1
|
Zhang C, Ning W, Nan D, Hao J, Shi W, Yang Y, Duan F, Jin W, Liu L, Zhao D. Embedded 3D Printing for Microchannel Fabrication in Epoxy-Based Microfluidic Devices. Polymers (Basel) 2024; 16:3320. [PMID: 39684065 DOI: 10.3390/polym16233320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Microfluidic devices offer promising solutions for automating various biological and chemical procedures. Epoxy resin, known for its excellent mechanical properties, chemical resistance, and thermal stability, is widely used in high-performance microfluidic devices. However, the poor printability of epoxy has limited its application in 3D printing technologies for fabricating epoxy-based microfluidic devices. In this study, fumed silica is introduced into epoxy resin to formulate a yield-stress fluid suspension as a support bath for embedded 3D printing (e-3DP). The study demonstrates that increasing the fumed silica concentration from 3.0% to 9.0% (w/v) enhances the yield stress from 9.46 Pa to 56.41 Pa, the compressive modulus from 19.79 MPa to 36.34 MPa, and the fracture strength from 148.16 MPa to 168.78 MPa, while reducing the thixotropic time from 6.58 s to 1.32 s, albeit with a 61.3% decrease in the transparency ratio. The 6.0% (w/v) fumed silica-epoxy suspension is selected based on a balance between yield stress, transparency, and mechanical performance, enabling high-fidelity filament formation. Two representative microfluidic devices are successfully fabricated, demonstrating the feasibility of a fumed silica-epoxy suspension for the customizable e-3DP of epoxy-based microfluidic devices.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wenyu Ning
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ding Nan
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiangtao Hao
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Weiliang Shi
- Zibo Vocational Institute, Zibo 255300, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou 251100, China
| | - Yang Yang
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Fei Duan
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wenbo Jin
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lei Liu
- 365th Research Institute, Northwestern Polytechnical University, Xi'an 710065, China
| | - Danyang Zhao
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Bakirov A, Kopishev E, Kadyrzhan K, Donbaeva E, Zhaxybayeva A, Duisembiyev M, Suyundikova F, Suleimenov I. The Method of Direct and Reverse Phase Portraits as a Tool for Systematizing the Results of Studies of Phase Transitions in Solutions of Thermosensitive Polymers. Gels 2024; 10:395. [PMID: 38920941 PMCID: PMC11203281 DOI: 10.3390/gels10060395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
It is shown that a more than significant amount of experimental data obtained in the field of studying systems based on thermosensitive hydrophilic polymers and reflected in the literature over the past decades makes the issue of their systematization and classification relevant. This, in turn, makes relevant the question of choosing the appropriate classification criteria. It is shown that the basic classification feature can be the number of phase transition stages, which can vary from one to four or more depending on the nature of the temperature-sensitive system. In this work, the method of inverse phase portraits is proposed for the first time. It was intended, among other things, to identify the number of phase transition stages. Moreover, the accuracy of this method significantly exceeds the accuracy of the previously used method of direct phase portraits since, for the first time, the operation of numerical differentiation is replaced by the operation of numerical integration. A specific example of the application of the proposed method for the analysis of a previously studied temperature-sensitive system is presented. It is shown that this method also allows for a quantitative comparison between the results obtained by the differential calorimetry method and the turbidimetry method. Issues related to increasing the resolution of the method of direct phase portraits are discussed.
Collapse
Affiliation(s)
- Akhat Bakirov
- Department of Chemistry and Technology of Organic Substances, Natural Compounds and Polymers, Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, Almaty 050040, Kazakhstan;
- Department of Telecommunication Engineering, Institute of Communications and Space Engineering, Gumarbek Daukeev Almaty University of Power Engineering and Communications, Almaty 050040, Kazakhstan;
| | - Eldar Kopishev
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (E.D.); (A.Z.); (M.D.); (F.S.)
| | - Kaisarali Kadyrzhan
- Department of Telecommunication Engineering, Institute of Communications and Space Engineering, Gumarbek Daukeev Almaty University of Power Engineering and Communications, Almaty 050040, Kazakhstan;
| | - Elvira Donbaeva
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (E.D.); (A.Z.); (M.D.); (F.S.)
| | - Aigerim Zhaxybayeva
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (E.D.); (A.Z.); (M.D.); (F.S.)
| | - Marat Duisembiyev
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (E.D.); (A.Z.); (M.D.); (F.S.)
| | - Faiziya Suyundikova
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (E.D.); (A.Z.); (M.D.); (F.S.)
| | - Ibragim Suleimenov
- National Engineering Academy of the Republic of Kazakhstan, Almaty 050010, Kazakhstan
| |
Collapse
|
3
|
Sipos B, Katona G, Csóka I. Risperidone-Loaded Nasal Thermosensitive Polymeric Micelles: Quality by Design-Based Formulation Study. Pharmaceutics 2024; 16:703. [PMID: 38931827 PMCID: PMC11206254 DOI: 10.3390/pharmaceutics16060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The current research aims to develop thermosensitive polymeric micelles loaded with risperidone for nasal administration, emphasizing the added benefits of their thermosensitive behavior under nasal conditions. An initial risk assessment facilitated the advanced development process, confirming that the key indicators of thermosensitivity were suitable for nasal application. The polymeric micelles exhibited an average size of 118.4 ± 3.1 nm at ambient temperature and a size of 20.47 ± 1.2 nm at 36.5 °C, in both cases in monodisperse distribution. Factors such as pH and viscosity did not significantly impact these parameters, demonstrating appropriate nasal applicability. The model formulations showed a rapid, burst-like drug release profile in vitro, accompanied by a quick and high permeation rate at nasal conditions. Overall, the Quality by Design-based risk assessment process led to the development of an advanced drug delivery system capable of administering risperidone through the nasal cavity.
