1
|
Uribe B, Rodrigues J, Costa P, Paiva MC. Application of Sound Waves During the Curing of an Acrylic Resin and Its Composites Based on Short Carbon Fibers and Carbon Nanofibers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5369. [PMID: 39517642 PMCID: PMC11547792 DOI: 10.3390/ma17215369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Research into particulate polymer composites is of significant interest due to their potential for enhancing material properties, such as strength, thermal stability, and conductivity while maintaining low weight and cost. Among the various techniques for preparing particle-based composites, ultrasonic wave stimulation is one of the principal laboratory-scale methods for enhancing the dispersion of the discontinuous phase. Nevertheless, there is a scarcity of empirical evidence to substantiate the impact of stimulating materials with natural sound frequencies within the acoustic spectrum, ranging from 20 Hz to 20 kHz, during their formation process. The present work investigates the effect of acoustic stimuli with frequencies of 56, 111, and 180 Hz on the properties of an acrylic-based polymer and its discontinuous carbon-based composites. The results indicated that the stimulus frequency affects the cure time of the studied systems, with a notable reduction of 31% and 21% in the cure times of the neat polymer and carbon-nanofiber-based composites, respectively, after applying a frequency of 180 Hz. Additionally, the higher stimulation frequencies reduced porosity in the samples, increased the degree of dispersion of the discontinuous phase, and altered the composite materials' thermal, optical, and electrical behavior.
Collapse
Affiliation(s)
- Braian Uribe
- Institute for Polymers and Composites (IPC), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal (M.C.P.)
| | | | | | | |
Collapse
|
2
|
Sun X, Ma WX, Zhang JX, Wang ZY, Wang Y, Zhang H, Du XY, Liu JD, Li W, Zhao ZB. Exploring the Impact of Visual Heat Conduction Paths on Thermal Conductivity of Polymer Composites and the Practical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16538-16548. [PMID: 39041610 DOI: 10.1021/acs.langmuir.4c01981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The theory of heat conduction paths has been widely recognized and widely studied in the research about the thermal conductivity of thermal conductive polymer composites at present. Encapsulating polymer pellets with thermally conductive fillers and processing them into thermally conductive polymer composites is a simple and effective method for constructing heat conduction paths. It is meaningful to investigate the related heat conduction mechanism of this method. Otherwise, this approach can significantly preserve the performance of the polymer substrate, making it highly valuable for practical material applications. In this work, polyethylene-octene elastomer (POE) pellets were encapsulated with thermal conductive fillers by physical absorption. Subsequently, the composite films containing heat conduction paths were fabricated using the encapsulated POE pellets through a heating press. Alumina (Al2O3), boron nitride (BN), and alumina/boron nitride hybrid (Al2O3/BN) fillers were used to prepare Al2O3@POE, BN@POE, and BN/Al2O3@POE composite films to investigate the influence of filler shapes on heat conduction path construction. The influence of the constitute and density of heat conduction paths on the thermal conductivity of composite films was analyzed by infrared thermal imaging, finite element analysis, and thermal resistance theory in detail. Owing to the reserved good adhesion and flexibility of the POE substrate, the composite films could be directly used as thermal interface materials for chip cooling, which presented a good heat dissipation effect. Furthermore, a series of integrated composite materials were prepared by the combination of encapsulated pellets with various functional films (copper foil, aluminum foil, and graphite sheet) through a one-pot heating press, exhibiting a good electromagnetic shielding effect. The performance of the composites and the corresponding preparation method demonstrate the strong significance of this research for practical applications.
