cone calorimetry. The dimensional stability was evaluated in wet–dry soaking cycle tests, along with the mechanical properties, such as the Brinell hardness and bending strength. The fire retardancy of the modified furfurylated wood indicated that the flammability of wood can be depressed to some extent by introducing GUP. This was reflected in an observed reduction in heat release rate (HRR2) from 454.8 to 264.9 kW/m2, without a reduction in the material properties. In addition, this leaching-resistant furfurylated wood exhibited higher fire retardancy compared to conventional furfurylated wood. A potential method for producing fire-retardant treated furfurylated wood stable to water exposure has been suggested.
Collapse
Affiliation(s)
- Chia-Feng Lin
- Wood Science and Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-931 77 Skelleftea, Sweden; (O.K.); (I.K.); (O.M.); (D.J.); (D.S.)
- Correspondence: ; Tel.: +46-910-585308
| | - Olov Karlsson
- Wood Science and Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-931 77 Skelleftea, Sweden; (O.K.); (I.K.); (O.M.); (D.J.); (D.S.)
| | - Injeong Kim
- Wood Science and Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-931 77 Skelleftea, Sweden; (O.K.); (I.K.); (O.M.); (D.J.); (D.S.)
| | - Olena Myronycheva
- Wood Science and Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-931 77 Skelleftea, Sweden; (O.K.); (I.K.); (O.M.); (D.J.); (D.S.)
| | - Rhoda Afriyie Mensah
- Structural and Fire Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Lulea, Sweden; (R.A.M.); (M.F.); (O.D.)
| | - Michael Försth
- Structural and Fire Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Lulea, Sweden; (R.A.M.); (M.F.); (O.D.)
| | - Oisik Das
- Structural and Fire Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Lulea, Sweden; (R.A.M.); (M.F.); (O.D.)
| | - George I. Mantanis
- Laboratory of Wood Science and Technology, Faculty of Forestry, Wood Sciences and Design, University of Thessaly, GR-431 00 Karditsa, Greece;
| | - Dennis Jones
- Wood Science and Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-931 77 Skelleftea, Sweden; (O.K.); (I.K.); (O.M.); (D.J.); (D.S.)
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Praha 6-Suchdol, CZ-16521 Prague, Czech Republic
| | - Dick Sandberg
- Wood Science and Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-931 77 Skelleftea, Sweden; (O.K.); (I.K.); (O.M.); (D.J.); (D.S.)
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Praha 6-Suchdol, CZ-16521 Prague, Czech Republic
| |
Collapse
|
9
|
Mochane MJ, Mokhothu TH, Mokhena TC. Synthesis, mechanical, and flammability properties of metal hydroxide reinforced polymer composites: A review. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mokgaotsa J. Mochane
- Department of Life Sciences Central University of Technology Free State Bloemfontein South Africa
| | | | - Teboho Clement Mokhena
- Advanced Materials Division Nanotechnology Innovation Centre (NIC) Randburg South Africa
| |
Collapse
|
10
|
Hassani S, Mousavi M, Gandomi AH. Structural Health Monitoring in Composite Structures: A Comprehensive Review. SENSORS 2021; 22:s22010153. [PMID: 35009695 PMCID: PMC8747674 DOI: 10.3390/s22010153] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
Abstract
This study presents a comprehensive review of the history of research and development of different damage-detection methods in the realm of composite structures. Different fields of engineering, such as mechanical, architectural, civil, and aerospace engineering, benefit excellent mechanical properties of composite materials. Due to their heterogeneous nature, composite materials can suffer from several complex nonlinear damage modes, including impact damage, delamination, matrix crack, fiber breakage, and voids. Therefore, early damage detection of composite structures can help avoid catastrophic events and tragic consequences, such as airplane crashes, further demanding the development of robust structural health monitoring (SHM) algorithms. This study first reviews different non-destructive damage testing techniques, then investigates vibration-based damage-detection methods along with their respective pros and cons, and concludes with a thorough discussion of a nonlinear hybrid method termed the Vibro-Acoustic Modulation technique. Advanced signal processing, machine learning, and deep learning have been widely employed for solving damage-detection problems of composite structures. Therefore, all of these methods have been fully studied. Considering the wide use of a new generation of smart composites in different applications, a section is dedicated to these materials. At the end of this paper, some final remarks and suggestions for future work are presented.
