1
|
Kamran MA, Almoammar S. Orthodontic Bracket to Enamel Pretreated With Nd: YAG and Er: Cr, YSGG Lasers Using Curcumin-Hydroxyapatite Nanoparticles Infused Adhesive: A FTIR, SEM Evaluation via Backscattered Electron Imaging. Microsc Res Tech 2024. [PMID: 39663750 DOI: 10.1002/jemt.24773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
To evaluate the SBS, DC, and rheological valuation of experimental 1 wt % Cur-loaded-HNPs orthodontic adhesive to bond bracket to enamel surface treated with PA; Nd: YAG, and Er: Cr, YSGG lasers. Two adhesives were prepared experimental adhesive (EA) and EA loaded with 1-wt % Cur-HNP. Surface characterization of Cur-loaded HNP was performed under SEM along with EDS. Specimens were prepared and conditioned with three different strategies PA-gel, Er,Cr:YSGG laser, Nd: YAG laser. Following pretreatment brackets were bonded, samples underwent artificial aging and two samples from each enamel pretreatment regime were assessed under SEM via BSE. SBS testing was achieved via UTM followed by failure analysis using ARI. Modified and unmodified adhesives underwent DC using FTIR and rheological valuation was performed. SBS and DC were assessed using ANOVA and post hoc multiple comparison tests. The highest SBS was seen in the enamel surface treated with PA. The lowest SBS was remarked in the enamel surface treated with Nd: YAG laser. Based on ARI it was noted that modified adhesive containing Cur-HNP exhibited the highest number of failures between 1 and 2. No significant difference was observed between both adhesives in terms of DC. Adhesive modified with 1% Cur-HNP increased viscosity with a decrease in fluidity. The use of Er,Cr:YSGG laser for enamel pretreatment before bracket placement showed potential as a substitute for conventional acid etching, especially when combined with an experimental orthodontic adhesive containing Cur-HNPs.
Collapse
Affiliation(s)
- Muhammad Abdullah Kamran
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Salem Almoammar
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
2
|
Niazi FH, Alotaibi B, Abdulla AM, AlTowayan SA, Ahmed SZ, Alshehri D, Samran A, Alsuwayyigh N, Luddin N. Modified experimental adhesive with sepiolite nanoparticles on caries dentin treated with femtosecond laser and photodynamic activated erythrosine. An in vitro study. Photodiagnosis Photodyn Ther 2024; 49:104306. [PMID: 39182662 DOI: 10.1016/j.pdpdt.2024.104306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
AIM To assess the effect of CAD surface conditioners and their effect on Ra and SBS of tooth-colored filling material adhered to CAD surface with adhesive modified with 1 % Sep-NPs. Also, the DC of modified EA and its effect on the rheological properties. METHODS Ninety human molars with carious extension up to the middle third of occlusal dentin were included. The teeth were then arbitrarily allocated into three groups based on the type of surface conditioning received (n = 30) Group 1 (PA), Group 2 (FS laser), and Group 3 (Ery PS). Ten samples from each group underwent Ra analysis using a stylus profiler. Twenty samples from each cohort were distributed into two subcategories based on the application of unmodified EA (A) and Sep-infiltrated EA (B). Composite restoration was built followed by SBS and failure mode analysis. Scanning electron microscopy and Energy dispersive X-ray EDX were assessed of sepiolite NPs. Degree of conversion (DC) and rheological analysis of the modified adhesive and unmodified adhesive were also performed. One-way analysis of variance (ANOVA) and the Tukey post hoc test were employed to conduct comparisons between the different groups. RESULTS The highest score of Ra and bond strength were displayed by Group 1B (PA + Sep-NPs filled EA) (17.32 ± 1.43 MPa) samples. Nevertheless, the lowest values were established by Group 3A (Ery-PS + EA) (13.45 ± 0.80 MPa) treated teeth. An increase in Ra resulted in a rise in SBS.DC decreased with the incorporation of 1 % Sep-NPs in EA compared to unmodified EA. CONCLUSION Conditioning of CAD with PA and FS laser shows high surface roughness and favorable adhesion to experimental adhesive modified with 1 % Sep-NPs. Modified adhesive with 1 % Sep-NPs decreases DC and rheological properties.
Collapse
Affiliation(s)
- Fayez Hussain Niazi
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia.
| | - Badi Alotaibi
- Department of Conservative Dental Sciences, College of Dentistry, Qassim University, Qassim, Saudi Arabia.
| | - Anshad M Abdulla
- Department of Pediatric Dentistry & Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia.
| | | | - Syed Zubairuddin Ahmed
- Department of Restorative Dental Sciences Imam Abdul Rahman Bin Faisal University Dammam, Saudi Arabia.
| | | | - Abdulaziz Samran
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia.
| | | | - Norhayati Luddin
- Restorative Dentistry Unit (Prosthodontics), School of Dental Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia.