Collapse
Affiliation(s)
- Xin Sun
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Wen-Xuan Ma
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Jian-Xin Zhang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Zheng-Yi Wang
- Tesa (Suzhou) Tape Technology Co., Ltd., Suzhou 215000, PR China
| | - Yang Wang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Heng Zhang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Xiang-Yun Du
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Ji-Dong Liu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Weili Li
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Zheng-Bai Zhao
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| |
Collapse
|
3
|
Milenković S, Virijević K, Živić F, Radojević I, Grujović N. Composite Nanoarchitectonics of Electrospun Piezoelectric PVDF/AgNPs for Biomedical Applications, Including Breast Cancer Treatment. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3872. [PMID: 39124535 PMCID: PMC11313420 DOI: 10.3390/ma17153872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
This study focused on preparing composite nanomats by incorporating silver nanoparticles (AgNPs) in polyvinylidene fluoride (PVDF) nanofibers through the electrospinning process. A short review of piezoelectric PVDF-related research is presented. PVDF is known for its biocompatibility and piezoelectric properties. Since electrical signals in biological tissues have been shown to be relevant for therapeutic applications, the influence of the addition of AgNPs to PVDF on its piezoelectricity is studied, due to the ability of AgNPs to increase the piezoelectric signal, along with providing antibacterial properties. The prepared samples were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. In addition, the biological activity of composites was examined using a cytotoxicity assay and an assessment of the antibacterial activity. The obtained results show that the incorporation of AgNPs into PVDF nanofibers further enhances the piezoelectricity (crystalline β-phase fraction), already improved by the electrospinning process, compared to solution-casted samples, but only with a AgNPs/PVDF concentration of up to 0.3%; a further increase in the nanoparticles led to a β-phase reduction. The cytotoxicity assay showed a promising effect of PVDF/AgNPs nanofibers on the MDA-MB-231 breast cancer cell line, following the non-toxicity displayed in regard to the healthy MRC-5 cell line. The antibacterial effect of PVDF/AgNPs nanofibers showed promising antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus, as a result of the Ag content. The anticancer activity, combined with the electrical properties of nanofibers, presents new possibilities for smart, multifunctional materials for cancer treatment development.
Collapse
Affiliation(s)
- Strahinja Milenković
- Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia; (S.M.); (K.V.)
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Katarina Virijević
- Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia; (S.M.); (K.V.)
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Fatima Živić
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Ivana Radojević
- Department of Biology and Ecology, Faculty of Natural Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Nenad Grujović
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia;
| |
Collapse
|
4
|
Wang M, Zhang Z. Magnetic-assisted preparation and performance control of Fe 3O 4/PVDF gradient magnetic composites. RSC Adv 2024; 14:7891-7902. [PMID: 38449825 PMCID: PMC10915589 DOI: 10.1039/d3ra08804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
In this study, a gradient Fe3O4/PVDF magnetic composite was prepared using magnetic-assisted template filling technology. The purpose of this study was to explore a simple, economical, and scalable method for preparing gradient magnetic composites. The structure and magnetic performance of the composite were studied, and the parameters that influenced the gradient magnetic properties of the material, such as magnetic intensity, magnet spacing, initial content of magnetic particles, and magnet movement speed, were investigated. The results showed that increasing magnetic intensity during the template filling process enhanced the electromagnetic force on the magnetic particles, resulting in a greater magnetic particle content gradient. The variation in magnet spacing affected the spatial magnetic field distribution, and increasing the magnet spacing increased the gradient of the magnetic intensity in the y-direction. The magnetic gradient of the Fe3O4/PVDF composite first decreased and then increased as the magnet spacing increased. Increasing the magnet movement speed enhanced the gradient of the magnetic intensity in the y-component but shortened the duration of the electromagnetic force. By adjusting these parameters, it is possible to regulate the structural and magnetic properties of the Fe3O4/PVDF composite. This work may have implications for research and application in related fields and promote the development and innovation of magnetic materials.
Collapse
Affiliation(s)
- Miao Wang
- School of Mechanical Engineering, Northwestern Polytechnical University Youyi West Road 127 710072 Xi'an China
| | - Zhenming Zhang
- School of Mechanical Engineering, Northwestern Polytechnical University Youyi West Road 127 710072 Xi'an China
| |
Collapse
|
5
|
Dardeer HM, Ibrahim AS, Gad AN, Gaber AAM. Bifunctional of Fe 3O 4@chitosan nanocomposite as a clarifying agent and cationic flocculant on different sugar solutions as a comprehensive semi industrial application. Sci Rep 2024; 14:1848. [PMID: 38253668 PMCID: PMC10803765 DOI: 10.1038/s41598-024-52111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
In the sugar industry, eliminating side impurities throughout the manufacturing process is the most significant obstacle to clarifying sugar solutions. Herein, magnetic chitosan (MCS) nanocomposite was Fabricated to be used as a biodegradable, environmentally friendly clarifying agent throughout the cane juice and sugar refining processes. Fe3O4 was synthesized using the coprecipitation procedure, and then MCS was combined using a cross-linking agent. Furthermore, 14.76 emu g-1 was the maximum saturation magnetization (Ms) value. Because MCS is magnetically saturated, it may be possible to employ an external magnetic field to separate the contaminant deposited on its surface. Additionally, zeta potential analysis showed outstanding findings for MCS with a maximum value of (+) 20.7 mV, with improvement in color removal % up to 44.8% using MCS with more than 24% in color removal % compared to the traditional clarification process. Moreover, utilizing MCS reduced turbidity from 167 to 1 IU. Overall, we determined that MCS nanocomposite exhibits considerable effectiveness in the clarifying process for different sugar solutions, performing as an eco-friendly bio-sorbent and flocculating material.