Collapse
Affiliation(s)
- Sahar Hassani
- Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
| | - Mohsen Mousavi
- Faculty of Engineering and IT, University of Technology Sydney, Ultimo 2007, Australia
- Correspondence: (M.M.); (A.H.G.)
| | - Amir H. Gandomi
- Faculty of Engineering and IT, University of Technology Sydney, Ultimo 2007, Australia
- Correspondence: (M.M.); (A.H.G.)
| |
Collapse
|
11
|
Fire Behavior of Wood-Based Composite Materials. Polymers (Basel) 2021; 13:polym13244352. [PMID: 34960903 PMCID: PMC8705567 DOI: 10.3390/polym13244352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
Wood-based composites such as wood plastic composites (WPC) are emerging as a sustainable and excellent performance materials consisting of wood reinforced with polymer matrix with a variety of applications in construction industries. In this context, wood-based composite materials used in construction industries have witnessed a vigorous growth, leading to a great production activity. However, the main setbacks are their high flammability during fires. To address this issue, flame retardants are utilized to improve the performance of fire properties as well as the flame retardancy of WPC material. In this review, flame retardants employed during manufacturing process with their mechanical properties designed to achieve an enhanced flame retardancy were examined. The addition of flame retardants and manufacturing techniques applied were found to be an optimum condition to improve fire resistance and mechanical properties. The review focuses on the manufacturing techniques, applications, mechanical properties and flammability studies of wood fiber/flour polymer/plastics composites materials. Various flame retardant of WPCs and summary of future prospects were also highlighted.
Collapse
|
12
|
Liang J, Yang W, Yuen ACY, Long H, Qiu S, De Cachinho Cordeiro IM, Wang W, Chen TBY, Hu Y, Yeoh GH. Peanut Shell Derived Carbon Combined with Nano Cobalt: An Effective Flame Retardant for Epoxy Resin. Molecules 2021; 26:6662. [PMID: 34771069 PMCID: PMC8586977 DOI: 10.3390/molecules26216662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/03/2022] Open
Abstract
Biomass-derived carbon has been recognised as a green, economic and promising flame retardant (FR) for polymer matrix. In this paper, it is considered that the two-dimensional (2D) structure of carbonised peanut shells (PS) can lead to a physical barrier effect on polymers. The carbonised sample was prepared by the three facile methods, and firstly adopted as flame retardants for epoxy resin. The results of thermal gravimetric analysis (TGA) and cone calorimeter tests indicate that the carbon combined with nano Cobalt provides the most outstanding thermal stability in the current study. With 3 wt.% addition of the FR, both peak heat release rate (pHRR) and peak smoke production rate (PSPR) decrease by 37.9% and 33.3%, correspondingly. The flame retardancy mechanisms of the FR are further explored by XPS and TG-FTIR. The effectiveness of carbonised PS can be mainly attributed to the physical barrier effect derived by PS's 2D structure and the catalysis effect from Cobalt, which contribute to form a dense char layer.
Collapse
Affiliation(s)
- Jing Liang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (J.L.); (I.M.D.C.C.); (W.W.); (T.B.Y.C.); (G.H.Y.)
| | - Wenhao Yang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China; (W.Y.); (Y.H.)
| | - Anthony Chun Yin Yuen
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (J.L.); (I.M.D.C.C.); (W.W.); (T.B.Y.C.); (G.H.Y.)
| | - Hu Long
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Shuilai Qiu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China; (W.Y.); (Y.H.)
| | - Ivan Miguel De Cachinho Cordeiro
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (J.L.); (I.M.D.C.C.); (W.W.); (T.B.Y.C.); (G.H.Y.)
| | - Wei Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (J.L.); (I.M.D.C.C.); (W.W.); (T.B.Y.C.); (G.H.Y.)
| | - Timothy Bo Yuan Chen
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (J.L.); (I.M.D.C.C.); (W.W.); (T.B.Y.C.); (G.H.Y.)
