1
|
Yu W, Li M, Lei W, Chen Y. FDM 3D Printing and Properties of PBAT/PLA Blends. Polymers (Basel) 2024; 16:1140. [PMID: 38675058 PMCID: PMC11054694 DOI: 10.3390/polym16081140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Biodegradable polylactic acid (PLA) has been widely used in fused deposition modeling (FDM) 3D printing. In order to improve its comprehensive properties in 3D printing, in this study, 0-40% content of polybutylene adipate terephthalate(PBAT) was selected to be blended with PLA in a twin-screw extruder; the resulting pellets were drawn into a homogeneous filament; then, PBAT/PLA samples were prepared by FDM 3D printing, and the effects of the dosage of PBAT on the mechanical properties, thermal behavior, surface wettability and melt flowability of the samples were investigated. The results showed that all the samples could be printed smoothly, and the ductility was slightly improved by the increase in the PBAT dosage; the thermal stability of PLA was enhanced by blending with PBAT, and the crystallinity increased monotonically with the increase in PBAT. After blending with PBAT, the surfaces of the samples were more hydrophilic and flowable. The important conclusion achieved in this work was that the PBAT/PLA blends, especially those containing 30%PBAT, showed great potential to replace petroleum-based plastics and are suitable for use in FDM 3D printing technologies for different applications.
Collapse
Affiliation(s)
- Wangwang Yu
- School of Mechanical Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210023, China
- Jiangsu Province Precision Manufacturing Engineering and Technology Research Center, Nanjing 210023, China
| | - Mengya Li
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Wen Lei
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Yong Chen
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Maraveas C, Kyrtopoulos IV, Arvanitis KG. Evaluation of the Viability of 3D Printing in Recycling Polymers. Polymers (Basel) 2024; 16:1104. [PMID: 38675022 PMCID: PMC11054724 DOI: 10.3390/polym16081104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The increased use of plastics in industrial and agricultural applications has led to high levels of pollution worldwide and is a significant challenge. To address this plastic pollution, conventional methods such as landfills and incineration are used, leading to further challenges such as the generation of greenhouse gas emissions. Therefore, increasing interest has been directed to identifying alternative methods to dispose of plastic waste from agriculture. The novelty of the current research arose from the lack of critical reviews on how 3-Dimensional (3D) printing was adopted for recycling plastics, its application in the production of agricultural plastics, and its specific benefits, disadvantages, and limitations in recycling plastics. The review paper offers novel insights regarding the application of 3D printing methods including Fused Particle Fabrication (FPF), Hot Melt Extrusion (HME), and Fused Deposition Modelling (FDM) to make filaments from plastics. However, the methods were adopted in local recycling setups where only small quantities of the raw materials were considered. Data was collected using a systematic review involving 39 studies. Findings showed that the application of the 3D printing methods led to the generation of agricultural plastics such as Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS), Polyethylene Terephthalate (PET), and High-Density Polyethylene (HDPE), which were found to have properties comparable to those of virgin plastic, suggesting the viability of 3D printing in managing plastic pollution. However, limitations were also associated with the 3D printing methods; 3D-printed plastics deteriorated rapidly under Ultraviolet (UV) light and are non-biodegradable, posing further risks of plastic pollution. However, UV stabilization helps reduce plastic deterioration, thus increasing longevity and reducing disposal. Future directions emphasize identifying methods to reduce the deterioration of 3D-printed agricultural plastics and increasing their longevity in addition to UV stability.