Collapse
Affiliation(s)
- Hemat M Dardeer
- Chemistry Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Ahmed S Ibrahim
- Faculty of Sugar and Integrated Industries Technology, Assiut University, Assiut, Egypt
| | - Ahmed N Gad
- Research and Development Center of ESIIC, Quos, Egypt
| | - Abdel-Aal M Gaber
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
6
|
Rudra S, Foster DP, Kumar S. Critical behavior of magnetic polymers on the three-dimensional Sierpiński Gasket. Phys Rev E 2023; 108:L042502. [PMID: 37978680 DOI: 10.1103/physreve.108.l042502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/01/2023] [Indexed: 11/19/2023]
Abstract
We present the (numerically) exact phase diagram of a magnetic polymer on the Sierpińsky gasket embedded in three dimensions using the renormalization group method. We report distinct phases of the magnetic polymer, including paramagnetic swollen, ferromagnetic swollen, paramagnetic collapsed, and ferromagnetic collapsed states. By evaluating critical exponents associated with phase transitions, we located the phase boundaries between different phases. If the model is extended to include a four-site interaction which disfavors configurations with a single spin of a given type, we find a rich variety of critical behaviors. Notably, we uncovered a phenomenon of reentrance, where the system transitions from a collapsed (paramagnetic) state to a swollen (paramagnetic) state followed by another collapse (paramagnetic) and ultimately reaching a ferromagnetic collapsed state. These findings shed new light on the complex behavior of (lattice) magnetic polymers.
Collapse
Affiliation(s)
- Sumitra Rudra
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | - Damien Paul Foster
- School of Computer Science and Digital Technologies, College of Engineering and Physical Sciences, Aston University, Birmingham BE4 7ET, United Kingdom
| | - Sanjay Kumar
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
7
|
Xu Z, Shi W, Zhao D, Li K, Li J, Dong J, Han Y, Zhao J, Bai Y. Research Progress on Low Damage Grasping of Fruit, Vegetable and Meat Raw Materials. Foods 2023; 12:3451. [PMID: 37761160 PMCID: PMC10528682 DOI: 10.3390/foods12183451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The sorting and processing of food raw materials is an important step in the food production process, and the quality of the sorting operation can directly or indirectly affect the quality of the product. In order to improve production efficiency and reduce damage to food raw materials, some food production enterprises currently use robots for sorting operations of food raw materials. In the process of robot grasping, some food raw materials such as fruits, vegetables and meat have a soft appearance, complex and changeable shape, and are easily damaged by the robot gripper. Therefore, higher requirements have been put forward for robot grippers, and the research and development of robot grippers that can reduce damage to food raw materials and ensure stable grasping has been a major focus. In addition, in order to grasp food raw materials with various shapes and sizes with low damage, a variety of sensors and control strategies are required. Based on this, this paper summarizes the low damage grasp principle and characteristics of electric grippers, pneumatic grippers, vacuum grippers and magnetic grippers used in automated sorting production lines of fruit, vegetable and meat products, as well as gripper design methods to reduce grasp damage. Then, a grasping control strategy based on visual sensors and tactile sensors was introduced. Finally, the challenges and potential future trends faced by food robot grippers were summarized.
Collapse
Affiliation(s)
- Zeyu Xu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (Z.X.); (W.S.); (D.Z.); (K.L.); (J.L.); (J.D.); (Y.H.)
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450000, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450000, China
| | - Wenbo Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (Z.X.); (W.S.); (D.Z.); (K.L.); (J.L.); (J.D.); (Y.H.)
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450000, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450000, China
| | - Dianbo Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (Z.X.); (W.S.); (D.Z.); (K.L.); (J.L.); (J.D.); (Y.H.)
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450000, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450000, China
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (Z.X.); (W.S.); (D.Z.); (K.L.); (J.L.); (J.D.); (Y.H.)
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450000, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450000, China
| | - Junguang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (Z.X.); (W.S.); (D.Z.); (K.L.); (J.L.); (J.D.); (Y.H.)