| |
Collapse
|
3
|
Bayraktar ET, Türkmen C, Atali PY, Tarçin B, Korkut B, Yaşa B. In-vitro evaluation of wear characteristics, microhardness and color stability of dental restorative CAD/CAM materials. Dent Mater J 2024; 43:74-83. [PMID: 38072413 DOI: 10.4012/dmj.2023-071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The aim of this study was to demonstrate the vertical and volumetric wear characteristics of CAD/CAM materials. The microhardness and color stability were evaluated. A polymer infiltrated ceramic network CAD/CAM block, resin nanoceramic CAD/CAM blocks, a resin composite, and enamel tissue were investigated. Samples were loaded in a chewing simulator. Other samples were aged and immersed in coffee. Color change was evaluated using the digital image analysis and a spectrophotometer. The data were analyzed using Kolmogorov-Smirnov, Kruskal Wallis, Mann Whitney U, Friedman, Spearman's rho tests (p<0.05). The lowest level of wear was obtained in enamel tissue group 0.20 (Q1:0.14; Q3:0.27μm). Resin composite group 2.48 (Q1:2.12; Q3:2.92) showed lower level of discoloration. No agreement was obtained between the digital image analysis and spectrophotometer data (Spearman's rho -0.314, p=0.014). Similar wear rate to the natural enamel tissue was obtained for Vita Enamic. Digital image analysis was considered a promising technique for monitoring the color change.
Collapse
Affiliation(s)
| | - Cafer Türkmen
- Department of Restorative Dentistry, Faculty of Dentistry, Marmara University
| | - Pınar Yilmaz Atali
- Department of Restorative Dentistry, Faculty of Dentistry, Marmara University
| | - Bilge Tarçin
- Department of Restorative Dentistry, Faculty of Dentistry, Marmara University
| | - Bora Korkut
- Department of Restorative Dentistry, Faculty of Dentistry, Marmara University
| | - Bilal Yaşa
- Department of Restorative Dentistry, Faculty of Dentistry, İstanbul Kent University
| |
Collapse
|
4
|
Khan R, Haider S, Khan MUA, Haider A, Razak SIA, Hasan A, Khan R, Wahit MU. Fabrication of amine-functionalized and multi-layered PAN-(TiO 2)-gelatin nanofibrous wound dressing: In-vitro evaluation. Int J Biol Macromol 2023; 253:127169. [PMID: 37783243 DOI: 10.1016/j.ijbiomac.2023.127169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
The development of advanced multifunctional wound dressings remains a major challenge. Herein, a novel multilayer (ML) electrospun nanofibers (NFs) wound dressing based on diethylenetriamine (DETA) functionalized polyacrylonitrile (PAN), TiO2 nanoparticles (NPs) coating (Ct), and bioderived gelatin (Gel) was developed for potential applications in wound healing. The ML PAN-DETA-Ct-Gel membrane was developed by combining electrospinning, chemical functionalization, synthesis, and electrospray techniques, using a layer-by-layer method. The ML PAN-DETA-Ct-Gel membrane is comprised of an outer layer of PAN-DETA as a barrier to external microorganisms and structural support, an interlayer TiO2 NPs (Ct) as antibacterial function, and a contact layer (Gel) to improve biocompatibility and cell viability. The NFs membranes were characterized by scanning electron microscopy (SEM), surface profilometry, BET analysis, and water contact angle techniques to investigate their morphology, surface roughness, porosity, and wettability. The ML PAN-DETA-Ct-Gel wound dressing exhibited good surface roughness, porosity, and better wettability. Cell morphology, proliferation, and viability were determined using fibroblasts (3T3), and antibacterial assays were performed against six pathogens. The ML PAN-DETA-Ct-Gel NFs membrane showed good cell morphology, proliferation, viability, and antibacterial activity compared with other membranes. This new class of ML NFs membranes offers a multifunctional architecture with adequate biocompatibility, cell viability, and antibacterial activity.
Collapse
Affiliation(s)
- Rawaiz Khan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia; King Salman Center for Disability Research, Riyadh 11614, Saudi Arabia.
| | - Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Saiful Izwan Abd Razak
- Sports Innovation & Technology Centre, Institute of Human Centred Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia; BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia.
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Mat Uzir Wahit
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia; Center for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia
| |
Collapse
|
5
|
Alrahlah A, Khan R, Al-Odayni AB, Saeed WS, Bautista LS, Alnofaiy IA, De Vera MAT. Advancing Dimethacrylate Dental Composites by Synergy of Pre-Polymerized TEGDMA Co-Filler: A Physio-Mechanical Evaluation. Biomimetics (Basel) 2023; 8:577. [PMID: 38132515 PMCID: PMC10741395 DOI: 10.3390/biomimetics8080577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Dental resin composites (DRCs) have gained immense popularity as filling material in direct dental restorations. They are highly valued for their ability to closely resemble natural teeth and withstand harsh oral conditions. To increase the clinical performance of dental restorations, various fillers are incorporated into DRCs. Herein, the effect of incorporating pre-polymerized triethylene glycol dimethacrylate (P-TEGDMA) as a co-filler in varying proportions (0%, 2.5%, 5%, and 10% by weight) into bisphenol A-glycidyl methacrylate (BisGMA)/TEGDMA/SiO2 resin composite was investigated. The obtained DRCs were examined for morphology, rheological properties, degree of crosslinking (DC), Vickers microhardness (VMH), thermal stability, and flexural strength (FS). The results revealed that SiO2 and P-TEGDMA particles were uniformly dispersed. The introduction of P-TEGDMA particles (2.5 wt.%) into the resin composite had a remarkable effect, leading to a significant reduction (p ≤ 0.05) in complex viscosity, decreasing from 393.84 ± 21.65 Pa.s to 152.84 ± 23.94 Pa.s. As a result, the DC was significantly (p ≤ 0.05) improved from 61.76 ± 3.80% to 68.77 ± 2.31%. In addition, the composite mixture demonstrated a higher storage modulus (G') than loss modulus (G″), indicative of its predominantly elastic nature. Moreover, the thermal stability of the DRCs was improved with the addition of P-TEGDMA particles by increasing the degradation temperature from 410 °C to 440 °C. However, the VMH was negatively affected. The study suggests that P-TEGDMA particles have the potential to be used as co-fillers alongside other inorganic fillers, offering a means to fine-tune the properties of DRCs and optimize their clinical performance.