Collapse
Affiliation(s)
- Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary; (G.K.); (I.C.)
| | | | | |
Collapse
|
4
|
Patel D, Vaswani P, Ray D, Bhatia D, Aswal VK, Kuperkar K, Bahadur P. Additive-anchored thermoresponsive nanoscale self-assembly generation in normal and reverse Tetronics®. Phys Chem Chem Phys 2024; 26:6372-6385. [PMID: 38315058 DOI: 10.1039/d3cp06329a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Self-assembly of ethylene oxide (EO)-propylene oxide (PO)-based star-shaped block copolymers (BCPs) in the presence of different kinds of additives is investigated in an aqueous solution environment. Commercially available four-armed BCPs, namely Tetronics® (normal: T904 with EO as the terminal end block; and reverse: T90R4 with PO as the terminal end block), each with 40%EO, are used. The effect of various additives such as electrolytes (NaCl and Na2SO4), nonelectrolyte polyols (glucose and sorbitol), and ionic surfactants (viz. anionic-sodium dodecyl sulfate (SDS), cationic-dodecyltrimethylammonium bromide (DTAB) and zwitterionic dodecyldimethylammonium propane sulfonate (C12PS)) on these BCPs is examined to observe their influence on micellization behaviour. The presence of salts and polyols displayed interesting phase behaviour, i.e., the cloud point (CP) was decreased, the water structure was affected and the micelles were dehydrated by expelling water molecules, and thus they were likely to promote micelle formation/growth. In contrast, ionic surfactants in small amounts interacted with the BCPs and showed an increase in CPs thereby forming mixed micelles with increasing charges and decreasing micellar sizes, finally transforming to small surfactant-rich mixed micelles. Molecular interactions such as electrostatic and hydrogen bonding involved within the examined entities are put forth employing a computational simulation approach using the Gaussian 09 window for calculation along with the GaussView 5.0.9 programming software using the (DFT)/B3LYP method and 3-21G basis set. The hydrodynamic diameter (Dh) of the micelles is examined using dynamic light scattering (DLS), while the various micellar parameters inferring the shape/geometry are obtained using small-angle neutron scattering (SANS) by the best fitting of the structure factors. It is observed that 10 w/v% T904 remains as spherical micelles with some micellar growth under physiological conditions (37 °C), while 10 w/v% T90R4 remains as unimers and forms spherical micelles in the presence of additives at 37 °C. Furthermore, the additive-induced micellar systems are tested as developing nanovehicles for anticancer (curcumin, Cur) drug solubilization using UV-vis spectroscopy, which shows a prominent increase in absorbance with enhanced solubilization capacity. Additionally, the cytotoxic effect of Cur loaded on the BCP micelles in HeLa cells is studied through confocal microscopy by capturing fluorescence images that depict HeLa cell growth inhibition under the influence of additive-induced micellar systems.
Collapse
Affiliation(s)
- Dhruvi Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat-395 007, Gujarat, India.
- School of Civil and Environmental Engineering, Cornell University, Ithaca, 14850, NY, USA
| | - Payal Vaswani
- Biomedical Engineering, Indian Institute of Technology Gandhinagar (IITGn), Gandhinagar-382 355, Palaj, Gujarat, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai-400 085, Maharashtra, India
- Biomacromolecular Systems and Processes, Institute of Biological Information Processing, Forschungszentrum Julich, 52428, Germany
| | - Dhiraj Bhatia
- Biomedical Engineering, Indian Institute of Technology Gandhinagar (IITGn), Gandhinagar-382 355, Palaj, Gujarat, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai-400 085, Maharashtra, India
| | - Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat-395 007, Gujarat, India.
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Surat-395 007, Gujarat, India
| |
Collapse
|
5
|
Patil R, Patil AS, Chougule K, Gaude Y, Masareddy RS. Intranasal administration of innovative triamcinolone acetonide encapsulated cubosomal in situ gel: formulation and characterization. Drug Dev Ind Pharm 2024; 50:68-77. [PMID: 38148515 DOI: 10.1080/03639045.2023.2297275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
AIM The primary objective of the research was to develop a cubosomal in situ gel encapsulated with Triamcinolone acetonide (TCA) in order to enhance its penetration through the blood-brain barrier (BBB) when administered via the intranasal route, thus enabling efficient and rapid action. METHOD Cubosomes were formulated by top-down approach using glyceryl monooleate (GMO), using pluronics127 (PF127) and polyvinyl alcohol (PVA) in varying proportions based on the Box-Behnken design. High resolution transmission electron microscopy (HR-TEM) analysis confirmed the morphology of the cubosomes. The in situ gel was formulated and optimized. Experiments involving ex vivo permeation and histopathology analyses were undertaken to evaluate drug permeation and tissue effects. RESULTS The cubosomes exhibited a particle size (PS) of 197.9 nm, zeta potential (ZP) of -31.11 mV, and entrapment efficacy (EE) of 84.31%, with low deviation. Batch F4 (19% PF127) showed favorable results. In vitro and ex vivo permeation studies revealed drug release of 78.59% and 76.65%, respectively, after 8 h. Drug release followed the Hixson Crowell model of release kinetics. The histopathological examination revealed no signs of toxicity or adverse effects on the nasal mucosa of the sheep. The formulation exhibited short-term stability, maintaining its integrity and properties when stored at room temperature. CONCLUSION The utilization of an intranasal cubosomal in situ gel encapsulated with TCA was anticipated to lower intracranial pressure and improve patient adherence by offering effective relief for individuals suffering from Brain edema. This efficacy is attributed to its rapid onset of action and its safe and well-tolerated dosage form.