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450000, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450000, China
| | - Junyi Dong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (Z.X.); (W.S.); (D.Z.); (K.L.); (J.L.); (J.D.); (Y.H.)
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450000, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450000, China
| | - Yu Han
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (Z.X.); (W.S.); (D.Z.); (K.L.); (J.L.); (J.D.); (Y.H.)
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450000, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450000, China
| | - Jiansheng Zhao
- Henan Shuanghui Investment & Development Co., Ltd., Luohe 462000, China;
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (Z.X.); (W.S.); (D.Z.); (K.L.); (J.L.); (J.D.); (Y.H.)
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450000, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450000, China
| |
Collapse
|
8
|
Radushnov DI, Solovyova AY, Elfimova EA. Effect of Polydispersity on the Structural and Magnetic Properties of a Magnetopolymer Composite. Polymers (Basel) 2023; 15:2678. [PMID: 37376325 DOI: 10.3390/polym15122678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
When using magnetopolymer composites in high-precision industrial and biomedical technologies, the problem of predicting their properties in an external magnetic field arises. In this work, we study theoretically the influence of the polydispersity of a magnetic filler on a composite's equilibrium magnetization and on the orientational texturing of magnetic particles formed during polymerization. The results are obtained using rigorous methods of statistical mechanics and Monte Carlo computer simulations in the framework the bidisperse approximation. It is shown that by adjusting the dispersione composition of the magnetic filler and the intensity of the magnetic field at which the sample's polymerization occurs, it is possible to control the composite's structure and magnetization. The derived analytical expressions determine these regularities. The developed theory takes into account dipole-dipole interparticle interactions and therefore can be applied to predict the properties of concentrated composites. The obtained results are a theoretical basis for the synthesis of magnetopolymer composites with a predetermined structure and magnetic properties.
Collapse
Affiliation(s)
- Dmitry I Radushnov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg 620000, Russia
| | - Anna Yu Solovyova
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg 620000, Russia
| | - Ekaterina A Elfimova
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg 620000, Russia
| |
Collapse
|
9
|
Woodring RN, Gurysh EG, Bachelder EM, Ainslie KM. Drug Delivery Systems for Localized Cancer Combination Therapy. ACS APPLIED BIO MATERIALS 2023; 6:934-950. [PMID: 36791273 PMCID: PMC10373430 DOI: 10.1021/acsabm.2c00973] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
With over 2 million cancer cases and over 600,000 cancer-associated deaths predicted in the U.S. for 2022, this life-debilitating disease continuously impacts the lives of people across the nation every day. Therapeutic treatment options for cancer have historically involved chemotherapies to eradicate tumors with cytotoxic mechanisms which can negatively affect the efficacy versus toxicity ratio of treatment. With a need for more directed and therapeutically active options, targeted small-molecule inhibitors and immunotherapies have since emerged to mitigate treatment-associated toxicities. However, aggressive tumors can employ a wide range of defense mechanisms to evade monotherapy treatment altogether, resulting in the recurrence of therapeutically resistant tumors. Therefore, many clinical routines have included combination therapy in which anticancer agents are combined to provide a synergistic attack on tumors. Even with this approach, maximizing the efficacy of cancer treatment is contingent upon the dose of drug that reaches the site of the tumor, so often therapy is administered at the site of a tumor via localized delivery platforms. Commonly used platforms for localized drug delivery include polymeric wafers, nanofibrous scaffolds, and hydrogels where drug combinations can be loaded and delivered synchronously. Attaining synergistic activity from these localized systems is dependent on proper material selection and fabrication methods. Herein, we describe these important considerations for enhancing the efficacy of cancer combination therapy through biodegradable, localized delivery systems.