Collapse
Affiliation(s)
- Ali Alrahlah
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia (W.S.S.); (L.S.B.)
| | - Rawaiz Khan
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia (W.S.S.); (L.S.B.)
| | - Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia (W.S.S.); (L.S.B.)
| | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia (W.S.S.); (L.S.B.)
| | - Leonel S. Bautista
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia (W.S.S.); (L.S.B.)
| | - Ibraheem A. Alnofaiy
- Research Center, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (I.A.A.); (M.A.T.D.V.)
| | - Merry Angelyn Tan De Vera
- Research Center, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (I.A.A.); (M.A.T.D.V.)
| |
Collapse
|
6
|
Topa-Skwarczyńska M, Jankowska M, Gruchała-Hałat A, Petko F, Galek M, Ortyl J. High-performance photoinitiating systems for new generation dental fillings. Dent Mater 2023; 39:729. [PMID: 37393151 DOI: 10.1016/j.dental.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
OBJECTIVES To obtain new generation dental composites with improved performance properties compared to currently available dental fillings on the market and to determine the influence of new initiating systems on final product parameters such as degree of cure, hardness, color, and shrinkage. METHODS In order to verify the effectiveness of the developed initiating systems, typical spectroscopic, electrochemical, and kinetic studies using the real-time FT-IR method were shown. Moreover, paste dental fillings were prepared, the compositions were irradiated with the dental lamp, and the degrees of cross-linking were measured by Raman spectroscopy. The polymerization shrinkage was also determined using the rheometer. In addition, their hardness was examined on the Shore scale. Finally, the color analysis of the composites in the L*a*b* color space was compared with the VITA CLASSIC colorant. RESULTS It was shown that, due to their excellent spectroscopic and electrochemical properties, new quinazolin-2-one can act as co-initiators in cationic and radical photopolymerization. It was demonstrated that the most effective composite containing the initiator system in the form of 3-SCH3Ph-Q, IOD, MDEA, and an inorganic filler as nanometric silica and a bonding agent is cured more than 90% after just 1 cycle of dental lamp exposure (30 s), the hardness of the composite after curing on the Shor Scale is 82 ± 4, and the polymerization shrinkage is less than 2.8%. SIGNIFICANCE The article demonstrates effective new initiator systems as an alternative to CQ/amine for obtaining new-generation dental composites. The developed dental composites are a big competition to the currently used dental fillings on the market.
Collapse
Affiliation(s)
- Monika Topa-Skwarczyńska
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland; Photo4Chem Ltd., Lea 114, 30-133 Cracow, Poland.
| | - Magdalena Jankowska
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland
| | - Alicja Gruchała-Hałat
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland
| | - Filip Petko
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
| | - Mariusz Galek
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
| | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland; Photo4Chem Ltd., Lea 114, 30-133 Cracow, Poland.
| |
Collapse
|
7
|
Alrahlah A, Khan R, Al-Odayni AB, Saeed WS, Bautista LS, Haider S, De Vera MAT, Alshabib A. Fabrication of Novel Pre-Polymerized BisGMA/Silica Nanocomposites: Physio-Mechanical Considerations. J Funct Biomater 2023; 14:323. [PMID: 37367287 DOI: 10.3390/jfb14060323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Resin composite mimics tooth tissues both in structure and properties, and thus, they can withstand high biting force and the harsh environmental conditions of the mouth. Various inorganic nano- and micro-fillers are commonly used to enhance these composites' properties. In this study, we adopted a novel approach by using pre-polymerized bisphenol A-glycidyl methacrylate (BisGMA) ground particles (XL-BisGMA) as fillers in a BisGMA/triethylene glycol dimethacrylate (TEGDMA) resin system in combination with SiO2 nanoparticles. The BisGMA/TEGDMA/SiO2 mixture was filled with various concentrations of XL-BisGMA (0, 2.5, 5, and 10 wt.%). The XL-BisGMA added composites were evaluated for viscosity, degree of conversion (DC), microhardness, and thermal properties. The results demonstrated that the addition of a lower concentration of XL-BisGMA particles (2.5 wt.%) significantly reduced (p ≤ 0.05) the complex viscosity from 374.6 (Pa·s) to 170.84. (Pa·s). Similarly, DC was also increased significantly (p ≤ 0.05) by the addition of 2.5 wt.% XL-BisGMA, with the pristine composite showing a DC of (62.19 ± 3.2%) increased to (69.10 ± 3.4%). Moreover, the decomposition temperature has been increased from 410 °C for the pristine composite (BT-SB0) to 450 °C for the composite with 10 wt.% of XL-BisGMA (BT-SB10). The microhardness has also been significantly reduced (p ≤ 0.05) from 47.44 HV for the pristine composite (BT-SB0) to 29.91 HV for the composite with 2.5 wt.% of XL-BisGMA (BT-SB2.5). These results suggest that a XL-BisGMA could be used to a certain percentage as a promising filler in combination with inorganic fillers to enhance the DC and flow properties of the corresponding resin-based dental composites.