Collapse
Affiliation(s)
- Ruturaj Patil
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Archana S Patil
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Krutuja Chougule
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Yadishma Gaude
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Rajashree S Masareddy
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| |
Collapse
|
6
|
Tripathi N, Ray D, Aswal VK, Kuperkar K, Bahadur P. Salt induced micellization conduct in PEO-PPO-PEO-based block copolymers: a thermo-responsive approach. SOFT MATTER 2023; 19:7227-7244. [PMID: 37724390 DOI: 10.1039/d3sm00896g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The nanoscale self-assembly behavior in ethylene oxide (EO) and propylene oxide (PO)-based block copolymers (BCPs) commercially available as Pluronics®: L44 (PEO10-PPO23-PEO10) and F77 (PEO53-PPO34-PEO53) is put forth in aqueous solution and in the presence of sodium salts NaCl and Na2SO4. The moderate hydrophilicity of L44 is attributed to its low molecular weight PPO segment, while the high percentage of PEO content in F77 contributes to its extreme hydrophilicity. The impact of sodium salts (NaCl and Na2SO4) on the self-assembly is investigated to understand their influence and role in micellization, by employing various physicochemical techniques such as phase behavior conduct, calorimetry, tensiometry, scattering, and spectral analysis. The results indicate that at a low temperature range of 20-30 °C, Pluronics® solutions with a concentration of 10% w/v remain molecularly dissolved as individual units called unimers (Gaussian chain), which have a hydrodynamic size (Dh) of approximately 4-6 nm. Additionally, loose clusters of a few hundred nanometers in size are also observed. Though, at higher concentrations of BCPs and in the presence of salt or elevated temperatures, the examined micellar structures exhibit a higher degree of organization i.e., spherical or ellipsoidal in terms of size and shape. Also, the solubilization enhancement of a hydrophobic dye called orange OT within the examined micellar system is also undertaken using a spectral approach.
Collapse
Affiliation(s)
- Nitumani Tripathi
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat-395 007, Gujarat, India.
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400085, Maharashtra, India
- Biomacromolecular Systems and Processes, Institute of Biological Information Processing, Forschungszentrum, Julich-52428, Germany
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400085, Maharashtra, India
| | - Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat-395 007, Gujarat, India.
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat-395 007, Gujarat, India
| |
Collapse
|
7
|
Yang A, McKenzie BE, Yi Y, Khair AS, Garoff S, Tilton RD. Effect of polymer/surfactant complexation on diffusiophoresis of colloids in surfactant concentration gradients. J Colloid Interface Sci 2023; 642:169-181. [PMID: 37003011 DOI: 10.1016/j.jcis.2023.03.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
HYPOTHESIS A concentration gradient of surfactants in the presence of polymers that non-covalently associate with surfactants will exhibit a continually varying distribution of complexes with different composition, charge, and size. Since diffusiophoresis of colloids suspended in a solute concentration gradient depends on the relaxation of the gradient and on the interactions between solutes and particles, polymer/surfactant complexation will alter the rate of diffusiophoresis driven by surfactant gradients relative to that observed in the same concentration gradient in the absence of polymers. EXPERIMENTS A microfluidic device was used to measure diffusiophoresis of colloids suspended in solutions containing a gradient of sodium dodecylsulfate (SDS) in the presence or absence of a uniform concentration of Pluronic P123 poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) nonionic triblock copolymers. To interpret the effect of P123 on the rate of colloid diffusiophoresis, electrophoretic mobility and dynamic light scattering measurements of the colloid/solute systems were performed, and a numerical model was constructed to account for the effects of complexation on diffusiophoresis. FINDINGS Polymer/surfactant complexation in solute gradients significantly enhanced diffusiophoretic transport of colloids. Large P123/SDS complexes formed at low SDS concentrations yielded low collective solute diffusion coefficients that prolonged the existence of strong concentration gradients relative to those without P123 to drive diffusiophoresis.
Collapse
Affiliation(s)
- Angela Yang
- Center for Complex Fluids Engineering, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| | - Brian E McKenzie
- Center for Complex Fluids Engineering, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Yingqi Yi
- Center for Complex Fluids Engineering, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Aditya S Khair
- Center for Complex Fluids Engineering, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Stephen Garoff
- Center for Complex Fluids Engineering, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Robert D Tilton
- Center for Complex Fluids Engineering, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States; Center for Complex Fluids Engineering, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|
8
|
Zhang Z, Li X, Do C, Kohane DS. Enhancement of polymer thermoresponsiveness and drug delivery across biological barriers by addition of small molecules. Heliyon 2023; 9:e16923. [PMID: 37484344 PMCID: PMC10360936 DOI: 10.1016/j.heliyon.2023.e16923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
Thermoresponsive polymers that undergo sol-gel transitions in the physiological temperature range have been widely used in biomedical applications. However, some commercially and clinically available thermoresponsive materials, particularly poloxamer 407 (P407), have the significant drawback of insufficient gel strength, which limit their performance. Furthermore, co-delivery with some small molecules, including chemical permeation enhancers (CPEs) can further impair the physical properties of P407. Here, we have developed a thermoresponsive platform by combination of CPEs with the poloxamer P188 to enable gelation at physiological temperatures and enhance gel strength. P188 gels at 60 °C, which is far above the physiological range. In combination with limonene (LIM) and sodium dodecyl sulfate (SDS), P188 gels at ∼25 °C, a temperature that in useful for biomedical applications. Gelation behavior was studied by small angle neutron scattering (SANS) experiments, which identified micelle-to-cubic mesophase transitions with increasing temperature. Analysis of the SANS intensities revealed that P188 micelles became larger as LIM or SDS molecules were incorporated, making it easier to form a micellar gel structure. P188-3CPE (i.e., 2% LIM, 1% SDS and 0.5% bupivacaine (BUP)) had low viscosity at room temperature, facilitating administration, but rapidly gelled at body temperature. P188-3CPE enabled the flux of the antibiotic ciprofloxacin across the TM and completely eradicated otitis media from nontypable Haemophilus influenzae (NTHi) in chinchillas after a single administration.