Collapse
Affiliation(s)
- Ryan N. Woodring
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth G. Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Lee SH, Cha B, Ko J, Afzal M, Park J. Acoustofluidic separation of proteins from platelets in human blood plasma using aptamer-functionalized microparticles. BIOMICROFLUIDICS 2023; 17:024105. [PMID: 37153865 PMCID: PMC10162022 DOI: 10.1063/5.0140096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
Microfluidic liquid biopsy has emerged as a promising clinical assay for early diagnosis. Herein, we propose acoustofluidic separation of biomarker proteins from platelets in plasma using aptamer-functionalized microparticles. As model proteins, C-reactive protein and thrombin were spiked in human platelet-rich plasma. The target proteins were selectively conjugated with their corresponding aptamer-functionalized microparticles of different sizes, and the particle complexes served as a mobile carrier for the conjugated proteins. The proposed acoustofluidic device was composed of an interdigital transducer (IDT) patterned on a piezoelectric substrate and a disposable polydimethylsiloxane (PDMS) microfluidic chip. The PDMS chip was placed in a tilted arrangement with the IDT to utilize both vertical and horizontal components of surface acoustic wave-induced acoustic radiation force (ARF) for multiplexed assay at high-throughput. The two different-sized particles experienced the ARF at different magnitudes and were separated from platelets in plasma. The IDT on the piezoelectric substrate could be reusable, while the microfluidic chip can be replaceable for repeated assays. The sample processing throughput with the separation efficiency >95% has been improved such that the volumetric flow rate and flow velocity were 1.6 ml/h and 37 mm/s, respectively. For the prevention of platelet activation and protein adsorption to the microchannel, polyethylene oxide solution was introduced as sheath flows and coating on to the walls. We conducted scanning electron microscopy, x-ray photoemission spectroscopy , and sodium dodecyl sulfate- analysis before and after the separation to confirm the protein capture and separation. We expect that the proposed approach will provide new prospects for particle-based liquid biopsy using blood.
Collapse
Affiliation(s)
- Song Ha Lee
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Beomseok Cha
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Jeongu Ko
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Muhammad Afzal
- Center of Immunology Marseille-Luminy, Aix-Marseille University, 171 Av, De Luminy, 13009 Marseille, France
| | - Jinsoo Park
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
11
|
Elkalla E, Khizar S, Tarhini M, Lebaz N, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Core-shell micro/nanocapsules: from encapsulation to applications. J Microencapsul 2023; 40:125-156. [PMID: 36749629 DOI: 10.1080/02652048.2023.2178538] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Encapsulation is the way to wrap or coat one substance as a core inside another tiny substance known as a shell at micro and nano scale for protecting the active ingredients from the exterior environment. A lot of active substances, such as flavours, enzymes, drugs, pesticides, vitamins, in addition to catalysts being effectively encapsulated within capsules consisting of different natural as well as synthetic polymers comprising poly(methacrylate), poly(ethylene glycol), cellulose, poly(lactide), poly(styrene), gelatine, poly(lactide-co-glycolide)s, and acacia. The developed capsules release the enclosed substance conveniently and in time through numerous mechanisms, reliant on the ultimate use of final products. Such technology is important for several fields counting food, pharmaceutical, cosmetics, agriculture, and textile industries. The present review focuses on the most important and high-efficiency methods for manufacturing micro/nanocapsules and their several applications in our life.
Collapse
Affiliation(s)
- Eslam Elkalla
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Sumera Khizar
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Mohamad Tarhini
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Noureddine Lebaz
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, LAGEPP UMR-5007, Villeurbanne, France
| | - Nadia Zine
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | |
Collapse
|
12
|
Ramazanov S, Sobola D, Gajiev G, Orudzhev F, Kaspar P, Gummetov A. Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:139. [PMID: 36616050 PMCID: PMC9823920 DOI: 10.3390/nano13010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The paper considers how a film of bismuth ferrite BiFeO3 (BFO) is formed on a polymeric flexible polyimide substrate at low temperature ALD (250 °C). Two samples of BFO/Polyimide with different thicknesses (42 nm, 77 nm) were studied. As the thickness increases, a crystalline BFO phase with magnetic and electrical properties inherent to a multiferroic is observed. An increase in the film thickness promotes clustering. The competition between the magnetic and electrical subsystems creates an anomalous behavior of the magnetization at a temperature of 200 K. This property is probably related to the multiferroic/polymer interface. This paper explores the prerequisites for the low-temperature growth of BFO films on organic materials as promising structural components for flexible and quantum electronics.