Collapse
Affiliation(s)
- Ali Alrahlah
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Rawaiz Khan
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Leonel S Bautista
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | | | - Abdulrahman Alshabib
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
8
|
Moldovan M, Dudea D, Cuc S, Sarosi C, Prodan D, Petean I, Furtos G, Ionescu A, Ilie N. Chemical and Structural Assessment of New Dental Composites with Graphene Exposed to Staining Agents. J Funct Biomater 2023; 14:jfb14030163. [PMID: 36976087 PMCID: PMC10058725 DOI: 10.3390/jfb14030163] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Among the newest trends in dental composites is the use of graphene oxide (GO) nanoparticles to assure better cohesion of the composite and superior properties. Our research used GO to enhance several hydroxyapatite (HA) nanofiller distribution and cohesion in three experimental composites CC, GS, GZ exposed to coffee and red wine staining environments. The presence of silane A-174 on the filler surface was evidenced by FT-IR spectroscopy. Experimental composites were characterized through color stability after 30 days of staining in red wine and coffee, sorption and solubility in distilled water and artificial saliva. Surface properties were measured by optical profilometry and scanning electron microscopy, respectively, and antibacterial properties wer e assessed against Staphylococcus aureus and Escherichia coli. A colour stability test revealed the best results for GS, followed by GZ, with less stability for CC. Topographical and morphological aspects revealed a synergism between GZ sample nanofiller components that conducted to the lower surface roughness, with less in the GS sample. However, surface roughness variation due to the stain was affected less than colour stability at the macroscopic level. Antibacterial testing revealed good effect against Staphylococcus aureus and a moderate effect against Escherichia coli.
Collapse
Affiliation(s)
- Marioara Moldovan
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Diana Dudea
- Department of Prosthetic Dentistry and Dental Materials, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Stanca Cuc
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Codruta Sarosi
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Doina Prodan
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Ioan Petean
- Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, 11 Arany Janos Street, 400084 Cluj-Napoca, Romania
| | - Gabriel Furtos
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Andrei Ionescu
- Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Nicoleta Ilie
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, 80336 Munich, Germany
| |
Collapse
|
9
|
Novel 1,2-Bismethacrylate-3-Eugenyl Propane for Resin Composites: Synthesis, Characterization, Rheological, and Degree of Conversion. Polymers (Basel) 2023; 15:polym15061481. [PMID: 36987268 PMCID: PMC10053438 DOI: 10.3390/polym15061481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
This work aimed to synthesize a novel dimethacrylated-derivative of eugenol (Eg) (termed EgGAA) as potential biomaterial for certain applications such as dental fillings and adhesives. EgGAA was synthesized through a two-step reaction: (i) a mono methacrylated-eugenol (EgGMA) was produced via a ring-opening etherification of glycidyl methacrylate (GMA) with Eg; (ii) EgGMA was condensed with methacryloyl chloride into EgGAA. EgGAA was further incorporated in matrices containing BisGMA and TEGDMA (50:50 wt%) (TBEa), in which EgGAA replaced BisGMA as 0–100 wt% to get a series of unfilled resin composites (TBEa0–TBEa100), and by addition of reinforcing silica (66 wt%), a series of filled resins were also obtained (F-TBEa0–F-TBEa100). Synthesized monomers were analyzed for their structural, spectral, and thermal properties using FTIR, 1H- and 13C-NMR, mass spectrometry, TGA, and DSC. Composites rheological and DC were analyzed. The viscosity (η, Pa·s) of EgGAA (0.379) was 1533 times lower than BisGMA (581.0) and 125 times higher than TEGDMA (0.003). Rheology of unfilled resins (TBEa) indicated Newtonian fluids, with viscosity decreased from 0.164 Pa·s (TBEa0) to 0.010 Pa·s (TBEa100) when EgGAA totally replaced BisGMA. However, composites showed non-Newtonian and shear-thinning behavior, with complex viscosity (η*) being shear-independent at high angular frequencies (10–100 rad/s). The loss factor crossover points were at 45.6, 20.3, 20.4, and 25.6 rad/s, indicating a higher elastic portion for EgGAA-free composite. The DC was insignificantly decreased from 61.22% for the control to 59.85% and 59.50% for F-TBEa25 and F-TBEa50, respectively, while the difference became significant when EgGAA totally replaced BisGMA (F-TBEa100, DC = 52.54%). Accordingly, these properties could encourage further investigation of Eg-containing resin-based composite as filling materials in terms of their physicochemical, mechanical, and biological potentiality as dental material.