Collapse
Affiliation(s)
- Zipei Zhang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiyu Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Daniel S. Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Bhendale M, Singh JK. Molecular Insights on Morphology, Composition, and Stability of Mixed Micelles Formed by Ionic Surfactant and Nonionic Block Copolymer in Water Using Coarse-Grained Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5031-5040. [PMID: 36992607 DOI: 10.1021/acs.langmuir.3c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The nanoscale association domains are the ultimate determinants of the macroscopic properties of complex fluids involving amphiphilic polymers and surfactants, and hence, it is foremost important to understand the role of polymer/surfactant concentration on these domains. We have used coarse-grained molecular dynamics simulations to investigate the effect of polymer/surfactant concentration on the morphology of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, i.e., pluronics or poloxamers) block copolymer, and ionic surfactants sodium dodecyl sulfate (SDS), mixed micelles in aqueous solution. The proclivity of the surfactant to form the mixed micelles is also probed using umbrella sampling simulations. In this study, we observed that the core of the pluronic + SDS formed mixed micelles consists of PPO, the alkyl tail of SDS, and some water molecules, whereas the PEO, water, and sulfate headgroups of SDS form a shell, consistent with experimental observations. The micelles are spherical at high-pluronic/low-SDS compositions, ellipsoidal at high-SDS/low-pluronic compositions, and wormlike-cylindrical at high-pluronic/high-SDS compositions. The transitions in micelle morphology are governed by the solvent accessible surface area of mixed aggregates, electrostatic repulsion between SDS-headgroups, and dehydration of PEO and PPO segments. The free energy barrier for SDS escape is much higher in mixed micelles than in pure SDS micelles, indicating a stronger tendency for SDS to form pluronic-SDS mixed micelles.
Collapse
Affiliation(s)
- Mangesh Bhendale
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Jayant K Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Prescience Insilico Private Limited, Fifth Floor, Novel MSR Building, Marathalli, Bengaluru, Karnataka 560037, India
| |
Collapse
|
10
|
Patel D, Pérez-Sánchez G, Jorge M, Ray D, Aswal VK, Kuperkar K, Coutinho JAP, Bahadur P. Rationalizing the Design of Pluronics-Surfactant Mixed Micelles through Molecular Simulations and Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2692-2709. [PMID: 36763753 DOI: 10.1021/acs.langmuir.2c03176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aqueous systems comprising polymers and surfactants are technologically important complex fluids with tunable features dependent on the chemical nature of each constituent, overall composition in mixed systems, and solution conditions. The phase behavior and self-assembly of amphiphilic polymers can be changed drastically in the presence of conventional ionic surfactants and need to be clearly understood. Here, the self-aggregation dynamics of a triblock copolymer (Pluronics L81, EO3PO43EO3) in the presence of three cationic surfactants (with a 12C long alkyl chain but with different structural features), viz., dodecyltrimethylammonium bromide (DTAB), didodecyldimethylammonium bromide (DDAB), and ethanediyl-1,2-bis(dimethyldodecylammonium bromide) (12-2-12), were investigated in an aqueous solution environment. The nanoscale micellar size expressed as hydrodynamic diameter (Dh) of copolymer-surfactant mixed aggregates was evaluated using dynamic light scattering, while the presence of a varied micellar geometry of L81-cationic surfactant mixed micelles were probed using small-angle neutron scattering. The obtained findings were further validated from molecular dynamics (MD) simulations, employing a simple and transferable coarse-grained molecular model based on the MARTINI force field. L81 remained molecularly dissolved up to ∼20 °C but phase separated, forming turbid/translucent dispersion, close to its cloud point (CP) and existed as unstable vesicles. However, it exhibited interesting solution behavior expressed in terms of the blue point (BP) and the double CP in the presence of different surfactants, leading to mixed micellar systems with a triggered morphology transition from unstable vesicles to polymer-rich micelles and cationic surfactant-rich micelles. Such an amendment in the morphology of copolymer nanoaggregates in the presence of cationic surfactants has been well observed from scattering data. This is further rationalized employing the MD approach, which validated the effective interactions between Pluronics-cationic surfactant mixed micelles. Thus, our experimental results integrated with MD yield a deep insight into the nanoscale interactions controlling the micellar aggregation (Pluronics-rich micelles and surfactant-rich micelles) in the investigated mixed system.
Collapse
Affiliation(s)
- Divya Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat, Gujarat 395 007, India
| | - Germán Pérez-Sánchez
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-1933, Portugal
| | - Miguel Jorge
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glassgow G1 1XJ, U.K
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, Maharashtra 400 085, India
- Biomacromolecular Systems and Processes, Institute of Biological Information Processing, Forschungszentrum Julich, Julich 52428, Germany
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, Maharashtra 400 085, India
| | - Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat, Gujarat 395 007, India
| | - João A P Coutinho
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-1933, Portugal
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat, Gujarat 395 007, India
| |
Collapse
|
11
|
Desai GN, Dandagi PM, Kazi TM. Nanosized Intranasal Delivery of Novel Self-Assembled Cubic Liquid Crystals: Formulation and Evaluation. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09695-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Physicochemical properties of piroxicam in ionic-mixed micellar medium: effect of charge on the micellization behaviour. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Fan M, Lai X, Tang M, Li J, Wang L, Gao J. Preparation and properties of a clean, low‐damage waterproof locking damage multifunctional integrated water‐based fracturing fluid. J Appl Polym Sci 2022. [DOI: 10.1002/app.53207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Meiling Fan
- Shaanxi Key Laboratory of Chemical Additives for Industry Shaanxi University of Science & Technology Xi'an China
| | - Xiaojuan Lai
- Shaanxi Key Laboratory of Chemical Additives for Industry Shaanxi University of Science & Technology Xi'an China
| | - Meirong Tang
- Oil & Gas Technology Research Institute of Changqing Oilfield Branch Company PetroChina Xi'an China
| | - Jing Li
- Oil Production Technology Research Institute of the First Oil Production Plant of Changqing Oilfield Branch Company PetroChina Yan'an China
| | - Lei Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry Shaanxi University of Science & Technology Xi'an China
| | - Jinhao Gao
- Shaanxi Key Laboratory of Chemical Additives for Industry Shaanxi University of Science & Technology Xi'an China
| |
Collapse
|
14
|
Luo H, Jiang K, Wang X, Yao H, Liang X, Li Y, Liu H. How multiple noncovalent interactions regulate the aggregation behavior of amphiphilic triblock copolymer/surface-active ionic liquid mixtures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Uskoković V, Pejčić A, Koliqi R, Anđelković Z. Polymeric Nanotechnologies for the Treatment of Periodontitis: A Chronological Review. Int J Pharm 2022; 625:122065. [PMID: 35932930 DOI: 10.1016/j.ijpharm.2022.122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 12/01/2022]
Abstract
Periodontitis is a chronic infectious and inflammatory disease of periodontal tissues estimated to affect 70 - 80 % of all adults. At the same time, periodontium, the site of periodontal pathologies, is an extraordinarily complex plexus of soft and hard tissues, the regeneration of which using even the most advanced forms of tissue engineering continues to be a challenge. Nanotechnologies, meanwhile, have provided exquisite tools for producing biomaterials and pharmaceutical formulations capable of elevating the efficacies of standard pharmacotherapies and surgical approaches to whole new levels. A bibliographic analysis provided here demonstrates a continuously increasing research output of studies on the use of nanotechnologies in the management of periodontal disease, even when they are normalized to the total output of studies on periodontitis. The great majority of biomaterials used to tackle periodontitis, including those that pioneered this interesting field, have been polymeric. In this article, a chronological review of polymeric nanotechnologies for the treatment of periodontitis is provided, focusing on the major conceptual innovations since the late 1990s, when the first nanostructures for the treatment of periodontal diseases were fabricated. In the opening sections, the etiology and pathogenesis of periodontitis and the anatomical and histological characteristics of the periodontium are being described, along with the general clinical manifestations of the disease and the standard means of its therapy. The most prospective chemistries in the design of polymers for these applications are also elaborated. It is concluded that the amount of innovation in this field is on the rise, despite the fact that most studies are focused on the refinement of already established paradigms in tissue engineering rather than on the development of revolutionary new concepts.