Collapse
Affiliation(s)
- Shikhgasan Ramazanov
- Amirkhanov Institute of Physics, Dagestan Federal Research Center, Russian Academy of Sciences, Makhachkala 367003, Russia
| | - Dinara Sobola
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 2848/8, 61600 Brno, Czech Republic
| | - Gaji Gajiev
- Amirkhanov Institute of Physics, Dagestan Federal Research Center, Russian Academy of Sciences, Makhachkala 367003, Russia
| | - Farid Orudzhev
- Amirkhanov Institute of Physics, Dagestan Federal Research Center, Russian Academy of Sciences, Makhachkala 367003, Russia
| | - Pavel Kaspar
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 2848/8, 61600 Brno, Czech Republic
| | - Adil Gummetov
- Amirkhanov Institute of Physics, Dagestan Federal Research Center, Russian Academy of Sciences, Makhachkala 367003, Russia
| |
Collapse
|
13
|
Synthesis and Characterization of Magnetic Poly(STY-EGDMA) Particles for Application as Biocatalyst Support in Octyl Oleate Ester Synthesis: Kinetic and Thermodynamic Parameters and Mathematical Modeling. Catal Letters 2022. [DOI: 10.1007/s10562-022-04234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Santana-Otero A, Fortes Brollo ME, Morales MDP, Ortega D. Microwave-assisted Ni xFe 1-x nanoclusters ultra-stable to oxidation in aqueous media. NANOSCALE 2022; 14:16639-16646. [PMID: 36321630 DOI: 10.1039/d2nr03629k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal alloy nanoparticles, and, in particular, permalloy, still hold an untapped potential in nanotechnology, although their poor stability against oxidation due to environmental exposure limits their use in many technological applications, and even more in life sciences. We propose a scalable single-step microwave-assisted method to produce water suspensions of Ni1-xFex nanoparticles without the need for an inert atmosphere, either organic solvents or any type of post-processing. We use hydrazine as a reducer, iron(II), iron(III) and nickel(II) chloride as precursors, 1,12-dodecanediol as a surfactant and water as a reaction medium. The mixture is heated at 160 °C for 10 minutes to obtain uniform alloy nanoparticles with sizes of around 24.5 nm for Ni (0% Fe) and 5.5 nm for 35% Fe that are forming uniform aggregates with sizes between 200 nm for Ni and 65 nm for iron oxide NPs. A linear increase of saturation magnetization is observed with an Fe content of up to 25%, whereas for larger percentages a sudden drop takes place due to the formation of iron oxides. X-ray diffraction measurements rule out the formation of any oxides after more than one year of storage at 4 °C, surely due to the presence of 1,12-dodecanediol at the surface, as evidenced by infrared spectroscopy.
Collapse
Affiliation(s)
- Antonio Santana-Otero
- Condensed Matter Physics department, Faculty of Sciences, Campus Universitario de Puerto Real, 11510 Puerto Real (Cádiz), Spain.
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), University of Cádiz, 11009 Cádiz, Spain
| | | | - María Del Puerto Morales
- Institute of Materials Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Daniel Ortega
- Condensed Matter Physics department, Faculty of Sciences, Campus Universitario de Puerto Real, 11510 Puerto Real (Cádiz), Spain.
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), University of Cádiz, 11009 Cádiz, Spain
- IMDEA Nanoscience, Faraday 9, 28049 Madrid, Spain
| |
Collapse
|
15
|
Düsenberg B, Groppe P, Müssig S, Schmidt J, Bück A. Magnetizing Polymer Particles with a Solvent-Free Single Stage Process Using Superparamagnetic Iron Oxide Nanoparticles (SPION)s. Polymers (Basel) 2022; 14:polym14194178. [PMID: 36236126 PMCID: PMC9570641 DOI: 10.3390/polym14194178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/09/2022] Open
Abstract
Magnetic polymer composites are used in a variety of applications in many industries. Their production methods are usually time-consuming and solvent-intensive as they are performed in liquid phase processes, such as emulsion polymerization or precipitation. In this work, a quick, easy, and solvent-free method is presented to coat polymer particles with a discrete, non-coherent coating of superparamagnetic nanoparticles. The results of the dry coating process are evaluated optically, by means of scanning electron microscopy (SEM), via powder X-ray diffraction and thermally by means of differential scanning calorimetry, before finally demonstrating the effectiveness of dry coating by means of a vibrating sample magnetometer.