Collapse
|
10
|
Alsunbul H, Alfawaz YF, Alhamdan EM, Farooq I, Vohra F, Abduljabbar T. Influence of carbon and graphene oxide nanoparticle on the adhesive properties of dentin bonding polymer: A SEM, EDX, FTIR study. J Appl Biomater Funct Mater 2023; 21:22808000231159238. [PMID: 36905128 DOI: 10.1177/22808000231159238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
OBJECTIVE This study was aimed at including 2.5 wt.% of carbon nanoparticles (CNPs) and graphene oxide NPs (GNPs) in a control adhesive (CA) and then investigate the effect of this inclusion on their mechanical properties and its adhesion to root dentin. MATERIALS AND METHODS Scanning electron microscopy and energy dispersive X-ray (SEM-EDX) mapping were conducted to investigate the structural features and elemental distribution of CNPs and GNPs, respectively. These NPs were further characterized by Raman spectroscopy. The adhesives were characterized by evaluating their push-out bond strength (PBS), rheological properties, degree of conversion (DC) investigation, and failure type analysis. RESULTS The SEM micrographs revealed that the CNPs were irregular and hexagonal, whereas the GNPs were flake-shaped. EDX analysis showed that carbon (C), oxygen (O), and zirconia (Zr) were found in the CNPs, while the GNPs were composed of C and O. The Raman spectra for CNPs and GNPs revealed their characteristic bands (CNPs-D band: 1334 cm-1, GNPs-D band: 1341 cm-1, CNPs-G band: 1650 cm-1, and GNPs-G band: 1607 cm-1). The testing verified that the highest bond strength to root dentin were detected for GNP-reinforced adhesive (33.20 ± 3.55 MPa), trailed closely by CNP-reinforced adhesive (30.48 ± 3.10 MPa), while, the CA displayed lowest values (25.11 ± 3.60 MPa). The inter-group comparisons of the NP-reinforced adhesives with the CA revealed statistically significant results (p < 0.01). Failures of adhesive nature were most common in within the adhesives and root dentin. The rheological assessment results demonstrated a reduced viscosity for all the adhesives observed at advanced angular frequencies. All the adhesives verified suitable dentin interaction shown by hybrid layer and appropriate resin tag development. A reduced DC was perceived for both NP-reinforced adhesives, compared to the CA. CONCLUSION The present study's findings have demonstrated that 2.5% GNP adhesive revealed the highest, suitable root dentin interaction, and acceptable rheological properties. Nevertheless, a reduced DC was observed (matched with the CA). Prospective studies probing the influence of diverse concentrations of filler NPs on the adhesive's mechanical properties to root dentin are recommended.
Collapse
Affiliation(s)
- Hanan Alsunbul
- Department of Restorative Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Yasser F Alfawaz
- Department of Restorative Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Eman M Alhamdan
- Prosthetic Dental Science Department, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Imran Farooq
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Fahim Vohra
- Prosthetic Dental Science Department, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Tariq Abduljabbar
- Prosthetic Dental Science Department, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Baldissara P, Silvestri D, Pieri GM, Mazzitelli C, Arena A, Maravic T, Monaco C. Effect of Fluorographene Addition on Mechanical and Adhesive Properties of a New Core Build-Up Composite. Polymers (Basel) 2022; 14:polym14235301. [PMID: 36501696 PMCID: PMC9737195 DOI: 10.3390/polym14235301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
This study aims to develop a restorative material having such mechanical and adhesive properties that it can be used both as a reconstruction material and as a luting cement. The experimental core build-up composite (CBC) was derived from a self-adhesive cement by the modification of its chemical formula, requiring the use of dedicated dentin and ceramic primers. The adhesive properties to zirconia and dentin were analyzed with a micro-Shear Bond Strength test (mSBS). The mechanical properties were analyzed by a flexural strength test. The results were compared with those obtained for other commercially available cements and core build-up materials, both before and after addition of 2 wt.% fluorographene. The CBC obtained average values in the mSBS of 49.7 ± 4.74 MPa for zirconia and 32.2 ± 4.9 MPa for dentin, as well as values of 110.9 ± 9.3 MPa for flexural strength and 6170.8 ± 703.2 MPa for Young's modulus. The addition of fluorographene, while increasing the Young's modulus of the core build-up composite by 10%, did not improve the adhesive capabilities of the primers and cement on either zirconia or dentin. The CBC showed adhesive and mechanical properties adequate both for a restoration material and a luting cement. The addition of 2 wt.% fluorographene was shown to interfere with the polymerization reaction of the material, suggesting the need for further studies.
Collapse
Affiliation(s)
- Paolo Baldissara
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40125 Bologna, Italy
- Correspondence: (P.B.); (D.S.)
| | - Davide Silvestri
- Department of Surgery, Medical, Dentistry and Morphological Sciences with Transplant Interest, Oncology and Regenerative Medicine (CHIMOMO), University of Modena and Reggio Emilia, 41124 Modena, Italy
- Correspondence: (P.B.); (D.S.)
| | - Giovanni Maria Pieri
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40125 Bologna, Italy
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40125 Bologna, Italy
| | - Antonio Arena
- Department of Surgery, Medical, Dentistry and Morphological Sciences with Transplant Interest, Oncology and Regenerative Medicine (CHIMOMO), University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Tatjana Maravic
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40125 Bologna, Italy
| | - Carlo Monaco
- Department of Surgery, Medical, Dentistry and Morphological Sciences with Transplant Interest, Oncology and Regenerative Medicine (CHIMOMO), University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
12
|
Ahmad S, Hasan N, Fauziya, Gupta A, Nadaf A, Ahmad L, Aqil M, Kesharwani P. Review on 3D printing in dentistry: conventional to personalized dental care. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2292-2323. [PMID: 35796720 DOI: 10.1080/09205063.2022.2099666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The CAD (Computer-aided design) and CAM (computer-aided manufacturing) have most applications in the manufacturing of fully automated, personalized dental devices and tailor-made treatment plans. 3D printing is one of the most rapidly expanding and new methods of manufacturing different things because of its on-demand and high productivity within the cost-effective manner which have a variety of applications in healthcare, pharmaceuticals, orthopaedics, engineered tissue models, medical devices, defence industries, automotive and aerospace sectors. Due to its emerging applications in the various sectors, the healthcare, Industries, and academic sectors are attracted towards the 3D printed materials. This review talks about the dental implants, polymers that are employed in concocting dental implants, critical parameters, and challenges which are to be considered while preparing these implants, advantages of 3D printing in the field of dentistry and the current trends. it discusses the variety of applications of 3D printed materials in the field of dentistry. Along with their method of fabrication, their critical process parameters (CPPs) are also discussed.