Collapse
Affiliation(s)
- Vuk Uskoković
- TardigradeNano LLC; Department of Mechanical Engineering, San Diego State University.
| | - Ana Pejčić
- Department of Periodontology and Oral Medicine, Clinic of Dental Medicine, Medical Faculty, University of Niš.
| | - Rozafa Koliqi
- Department of Clinical Pharmacy and Biopharmacy, Faculty of Medicine, University of Prishtina "Hasan Prishtina".
| | - Zlatibor Anđelković
- Institute for Histology and Embryology, Faculty of Medicine, University of Priština/Kosovska Mitrovica.
| |
Collapse
|
16
|
Abdullah SNS, Subramaniam KA, Muhamad Zamani ZH, Sarchio SNE, Md Yasin F, Shamsi S. Biocompatibility Study of Curcumin-Loaded Pluronic F127 Nanoformulation (NanoCUR) against the Embryonic Development of Zebrafish ( Danio rerio). Molecules 2022; 27:4493. [PMID: 35889367 PMCID: PMC9324867 DOI: 10.3390/molecules27144493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/25/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Curcumin (CUR) has been studied for its biomedical applications due to its active biological properties. However, CUR has limitations such as poor solubility, low bioavailability, and rapid degradation. Thus, CUR was nanoformulated with the application of polymeric micelle. Previous studies of CUR-loaded Pluronic F127 nanoformulation (NanoCUR) were generally prioritized toward cancer cells and its therapeutic values. There are reports that emphasize the toxicity of CUR, but reports on the toxicity of NanoCUR on embryonic developmental stages is still scarce. The present study aims to investigate the toxicity effects of NanoCUR on the embryonic development of zebrafish (Danio rerio). NanoCUR was synthesized via thin film hydration method and then characterized using DLS, UV-Vis, FTIR, FESEM, and XRD. The toxicity assessment of NanoCUR was conducted using zebrafish embryos, in comparison to native CUR, as well as Pluronic F127 (PF) as the controls, and ROS assay was further carried out. It was revealed that NanoCUR showed an improved toxicity profile compared to native CUR. NanoCUR displayed a delayed toxicity response and showed a concentration- and time-dependent toxicity response. NanoCUR was also observed to generate a significantly low reactive oxygen species (ROS) compared to native CUR in ROS assay. Overall, the results obtained highlight the potential of NanoCUR to be developed in clinical settings due to its improved toxicity profile compared to CUR.
Collapse
Affiliation(s)
- Siti Nur Sharmila Abdullah
- Laboratory of Animal Biochemistry and Biotechnology, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.N.S.A.); (K.A.S.); (Z.H.M.Z.)
| | - Kalai Arasu Subramaniam
- Laboratory of Animal Biochemistry and Biotechnology, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.N.S.A.); (K.A.S.); (Z.H.M.Z.)
| | - Zahir Haizat Muhamad Zamani
- Laboratory of Animal Biochemistry and Biotechnology, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.N.S.A.); (K.A.S.); (Z.H.M.Z.)
| | - Seri Narti Edayu Sarchio
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Faizah Md Yasin
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Institute of Nanoscience and Nanotechnology (ION2), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Suhaili Shamsi
- Laboratory of Animal Biochemistry and Biotechnology, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.N.S.A.); (K.A.S.); (Z.H.M.Z.)
| |
Collapse
|
17
|
Kancharla S, Dong D, Bedrov D, Alexandridis P, Tsianou M. Binding of Perfluorooctanoate to Poly(ethylene oxide). Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Samhitha Kancharla
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260-4200, United States
| | - Dengpan Dong
- Department of Materials Science and Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, Utah 84112, United States
| | - Dmitry Bedrov
- Department of Materials Science and Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, Utah 84112, United States
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260-4200, United States
| | - Marina Tsianou
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260-4200, United States
| |
Collapse
|
18
|
Feng R, Wu Y, Wang W, Fang Y, Chen M, Xia Y. Investigation of polymer−surfactant complexes by both micellar solubilization and pre-column derivatization capillary electrophoresis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
White JM, Calabrese MA. Impact of small molecule and reverse poloxamer addition on the micellization and gelation mechanisms of poloxamer hydrogels. Colloids Surf A Physicochem Eng Asp 2022; 638. [PMID: 35221534 PMCID: PMC8880963 DOI: 10.1016/j.colsurfa.2021.128246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poloxamer 407 (P407) is widely used for targeted drug-delivery because it exhibits thermoresponsive gelation behavior near body temperature, stemming from a disorder-to-order transition. Hydrophobic small molecules can be encapsulated within P407; however, these additives often negatively impact the rheological properties and lower the gelation temperatures of the hydrogels, limiting their clinical utility. Here we investigate the impact of adding two BAB reverse poloxamers (RPs), 25R4 and 31R1, on the thermal transitions, rheological properties, and assembled structures of P407 both with and without incorporated small molecules. By employing a combination of differential scanning calorimetry (DSC), rheology, and small-angle x-ray scattering (SAXS), we determine distinct mechanisms for RP incorporation. While 25R4 addition promotes inter-micelle bridge formation, the highly hydrophobic 31R1 co-micellizes with P407. Small molecule addition lowers thermal transition temperatures and increases the micelle size, while RP addition mitigates the decreases in modulus traditionally associated with small molecule incorporation. This fundamental understanding yields new strategies for tuning the mechanical and structural properties of the hydrogels, enabling design of drug-loaded formulations with ideal thermal transitions for a range of clinical applications.