Collapse
Affiliation(s)
- Björn Düsenberg
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
- Collaborative Research Center 814—Additive Manufacturing (DFG, German Research Foundation), Am Weichselgarten 9, D-91058 Erlangen, Germany
| | - Philipp Groppe
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, D-91058 Erlangen, Germany
| | - Stephan Müssig
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, D-91058 Erlangen, Germany
| | - Jochen Schmidt
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
- Collaborative Research Center 814—Additive Manufacturing (DFG, German Research Foundation), Am Weichselgarten 9, D-91058 Erlangen, Germany
| | - Andreas Bück
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
- Collaborative Research Center 814—Additive Manufacturing (DFG, German Research Foundation), Am Weichselgarten 9, D-91058 Erlangen, Germany
- Correspondence:
| |
Collapse
|
16
|
Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have evolved tremendously during recent years, in part due to the rapid expansion of nanotechnology and to their active magnetic core with a high surface-to-volume ratio, while their surface functionalization opened the door to a plethora of drug, gene and bioactive molecule immobilization. Taming the high reactivity of the magnetic core was achieved by various functionalization techniques, producing MNPs tailored for the diagnosis and treatment of cardiovascular or neurological disease, tumors and cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) are established at the core of drug-delivery systems and could act as efficient agents for MFH (magnetic fluid hyperthermia). Depending on the functionalization molecule and intrinsic morphological features, MNPs now cover a broad scope which the current review aims to overview. Considering the exponential expansion of the field, the current review will be limited to roughly the past three years.
Collapse
|
17
|
Heydari S, Eshagh Ahmadi S. Fabrication and characterization of polymer based magnetic dialdehyde carboxymethyl cellulose/cysteine nanocomposites for methylene blue removal. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Socoliuc V, Avdeev MV, Kuncser V, Turcu R, Tombácz E, Vékás L. Ferrofluids and bio-ferrofluids: looking back and stepping forward. NANOSCALE 2022; 14:4786-4886. [PMID: 35297919 DOI: 10.1039/d1nr05841j] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ferrofluids investigated along for about five decades are ultrastable colloidal suspensions of magnetic nanoparticles, which manifest simultaneously fluid and magnetic properties. Their magnetically controllable and tunable feature proved to be from the beginning an extremely fertile ground for a wide range of engineering applications. More recently, biocompatible ferrofluids attracted huge interest and produced a considerable increase of the applicative potential in nanomedicine, biotechnology and environmental protection. This paper offers a brief overview of the most relevant early results and a comprehensive description of recent achievements in ferrofluid synthesis, advanced characterization, as well as the governing equations of ferrohydrodynamics, the most important interfacial phenomena and the flow properties. Finally, it provides an overview of recent advances in tunable and adaptive multifunctional materials derived from ferrofluids and a detailed presentation of the recent progress of applications in the field of sensors and actuators, ferrofluid-driven assembly and manipulation, droplet technology, including droplet generation and control, mechanical actuation, liquid computing and robotics.
Collapse
Affiliation(s)
- V Socoliuc
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania.
| | - M V Avdeev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna, Moscow Reg., Russia.
| | - V Kuncser
- National Institute of Materials Physics, Bucharest-Magurele, 077125, Romania
| | - Rodica Turcu
- National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), Donat Str. 67-103, 400293 Cluj-Napoca, Romania
| | - Etelka Tombácz
- University of Szeged, Faculty of Engineering, Department of Food Engineering, Moszkvai krt. 5-7, H-6725 Szeged, Hungary.
- University of Pannonia - Soós Ernő Water Technology Research and Development Center, H-8800 Zrínyi M. str. 18, Nagykanizsa, Hungary
| | - L Vékás
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania.
- Politehnica University of Timisoara, Research Center for Complex Fluids Systems Engineering, Mihai Viteazul Ave. 1, 300222 Timisoara, Romania
| |
Collapse
|
19
|
Tai Y, Banerjee A, Goodrich R, Jin L, Nam J. Development and Utilization of Multifunctional Polymeric Scaffolds for the Regulation of Physical Cellular Microenvironments. Polymers (Basel) 2021; 13:3880. [PMID: 34833179 PMCID: PMC8624881 DOI: 10.3390/polym13223880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 12/11/2022] Open
Abstract
Polymeric biomaterials exhibit excellent physicochemical characteristics as a scaffold for cell and tissue engineering applications. Chemical modification of the polymers has been the primary mode of functionalization to enhance biocompatibility and regulate cellular behaviors such as cell adhesion, proliferation, differentiation, and maturation. Due to the complexity of the in vivo cellular microenvironments, however, chemical functionalization alone is usually insufficient to develop functionally mature cells/tissues. Therefore, the multifunctional polymeric scaffolds that enable electrical, mechanical, and/or magnetic stimulation to the cells, have gained research interest in the past decade. Such multifunctional scaffolds are often combined with exogenous stimuli to further enhance the tissue and cell behaviors by dynamically controlling the microenvironments of the cells. Significantly improved cell proliferation and differentiation, as well as tissue functionalities, are frequently observed by applying extrinsic physical stimuli on functional polymeric scaffold systems. In this regard, the present paper discusses the current state-of-the-art functionalized polymeric scaffolds, with an emphasis on electrospun fibers, that modulate the physical cell niche to direct cellular behaviors and subsequent functional tissue development. We will also highlight the incorporation of the extrinsic stimuli to augment or activate the functionalized polymeric scaffold system to dynamically stimulate the cells.