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China; (W.Y.); (Y.H.)
| | - Guan Heng Yeoh
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (J.L.); (I.M.D.C.C.); (W.W.); (T.B.Y.C.); (G.H.Y.)
| |
Collapse
|
13
|
Motloung MP, Mofokeng TG, Ojijo V, Ray SS. A review on the processing–morphology–property relationship in biodegradable polymer composites containing carbon nanotubes and nanofibers. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mpho Phillip Motloung
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| | - Tladi Gideon Mofokeng
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
| | - Vincent Ojijo
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| |
Collapse
|
14
|
Biocomposites Developed with Litchi Peel Based on Epoxy Resin: Mechanical Properties and Flame Retardant. J CHEM-NY 2021. [DOI: 10.1155/2021/3287733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bio-based composites are reinforced polymeric materials, which include one or two bio-based components. Biocomposites have recently attracted great attention for applications ranging from home appliances to the automotive industry. The outstanding advantages are low cost, biodegradability, lightness, availability, and solving environmental problems. In recent days, biodegradable natural fibers are attracting a great deal of interest from researchers to work on and develop a new type of composite material for diverse applications. The objective of this work is to evaluate fire resistance and mechanical properties of epoxy polymer composites reinforced with lychee peel (Vietnam), at 10 wt%, 20 wt%, and 30 wt% mass%. The study showed that the mechanical properties and flame retardancy tended to increase in the presence of lychee peel reinforcement. In the combined ratios, 20 wt% lychee rind gave a limiting oxygen index of 21.5%, with a burning rate of 23.45 mm/min. In terms of mechanical strength, in which the Izod impact strength increased by 26.46%, the compressive strength increased by 25.20% and the tensile strength increased by 20.62%. The microscopic images (SEM images) show that the particle distribution is quite good and the adhesion and wetting compatibility on the two-phase interface of lychee peel-epoxy resin are strong.
Collapse
|
15
|
Sykam K, Harika P, Donempudi S. Flame‐retardant, phosphorous‐based polyurethane triazoles via
solvent‐free
and
catalyst‐free azide–alkyne
cycloaddition and their cure kinetics. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kesavarao Sykam
- Polymers & Functional Materials Division CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi India
| | - Pothireddy Harika
- Polymers & Functional Materials Division CSIR‐Indian Institute of Chemical Technology Hyderabad India
| | - Shailaja Donempudi
- Polymers & Functional Materials Division CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi India
| |
Collapse
|
16
|
Towards Selection Charts for Epoxy Resin, Unsaturated Polyester Resin and Their Fibre-Fabric Composites with Flame Retardants. MATERIALS 2021; 14:ma14051181. [PMID: 33802309 PMCID: PMC7959149 DOI: 10.3390/ma14051181] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 11/22/2022]
Abstract
Epoxy and unsaturated polyester resins are the most used thermosetting polymers. They are commonly used in electronics, construction, marine, automotive and aircraft industries. Moreover, reinforcing both epoxy and unsaturated polyester resins with carbon or glass fibre in a fabric form has enabled them to be used in high-performance applications. However, their organic nature as any other polymeric materials made them highly flammable materials. Enhancing the flame retardancy performance of thermosetting polymers and their composites can be improved by the addition of flame-retardant materials, but this comes at the expense of their mechanical properties. In this regard, a comprehensive review on the recent research articles that studied the flame retardancy of epoxy resin, unsaturated polyester resin and their composites were covered. Flame retardancy performance of different flame retardant/polymer systems was evaluated in terms of Flame Retardancy index (FRI) that was calculated based on the data extracted from the cone calorimeter test. Furthermore, flame retardant selection charts that relate between the flame retardancy level with mechanical properties in the aspects of tensile and flexural strength were presented. This review paper is also dedicated to providing the reader with a brief overview on the combustion mechanism of polymeric materials, their flammability behaviour and the commonly used flammability testing techniques and the mechanism of action of flame retardants.