Collapse
Affiliation(s)
- Joanna M White
- University of Minnesota, 421 Washington Ave SE, Minneapolis, 55455, MN, USA
| | | |
Collapse
|
20
|
Souza BNRF, Ribeiro ERFR, da Silva de Barros AO, Pijeira MSO, Kenup-Hernandes HO, Ricci-Junior E, Diniz Filho JFS, dos Santos CC, Alencar LMR, Attia MF, Gemini-Piperni S, Santos-Oliveira R. Nanomicelles of Radium Dichloride [ 223Ra]RaCl 2 Co-Loaded with Radioactive Gold [ 198Au]Au Nanoparticles for Targeted Alpha-Beta Radionuclide Therapy of Osteosarcoma. Polymers (Basel) 2022; 14:1405. [PMID: 35406278 PMCID: PMC9002948 DOI: 10.3390/polym14071405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022] Open
Abstract
Alpha and beta particulate radiation are used for non-treated neoplasia, due to their ability to reach and remain in tumor sites. Radium-223 (223Ra), an alpha emitter, promotes localized cytotoxic effects, while radioactive gold (198Au), beta-type energy, reduces radiation in the surrounding tissues. Nanotechnology, including several radioactive nanoparticles, can be safely and effectively used in cancer treatment. In this context, this study aims to analyze the antitumoral effects of [223Ra]Ra nanomicelles co-loaded with radioactive gold nanoparticles ([198Au]AuNPs). For this, we synthesize and characterize nanomicelles, as well as analyze some parameters, such as particle size, radioactivity emission, dynamic light scattering, and microscopic atomic force. [223Ra]Ra nanomicelles co-loaded with [198Au]AuNPs, with simultaneous alpha and beta emission, showed no instability, a mean particle size of 296 nm, and a PDI of 0.201 (±0.096). Furthermore, nanomicelles were tested in an in vitro cytotoxicity assay. We observed a significant increase in tumor cell death using combined alpha and beta therapy in the same formulation, compared with these components used alone. Together, these results show, for the first time, an efficient association between alpha and beta therapies, which could become a promising tool in the control of tumor progression.
Collapse
Affiliation(s)
- Bárbara Nayane Rosário Fernandes Souza
- Argonauta Nuclear Reactor Center, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil; (B.N.R.F.S.); (E.R.F.R.R.); (A.O.d.S.d.B.); (M.S.O.P.)
| | - Elisabete Regina Fernandes Ramos Ribeiro
- Argonauta Nuclear Reactor Center, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil; (B.N.R.F.S.); (E.R.F.R.R.); (A.O.d.S.d.B.); (M.S.O.P.)
| | - Aline Oliveira da Silva de Barros
- Argonauta Nuclear Reactor Center, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil; (B.N.R.F.S.); (E.R.F.R.R.); (A.O.d.S.d.B.); (M.S.O.P.)
| | - Martha Sahylí Ortega Pijeira
- Argonauta Nuclear Reactor Center, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil; (B.N.R.F.S.); (E.R.F.R.R.); (A.O.d.S.d.B.); (M.S.O.P.)
| | - Hericka Oliveira Kenup-Hernandes
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil;
| | - Eduardo Ricci-Junior
- DEFARMED Laboratory, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil;
| | - Joel Félix Silva Diniz Filho
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.F.S.D.F.); (C.C.d.S.); (L.M.R.A.)
| | - Clenilton Costa dos Santos
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.F.S.D.F.); (C.C.d.S.); (L.M.R.A.)
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.F.S.D.F.); (C.C.d.S.); (L.M.R.A.)
| | - Mohamed F. Attia
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Sara Gemini-Piperni
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Ralph Santos-Oliveira
- Argonauta Nuclear Reactor Center, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil; (B.N.R.F.S.); (E.R.F.R.R.); (A.O.d.S.d.B.); (M.S.O.P.)
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro 23070-200, Brazil
| |
Collapse
|
21
|
Gong Z, Zacharia NS, Vogt BD. Sodium dodecyl sulfate modulates the structure and rheological properties of Pluronic F108-poly(acrylic acid) coacervates). SOFT MATTER 2022; 18:340-350. [PMID: 34882160 DOI: 10.1039/d1sm01273h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Micelles formed within coacervate phases can impart functional properties, but it is unclear if this micellization provides mechanical reinforcement of the coacervate whereby the micelles act as high functionality crosslinkers. Here, we examine how sodium dodecyl sulfate (SDS) influences the structure and properties of Pluronic F108-polyacrylic acid (PAA) coacervates as SDS is known to decrease the aggregation number of Pluronic micelles. Increasing the SDS concentration leads to larger water content in the coacervate and an increase in the relative concentration of PAA to the other solids. Rheological characterization with small angle oscillatory shear (SAOS) demonstrates that these coacervates are viscoelastic liquids with the moduli decreasing with the addition of the SDS. The loss factor (tan δ) initially increases linearly with the addition of SDS, but a step function increase in the loss factor occurs near the reported CMC of SDS. However, this change in rheological properties does not appear to be correlated with any large scale structural differences in the coacervate as determined by small angle X-ray scattering (SAXS) with no signature of Pluronic micelles in the coacervate when SDS concentration is >4 mM during formation of the coacervate, which is less than that observed (6 mM SDS) in initial Pluronic F108 solution despite the higher polymer concentration in the coacervate. These results suggest that the mechanical properties of polyelectrolyte-non-ionic surfactant coacervates are driven by the efficicacy of binding between the complexing species driving the coacervate, which can be disrupted by competitive binding of the SDS to the Pluronic.