Collapse
Affiliation(s)
| | | | | | | | - Jin Nam
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.T.); (A.B.); (R.G.); (L.J.)
| |
Collapse
|
20
|
Murariu M, Galluzzi A, Paint Y, Murariu O, Raquez JM, Polichetti M, Dubois P. Pathways to Green Perspectives: Production and Characterization of Polylactide (PLA) Nanocomposites Filled with Superparamagnetic Magnetite Nanoparticles. MATERIALS 2021; 14:ma14185154. [PMID: 34576386 PMCID: PMC8467987 DOI: 10.3390/ma14185154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 02/02/2023]
Abstract
In the category of biopolymers, polylactide or polylactic acid (PLA) is one of the most promising candidates considered for future developments, as it is not only biodegradable under industrial composting conditions, but it is produced from renewable natural resources. The modification of PLA through the addition of nanofillers is considered as a modern approach to improve its main characteristic features (mechanical, thermal, barrier, etc.) and to obtain specific end-use properties. Iron oxide nanoparticles (NPs) of low dimension (10–20 nm) such as magnetite (Fe3O4), exhibit strong magnetization in magnetic field, are biocompatible and show low toxicity, and can be considered in the production of polymer nanocomposites requiring superparamagnetic properties. Accordingly, PLA was mixed by melt-compounding with 4–16 wt.% magnetite NPs. Surface treatment of NPs with a reactive polymethylhydrogensiloxane (MHX) was investigated to render the nanofiller water repellent, less sensitive to moisture and to reduce the catalytic effects at high temperature of iron (from magnetite) on PLA macromolecular chains. The characterization of nanocomposites was focused on the differences of the rheology and morphology, modification, and improvements in the thermal properties using surface treated NPs, while the superparamagnetic behavior was confirmed by VSM (vibrating sample magnetometer) measurements. The PLA−magnetite nanocomposites had strong magnetization properties at low magnetic field (values close to 70% of Mmax at H = 0.2 T), while the maximum magnetic signal (Mmax) was mainly determined by the loading of the nanofiller, without any significant differences linked to the surface treatment of MNPs. These bionanocomposites showing superparamagnetic properties, close to zero magnetic remanence, and coercivity, can be further produced at a larger scale by melt-compounding and can be designed for special end-use applications, going from biomedical to technical areas.
Collapse
Affiliation(s)
- Marius Murariu
- Laboratory of Polymeric and Composite Materials, Materia Nova Materials R&D Center & UMons Innovation Center, 3 Avenue Copernic, 7000 Mons, Belgium; (Y.P.); (O.M.)
- Correspondence: (M.M.); (P.D.)
| | - Armando Galluzzi
- Department of Physics E.R. Caianiello, University of Salerno, and CNR-SPIN (Salerno), via Giovanni Paolo II, 84084 Fisciano, Italy; (A.G.); (M.P.)
| | - Yoann Paint
- Laboratory of Polymeric and Composite Materials, Materia Nova Materials R&D Center & UMons Innovation Center, 3 Avenue Copernic, 7000 Mons, Belgium; (Y.P.); (O.M.)
| | - Oltea Murariu
- Laboratory of Polymeric and Composite Materials, Materia Nova Materials R&D Center & UMons Innovation Center, 3 Avenue Copernic, 7000 Mons, Belgium; (Y.P.); (O.M.)
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), 7000 Mons, Belgium;
| | - Massimiliano Polichetti
- Department of Physics E.R. Caianiello, University of Salerno, and CNR-SPIN (Salerno), via Giovanni Paolo II, 84084 Fisciano, Italy; (A.G.); (M.P.)
| | - Philippe Dubois
- Laboratory of Polymeric and Composite Materials, Materia Nova Materials R&D Center & UMons Innovation Center, 3 Avenue Copernic, 7000 Mons, Belgium; (Y.P.); (O.M.)
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), 7000 Mons, Belgium;
- Correspondence: (M.M.); (P.D.)
| |
Collapse
|