Collapse
Affiliation(s)
- Shadaan Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Fauziya
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Akash Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Lubna Ahmad
- Department of Conservative Dentistry and Endodontics, Sudha Rustagi College of Dental Sciences & Research, Faridabad, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
13
|
Alrahlah A, Khan R, Vohra F, Alqahtani IM, Alruhaymi AA, Haider S, Al-Odayni AB, Saeed WS, Murthy HCA, Bautista LS. Influence of the Physical Inclusion of ZrO 2/TiO 2 Nanoparticles on Physical, Mechanical, and Morphological Characteristics of PMMA-Based Interim Restorative Material. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1743019. [PMID: 36033557 PMCID: PMC9417768 DOI: 10.1155/2022/1743019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022]
Abstract
Polymethyl methacrylate (PMMA) is often used in restorative dentistry for its easy fabrication, aesthetics, and low cost for interim restorations. However, poor mechanical properties to withstand complex masticatory forces are a concern for clinicians. Therefore, this study aimed to modify a commercially available PMMA-based temporary restorative material by adding TiO2 and ZrO2 nanoparticles in different percentages as fillers and to investigate its physio-mechanical properties. Different percentages (0, 0.5, 1.5, and 3.0 wt%) of TiO2 and ZrO2 nanoparticles were mixed with the pristine PMMA resin (powder to liquid ratio: 1 : 1) and homogenized using high-speed mixer. The composites obtained were analyzed for their flexural strength (F.S.), elastic modulus (E.M.), Vickers hardness (H.V.), surface roughness Ra, morphology and water contact angle (WCA). The mean average was determined with standard deviation (SD) to analyze the results, and a basic comparison test was conducted. The results inferred that adding a small amount (0.5 wt%) of TiO2 and ZrO2 nanoparticles (NPs) could significantly enhance the physio-mechanical and morphological characteristics of PMMA interim restorations. EM and surface hardness increased with increasing filler content, with 3.0 wt.% ZrO2 exhibiting the highest EM (3851.28 MPa), followed by 3.0 wt.% TiO2 (3632.34 MPa). The WCA was significantly reduced from 91.32 ± 4.21° (control) to 66.30 ± 4.23° for 3.0 wt.% ZrO2 and 69.88 ± 3.55° for 3.0 wt.% TiO2. Therefore, TiO2 and ZrO2 NPs could potentially be used as fillers to improve the performance of PMMA and similar interim restorations.
Collapse
Affiliation(s)
- Ali Alrahlah
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Rawaiz Khan
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Fahim Vohra
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Ibrahim M. Alqahtani
- Public Security Medical Services, Security Patrols Medical Center, Riyadh, Saudi Arabia
| | - Adel A. Alruhaymi
- Prince Mohammed bin Naif Medical Center, King Fahad Security College, Riyadh, Saudi Arabia
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, PO Box 800, Riyadh 11421, Saudi Arabia
| | - Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - H. C. Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P O Box, 1888 Adama, Ethiopia
- Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and technical science (SIMAT), Saveetha University, -600077, Chennai, Tamil Nadu, India
| | - Leonel S. Bautista
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
14
|
Cheng J, Deng Y, Tan Y, Li J, Fei Y, Wang C, Zhang J, Niu C, Fu Q, Lu L. Preparation of Silica Aerogel/Resin Composites and Their Application in Dental Restorative Materials. Molecules 2022; 27:molecules27144414. [PMID: 35889287 PMCID: PMC9323775 DOI: 10.3390/molecules27144414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
As the most advanced aerogel material, silica aerogel has had transformative industrial impacts. However, the use of silica aerogel is currently limited to the field of thermal insulation materials, so it is urgent to expand its application into other fields. In this work, silica aerogel/resin composites were successfully prepared by combining silica aerogel with a resin matrix for dental restoration. The applications of this material in the field of dental restoration, as well as its performance, are discussed in depth. It was demonstrated that, when the ratio of the resin matrix Bis-GMA to TEGDMA was 1:1, and the content of silica aerogel with 50 μm particle size was 12.5%, the composite achieved excellent mechanical properties. The flexural strength of the silica aerogel/resin composite reached 62.9546 MPa, which was more than five times that of the pure resin. Due to the presence of the silica aerogel, the composite also demonstrated outstanding antibacterial capabilities, meeting the demand for antimicrobial properties in dental materials. This work successfully investigated the prospect of using commercially available silica aerogels in dental restorative materials; we provide an easy method for using silica aerogels as dental restorative materials, as well as a reference for their application in the field of biomedical materials.