Collapse
|
17
|
Melillo JMA, Pereira IM, Mottin AC, Araujo FGDS. Modification of poly(lactic acid) filament with expandable graphite for additive manufacturing using fused filament fabrication (FFF): effect on thermal and mechanical properties. POLIMEROS 2021. [DOI: 10.1590/0104-1428.20210013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Bahrami M, Abenojar J, Martínez MÁ. Recent Progress in Hybrid Biocomposites: Mechanical Properties, Water Absorption, and Flame Retardancy. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5145. [PMID: 33203190 PMCID: PMC7696046 DOI: 10.3390/ma13225145] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Bio-based composites are reinforced polymeric materials in which one of the matrix and reinforcement components or both are from bio-based origins. The biocomposite industry has recently drawn great attention for diverse applications, from household articles to automobiles. This is owing to their low cost, biodegradability, being lightweight, availability, and environmental concerns over synthetic and nonrenewable materials derived from limited resources like fossil fuel. The focus has slowly shifted from traditional biocomposite systems, including thermoplastic polymers reinforced with natural fibers, to more advanced systems called hybrid biocomposites. Hybridization of bio-based fibers/matrices and synthetic ones offers a new strategy to overcome the shortcomings of purely natural fibers or matrices. By incorporating two or more reinforcement types into a single composite, it is possible to not only maintain the advantages of both types but also alleviate some disadvantages of one type of reinforcement by another one. This approach leads to improvement of the mechanical and physical properties of biocomposites for extensive applications. The present review article intends to provide a general overview of selecting the materials to manufacture hybrid biocomposite systems with improved strength properties, water, and burning resistance in recent years.
Collapse
Affiliation(s)
- Mohsen Bahrami
- Materials Science and Engineering and Chemical Engineering Department, University Carlos III de Madrid, 28911 Leganes, Spain; (J.A.); (M.Á.M.)
| | | | | |
Collapse
|
19
|
The Flame Retardancy of Polyethylene Composites: From Fundamental Concepts to Nanocomposites. Molecules 2020; 25:molecules25215157. [PMID: 33167598 PMCID: PMC7664228 DOI: 10.3390/molecules25215157] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022] Open
Abstract
Polyethylene (PE) is one the most used plastics worldwide for a wide range of applications due to its good mechanical and chemical resistance, low density, cost efficiency, ease of processability, non-reactivity, low toxicity, good electric insulation, and good functionality. However, its high flammability and rapid flame spread pose dangers for certain applications. Therefore, different flame-retardant (FR) additives are incorporated into PE to increase its flame retardancy. In this review article, research papers from the past 10 years on the flame retardancy of PE systems are comprehensively reviewed and classified based on the additive sources. The FR additives are classified in well-known FR families, including phosphorous, melamine, nitrogen, inorganic hydroxides, boron, and silicon. The mechanism of fire retardance in each family is pinpointed. In addition to the efficiency of each FR in increasing the flame retardancy, its impact on the mechanical properties of the PE system is also discussed. Most of the FRs can decrease the heat release rate (HRR) of the PE products and simultaneously maintains the mechanical properties in appropriate ratios. Based on the literature, inorganic hydroxide seems to be used more in PE systems compared to other families. Finally, the role of nanotechnology for more efficient FR-PE systems is discussed and recommendations are given on implementing strategies that could help incorporate flame retardancy in the circular economy model.
Collapse
|