Collapse
Affiliation(s)
- Ziyuan Gong
- Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA.
| | - Nicole S Zacharia
- Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA.
| | - Bryan D Vogt
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
22
|
Patel D, Ray D, Tiwari S, Kuperkar K, Aswal VK, Bahadur P. SDS triggered transformation of highly hydrophobic Pluronics® nanoaggregate into polymer-rich and surfactant-rich mixed micelles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Kancharla S, Bedrov D, Tsianou M, Alexandridis P. Structure and composition of mixed micelles formed by nonionic block copolymers and ionic surfactants in water determined by small-angle neutron scattering with contrast variation. J Colloid Interface Sci 2021; 609:456-468. [PMID: 34815085 DOI: 10.1016/j.jcis.2021.10.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022]
Abstract
HYPOTHESIS Complex fluids comprising polymers and surfactants exhibit interesting properties which depend on the overall composition and solvent quality. The ultimate determinants of the macroscopic properties are the nano-scale association domains. Hence it is important to ascertain the structure and composition of the domains, and how they respond to the overall composition. EXPERIMENTS The structure and composition of mixed micelles formed in aqueous solution between poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers (Pluronics or Poloxamers) and the ionic surfactant sodium dodecylsulfate (SDS) are determined from an analysis of small-angle neutron scattering (SANS) intensity data obtained at different contrasts. Different polymers and concentrations have been probed. FINDINGS The SDS + Pluronic mixed micelles include polymer and some water in the micelle core that is formed primarily by alkyl chains. This is different than what was previously reported, but is consistent with a variety of experimental observations. This is the first report on the structure of SDS + Pluronic P123 (EO19PO69EO19) assemblies. The effects on the mixed micelle structure and composition of the surfactant concentration and the polymer hydrophobicity are discussed here in the context of interactions between the different components.
Collapse
Affiliation(s)
- Samhitha Kancharla
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA
| | - Dmitry Bedrov
- Department of Materials Science and Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, UT 84112, USA
| | - Marina Tsianou
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA.
| |
Collapse
|
24
|
Kancharla S, Jahan R, Bedrov D, Tsianou M, Alexandridis P. Role of chain length and electrolyte on the micellization of anionic fluorinated surfactants in water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Xie Y, Huang G, Hu W, Wang Y. Effects of piperacillin synthesis on the interfacial tensions and droplet sizes. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Insight into hydrophobic interactions between methyl ester sulfonate (MES) and polyacrylamide in alkaline-surfactant-polymer (ASP) flooding. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Liu D, Gong K, Lin Y, Liu T, Liu Y, Duan X. Dissipative Particle Dynamics Study on Interfacial Properties of Symmetric Ternary Polymeric Blends. Polymers (Basel) 2021; 13:polym13091516. [PMID: 34066898 PMCID: PMC8125886 DOI: 10.3390/polym13091516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022] Open
Abstract
We investigated the interfacial properties of symmetric ternary An/AmBm/Bn and An/Am/2BmAm/2/Bn polymeric blends by means of dissipative particle dynamics (DPD) simulations. We systematically analyzed the effects of composition, chain length, and concentration of the copolymers on the interfacial tensions, interfacial widths, and the structures of each polymer component in the blends. Our simulations show that: (i) the efficiency of the copolymers in reducing the interfacial tension is highly dependent on their compositions. The triblock copolymers are more effective in reducing the interfacial tension compared to that of the diblock copolymers at the same chain length and concentration; (ii) the interfacial tension of the blends increases with increases in the triblock copolymer chain length, which indicates that the triblock copolymers with a shorter chain length exhibit a better performance as the compatibilizers compared to that of their counterparts with longer chain lengths; and (iii) elevating the triblock copolymer concentration can promote copolymer enrichment at the center of the interface, which enlarges the width of the phase interfaces and reduces the interfacial tension. These findings illustrate the correlations between the efficiency of copolymer compatibilizers and their detailed molecular parameters.
Collapse
Affiliation(s)
- Dongmei Liu
- School of Science, North China University of Science and Technology, Tangshan 063210, China; (K.G.); (Y.L.); (Y.L.)
- Correspondence: (D.L.); (T.L.); (X.D.); Tel.: +86-315-8805860 (D.L. & T.L.); +86-431-85262479 (X.D.)
| | - Kai Gong
- School of Science, North China University of Science and Technology, Tangshan 063210, China; (K.G.); (Y.L.); (Y.L.)
| | - Ye Lin
- School of Science, North China University of Science and Technology, Tangshan 063210, China; (K.G.); (Y.L.); (Y.L.)
| | - Tao Liu
- School of Science, North China University of Science and Technology, Tangshan 063210, China; (K.G.); (Y.L.); (Y.L.)
- Correspondence: (D.L.); (T.L.); (X.D.); Tel.: +86-315-8805860 (D.L. & T.L.); +86-431-85262479 (X.D.)
| | - Yu Liu
- School of Science, North China University of Science and Technology, Tangshan 063210, China; (K.G.); (Y.L.); (Y.L.)
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- Correspondence: (D.L.); (T.L.); (X.D.); Tel.: +86-315-8805860 (D.L. & T.L.); +86-431-85262479 (X.D.)
| |
Collapse
|
28
|
Kancharla S, Dong D, Bedrov D, Tsianou M, Alexandridis P. Structure and Interactions in Perfluorooctanoate Micellar Solutions Revealed by Small-Angle Neutron Scattering and Molecular Dynamics Simulations Studies: Effect of Urea. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5339-5347. [PMID: 33885307 DOI: 10.1021/acs.langmuir.1c00433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The self-assembly of surfactants in aqueous solution can be modulated by the presence of additives including urea, which is a well-known protein denaturant and also present in physiological fluids and agricultural runoff. This study addresses the effects of urea on the structure of micelles formed in water by the fluorinated surfactant perfluoro-n-octanoic acid ammonium salt (PFOA). Analysis of small-angle neutron scattering (SANS) experiments and atomistic molecular dynamics (MD) simulations provide consensus strong evidence for the direct mechanism of urea action on micellization: urea helps solvate the hydrophobic micelle core by localizing at the surface of the core in the place of some water molecules. Consequently, urea decreases electrostatic interactions at the micelle shell, changes the micelle shape from prolate ellipsoid to sphere, and decreases the number of surfactant molecules associating in a micelle. These findings inform the interactions and behavior of surface active per- and polyfluoroalkyl substances (PFAS) released in the aqueous environment and biota.