Collapse
|
15
|
Al-Odayni AB, Alotaibi DH, Saeed WS, Al-Kahtani A, Assiri A, Alkhtani FM, Alrahlah A. Eugenyl-2-Hydroxypropyl Methacrylate-Incorporated Experimental Dental Composite: Degree of Polymerization and In Vitro Cytotoxicity Evaluation. Polymers (Basel) 2022; 14:polym14020277. [PMID: 35054684 PMCID: PMC8781375 DOI: 10.3390/polym14020277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 01/27/2023] Open
Abstract
The aim of this study was to evaluate the properties of new dental formulations containing eugenyl-2-hydroxypropyl methacrylate (EgGMA) monomer, as restorative dental material, in terms of their degree of photopolymerization and cytotoxicity. The target model composites (TBEg0, TBEg2.5, and TBEg5) were prepared by mixing 35% organic matrix (TEGDMA/BisGMA (50/50 wt%) of which 0, 2.5, and 5 wt%, respectively, were replaced with EgGMA monomer) with 65% filler (silanized hydroxyapatite (HA)/zinc oxide (ZnO2), 4:3 by weight). The vinylic double-bond conversion (DC) after light-curing was studied using Fourier transform infrared technique whereas cell viability was in vitro tested using primary human gingival fibroblasts cells over 7 days by means of AlamarBlue colorimetric assay. The obtained data were statistically analyzed using ANOVA and Tukey post-hoc tests. The results revealed no significant difference in DC between TBEg2.5 (66.49%) and control (TBEg0; 68.74%), whereas both differ significantly with TBEg5, likely due to the inhibitory effect of eugenol moiety at high concentration. The cell viability test indicated that all the composites are biocompatible. No significant difference was counted between TBEg2.5 and TBEg5, however, both differed significantly from the control (TBEg0). Thus, even though its apparent negative effect on polymerization, EgGMA is potentially safer than bisphenol-derived monomers. Such potential properties may encourage further investigations on term of EgGMA amount optimization, compatibility with other dental resins, and antimicrobial activity.
Collapse
Affiliation(s)
- Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (W.S.S.); (A.A.)
- Correspondence:
| | - Dalal H. Alotaibi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (W.S.S.); (A.A.)
| | - Abdullah Al-Kahtani
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ali Assiri
- College of Dentistry Research Center (CDRC), College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Fahad M. Alkhtani
- Department of Prosthodontics, College of Dentistry, Prince Sattam Bin Abdulaziz University, Alkharj 11924, Saudi Arabia;
| | - Ali Alrahlah
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (W.S.S.); (A.A.)
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
16
|
Abhay SS, Ganapathy D, Veeraiyan DN, Ariga P, Heboyan A, Amornvit P, Rokaya D, Srimaneepong V. Wear Resistance, Color Stability and Displacement Resistance of Milled PEEK Crowns Compared to Zirconia Crowns under Stimulated Chewing and High-Performance Aging. Polymers (Basel) 2021; 13:polym13213761. [PMID: 34771318 PMCID: PMC8587121 DOI: 10.3390/polym13213761] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
Recently, polyetheretherketone (PEEK) has been introduced to the dental market as a high-performance and chemically inert biomaterial. This study aimed to compare the wear resistance, abrasiveness, color stability, and displacement resistance of zirconia and PEEK milled crowns. An ideal tooth preparation of a first maxillary molar was done and scanned by an intraoral scanner to make a digital model. Then, the prosthetic crown was digitally designed on the CAD software, and the STL file was milled in zirconia (CaroZiir S, Carol Zircolite Pvt. Ltd., Gujarat, India) and PEEK (BioHpp, Bredent GmbH, Senden, Germany) crowns using five-axis CNC milling machines. The wear resistance, color stability, and displacement resistance of the milled monolithic zirconia with unfilled PEEK crowns using a chewing simulator with thermocyclic aging (120,000 cycles) were compared. The antagonist wear, material wear, color stability, and displacement were evaluated and compared among the groups using the Wilcoxon-Mann-Whitney U-test. Zirconia was shown to be three times more abrasive than PEEK (p value < 0.05). Zirconia had twice the wear resistance of PEEK (p value < 0.05). Zirconia was more color stable than PEEK (p value < 0.05). PEEK had more displacement resistance than zirconia (p value < 0.05). PEEK offers minimal abrasion, better stress modulation through plastic deformation, and good color stability, which make it a promising alternative to zirconia crown.
Collapse
Affiliation(s)
- Simone Shah Abhay
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India; (S.S.A.); (D.G.); (D.N.V.); (P.A.); (A.H.)
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India; (S.S.A.); (D.G.); (D.N.V.); (P.A.); (A.H.)
| | - Deepak Nallaswamy Veeraiyan
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India; (S.S.A.); (D.G.); (D.N.V.); (P.A.); (A.H.)
| | - Padma Ariga
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India; (S.S.A.); (D.G.); (D.N.V.); (P.A.); (A.H.)
| | - Artak Heboyan
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India; (S.S.A.); (D.G.); (D.N.V.); (P.A.); (A.H.)
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, Yerevan 0025, Armenia
| | - Pokpong Amornvit
- Golden Jubilee Medical Centre, Mahidol University, Nakon Pathom, Salaya 73170, Thailand;
| | - Dinesh Rokaya
- Department of Clinical Dentistry, International College of Dentistry, Walailak University, Bangkok 10400, Thailand
- Correspondence: (D.R.); (V.S.); Tel.: +66-2218-8535 (V.S.)
| | - Viritpon Srimaneepong
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (D.R.); (V.S.); Tel.: +66-2218-8535 (V.S.)
| |
Collapse
|
17
|
Labban N, Al Amri MD, Alnafaiy SM, Alhijji SM, Alenizy MA, Iskandar M, Feitosa S. Influence of Toothbrush Abrasion and Surface Treatments on Roughness and Gloss of Polymer-Infiltrated Ceramics. Polymers (Basel) 2021; 13:polym13213694. [PMID: 34771250 PMCID: PMC8587314 DOI: 10.3390/polym13213694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to compare the surface roughness and gloss of polymer-infiltrated ceramics after simulated in vitro toothbrushing in different storage mediums. Four polymer- infiltrated ceramics were evaluated, Lava ultimate (LU), Vita enamic (EN), Shofu (SH), and Crystal ultra (CU). The control group was a feldspathic ceramic, Vita Mark II (VM). One hundred and twenty specimens (12 × 14 × 2.5 mm) were prepared using a precision saw. For each material (n = 24), the specimens were allocated into two groups, polished and stained. The specimens of each group were stored (for 7 days) in either citric acid (0.2N) or distilled water. Data for surface gloss (ΔE*SCE-SCI) and roughness (Ra) were evaluated before (baseline) and after simulated toothbrushing. For toothbrushing simulation, a toothpaste slurry containing a toothpaste of 100 relative dentin abrasion (RDA) and 0.3 ml distilled water was used for 3650 cycles (7300 strokes) for each specimen. Data were analyzed using t-test and ANOVA. A p-value of ≤ to 0.05 was considered significant. The highest mean value of surface gloss was identified in CU (stained—water) (4.3 (0.47)) (ΔE*) and EN (stained—acid) (4.3 (1.00)) (ΔE*) specimens, whereas the lowest mean value was shown by SH (stained—acid) (2.04 (0.42)) (ΔE*) samples. The highest mean value of surface roughness was observed in SH (0.40 (0.99)) Ra (stained—acid) whereas the lowest in VM (0.13 (0.039)) Ra (polished— water). A significant difference (p < 0.05) was observed in surface roughness and gloss between the materials with simulated toothbrushing, except in VM and LU, respectively. Therefore, it can be concluded that simulated toothbrushing impacts on surface roughness and gloss, irrespective of the storage medium.
Collapse
Affiliation(s)
- Nawaf Labban
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (M.D.A.A.); (S.M.A.)
- Correspondence: ; Tel.: +9661467-9015
| | - Mohammad D. Al Amri
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (M.D.A.A.); (S.M.A.)
| | - Sarah M. Alnafaiy
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (M.D.A.A.); (S.M.A.)
| | - Saleh M. Alhijji
- College of Applied Medical Sciences, King Saud University, Riyadh 11545, Saudi Arabia;
- School of Dentistry, Indiana University, Indianapolis, IN 46202, USA
| | - Mohammad A. Alenizy
- Department of Restorative Dental Sciences, University of Hail, Hail 55475, Saudi Arabia;
| | - Mounir Iskandar
- Private Practice at Radiance Dentistry, Irving, TX 75063, USA;
| | - Sabrina Feitosa
- Department of Biomedical Sciences and Comprehensive Care, Division of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN 46202, USA;
| |
Collapse
|
18
|
Adhesive bond integrity of Y‐TZP post with calcium fluoride infiltrated resin dentin adhesive: An SEM, EDX, FTIR and micro‐Raman study. SURF INTERFACE ANAL 2021. [DOI: 10.1002/sia.6998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Influence of Different Conditioning Treatments on the Bond Integrity of Root Dentin to rGO Infiltrated Dentin Adhesive. SEM, EDX, FTIR and MicroRaman Study. Polymers (Basel) 2021; 13:polym13101555. [PMID: 34066202 PMCID: PMC8150839 DOI: 10.3390/polym13101555] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to synthesize and equate the mechanical properties and dentin interaction of two adhesives; experimental adhesive (EA) and 5 wt.% reduced graphene oxide rGO) containing adhesive. Scanning electron microscopy (SEM)-Energy-dispersive X-ray spectroscopy (EDX), Micro-Raman spectroscopy, push-out bond strength test, and Fourier Transform Infrared (FTIR) spectroscopy were employed to study nano-bond strength, degree of conversion (DC), and adhesive-dentin interaction. The EA was prepared, and rGO particles were added to produce two adhesive groups, EA-rGO-0% (control) and rGO-5%. The canals of sixty roots were shaped and prepared, and fiber posts were cemented. The specimens were further alienated into groups based on the root canal disinfection technique, including 2.5% sodium hypochlorite (NaOCl), Photodynamic therapy (PDT), and ER-CR-YSGG laser (ECYL). The rGO nanoparticles were flake-shaped, and EDX confirmed the presence of carbon (C). Micro-Raman spectroscopy revealed distinct peaks for graphene. Push-out bond strength test demonstrated highest values for the EA-rGO-0% group after NaOCl and PDT conditioning whereas, rGO-5% showed higher values after ECYL conditioning. EA-rGO-0% presented greater DC than rGO-5% adhesive. The rGO-5% adhesive demonstrated comparable push-out bond strength and rheological properties to the controls. The rGO-5% demonstrated acceptable DC (although lower than control group), appropriate dentin interaction, and resin tag establishment.
Collapse
|