Collapse
Affiliation(s)
- Samhitha Kancharla
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260-4200, United States
| | - Dengpan Dong
- Department of Materials Science and Engineering, University of Utah, 122 S. Central Campus Drive, Room 304, Salt Lake City, Utah 84112, United States
| | - Dmitry Bedrov
- Department of Materials Science and Engineering, University of Utah, 122 S. Central Campus Drive, Room 304, Salt Lake City, Utah 84112, United States
| | - Marina Tsianou
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260-4200, United States
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260-4200, United States
| |
Collapse
|
29
|
Sultana S, Rahman MM, Amin MR, Rana S, Hoque MA, Kumar D, Alfakeer M. Effect of temperature and solvent compositions on the aggregation and thermodynamic properties of the polyvinyl alcohol + tetradecyltrimethylammonium bromide mixture in aqua-organic mixed media. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1892848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Sharmin Sultana
- Department of Chemistry, Jahangirnagar University, Dhaka, Bangladesh
| | | | - Md. Ruhul Amin
- Department of Chemistry, Jahangirnagar University, Dhaka, Bangladesh
- Department of Chemistry & Physics, Gono Bishwabidyalay, Dhaka, Bangladesh
| | - Shahed Rana
- Department of Chemistry, Jahangirnagar University, Dhaka, Bangladesh
| | - Md. Anamul Hoque
- Department of Chemistry, Jahangirnagar University, Dhaka, Bangladesh
| | - Dileep Kumar
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - M. Alfakeer
- Chemistry Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Abstract
The aim of this work is to survey the potential of cubogel as an ocular dosage form to boost the corneal permeability of Dorzolamide Hydrochloride DZ; an antiglaucomal drug. DZ-loaded cubosomal dispersions were prepared according to Box-Behnken design, where the effect of independent variables; Monoolein MO concentration (2.5, 5 and 7.5%w/w), Pluronic® F127 concentration (0.25, 0.5 and 0.75%w/w) and magnetic stirrer speed of (400, 800 and 1200 rpm) was studied on PS (nm), Zp (−mV) and Q 2 h (%) respectively. The prepared formulae were characterized via drug content DC (%), particle size PS (nm), polydispersity index PDI, zeta potential Zp (−mV), in-vitro drug release (Q 2 h%) and finally TEM. The optimized formulation composed of: 6.13% w/w of MO, 0.75% w/w of F127 and prepared at 1200 rpm stirring speed was chosen based on the criteria of minimum PS (nm), maximum Zp (−mV) and minimum Q 2 h (%). Results revealed that the optimum formula showed PS of 153.3 ± 8.4 n, Zp of 32 ± 3 −mV and 37.78 ± 1.3% released after 2 h. Carbopol 934 (1% w/v) as gelling agent was used to prepare the optimum cubogel, which was further evaluated by DSC, ex-vivo permeation and stability studies at 4 °C for three months. Moreover, in vivo studies of the optimized cubogel include; draize test, histological examination, confocal laser scanning microscopy (CLSM) and intraocular pressure (IOP) measurement. Results revealed that the optimized cubogel was considerably safe, stable and competent to corneal delivery as assured by draize and histological examination. CLSM showed a deeper penetration of more than 2.5-fold. A higher bioavailability (288.24 mg. h/ml) was attained from cubogel compared to the market product Trusopt® eye drops (115.40 mg. h/ml) following IOP measurement. Therefore, DZ-loaded cubogel could be considered as promising delivery system to boost the transcorneal permeation hence corneal bioavailability of DZ as antiglaucomal drug.
Collapse
Affiliation(s)
- Sinar Sayed
- Pharmaceutics and Industrial Pharmacy, Cairo University Faculty of Pharmacy, Cairo, Egypt
| | | | - Maha Mohamed Amin
- Pharmaceutics and Industrial Pharmacy, Cairo University Faculty of Pharmacy, Cairo, Egypt
| | | |
Collapse
|
31
|
Adsorption of Mixtures of a Pegylated Lipid with Anionic and Zwitterionic Surfactants at Solid/Liquid. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4040047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This work explores the association of a pegylated lipid (DSPE-PEG) with different anionic and zwitterionic surfactants (pseudo-binary and pseudo-ternary polymer+ surfactant mixtures), and the adsorption of the polymer + surfactant aggregates onto negatively charged surfaces, with a surface charge density similar to that existing on the damaged hair epicuticle. Dynamic light scattering and zeta potential measurements shows that, in solution, the polymer + surfactant association results from an intricate balance between electrostatic and hydrophobic interactions, which leads to the formation of at least two different types of micellar-like polymer + surfactant aggregates. The structure and physicochemical properties of such aggregates were found strongly dependent on the specific nature and concentration of the surfactant. The adsorption of the polymer + surfactant aggregates onto negatively charged surface was studied using a set of surface-sensitive techniques (quartz crystal microbalance with dissipation monitoring, ellipsometry and Atomic Force Microscopy), which allows obtaining information about the adsorbed amount, the water content of the layers and the topography of the obtained films. Ion-dipole interactions between the negative charges of the surface and the oxyethylene groups of the polymer + surfactant aggregates appear as the main driving force of the deposition process. This is strongly dependent on the surfactant nature and its concentration, with the impact of the latter on the adsorption being especially critical when anionic surfactant are incorporated within the aggregates. This study opens important perspectives for modulating the deposition of a poorly interacting polymer onto negatively charged surfaces, which can impact in the fabrication on different aspects with technological and industrial interest.
Collapse
|