Collapse
Affiliation(s)
- Chrysanthos Maraveas
- Department of Natural Resources Development and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece; (I.V.K.); (K.G.A.)
| | | | | |
Collapse
|
3
|
Tablit S, Krache R, Amroune S, Jawaid M, Hachaichi A, Ismail AS, Meraj A. Effect of chemical treatments of arundo donax L. fibre on mechanical and thermal properties of the PLA/PP blend composite filament for FDM 3D printing. J Mech Behav Biomed Mater 2024; 152:106438. [PMID: 38359736 DOI: 10.1016/j.jmbbm.2024.106438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
Arundo donax L. is investigated in this study as a suitable reinforcing agent for PLA/PP waste blend 3D printing filament. To improve the compatibility of the fibre and polymer, the Arundo fibre was chemically modified using alkali and silane treatment. Untreated and treated fibres were extruded with Polymer blends before being 3D printed. Effect of chemical treatment on thermal, mechanical, and morphological properties of the composites was investigated. The tensile, Izod impact, and water absorption of the 3D printed specimens were also tested. The Alkali treated (ALK) and combination of alkali and silane treatment (SLN) composites displayed good results. Tensile strength and modulus of the materials increased, as well as their maintained stability in the Izod impact test, demonstrating that the incorporation of ArF did not result in a loss in performance. SEM examination supported these findings by confirming the creation of beneficial interfacial contacts between the matrix and fibre components, as demonstrated by the lack of void between the matrix and the fibre surface. Furthermore, the alkali treatment of the ArF resulted in a considerable reduction in water absorption inside the biocomposite, with a 64% reduction seen in ALK composite comparison to the untreated composite (Un). After the 43-day assessment period.
Collapse
Affiliation(s)
- Sarra Tablit
- Laboratory Multiphas Polymeric Materials (LMPMP), Faculty of Technology, University Ferhat Abbas Setif-1, Setif, Algeria
| | - Rachida Krache
- Laboratory Multiphas Polymeric Materials (LMPMP), Faculty of Technology, University Ferhat Abbas Setif-1, Setif, Algeria
| | - Salah Amroune
- Laboratory of Materials and Mechanics of Structures (LMMS), Mechanical Engineering Department, Faculty of Technology, Mohamed BOUDIAF University, M'sila, Algeria
| | - Mohammad Jawaid
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University (UAEU), Al Ain, P.O. Box 15551, United Arab Emirates.
| | - Amina Hachaichi
- Department of Material Sciences, Faculty of Science and Technology, University Mohamed El Bachir El Ibrahimi, El Anasser, Bordj Bou Arreridj, 34030, Algeria
| | - Ahmad Safwan Ismail
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Aatikah Meraj
- Laboratory of Biopolymers and Derivates, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| |
Collapse
|
4
|
Singh Y, Sharma S, Kumar U, Sihag P, Balyan P, Singh KP, Dhankher OP. Strategies for economic utilization of rice straw residues into value-added by-products and prevention of environmental pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167714. [PMID: 37832665 DOI: 10.1016/j.scitotenv.2023.167714] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Rice straw management, along with the prevalent practice of residue burning, poses multifaceted challenges with substantial environmental and human health implications. After harvest, a considerable amount of straw is left behind, often disposed of through burning, releasing several pollutants into the environment. Carbon dioxide (CO2) dominates at 70%, accompanied by methane (CH4) at 0.66%, carbon monoxide (CO) at 7%, and nitrous oxide (N2O) at 2.09%. This process further compounds issues by depleting soil nutrients like nitrogen and organic matter. This review focuses on strategies for residue management and using straw as value-added by-products. We address research gaps and offer potential recommendations for rice straw management using economically feasible and practical routes. We elaborate that to improve rice straw digestibility, utilization in mushroom cultivation, and other value-added products, low silica (Si) rice varieties must be developed using modern technologies including marker-assisted selection breeding or genome editing. Developing low Si rice could also reduce arsenic uptake by rice, as rice plants use the same transporters for the uptake of both elements. Conversely, silica is also indispensable for quality rice production; hence, optimizing silicon content in rice is worth investigating. More research is required to understand the extent of silicon's effect on the utilization of straw for various purposes. This review also discusses the importance of educating farmers about the straw burning issue and its environmental consequences. We highlight the significance of tailoring rice straw management methods to local suitability, moving away from a universal approach. More extension work is needed to encourage farmers to opt for environmentally and economically sound options for rice straw management. Policy intervention to incentivize farmers and develop technologies for the widespread use of rice straw for various industries and product development could help in the management of rice straw and will also create a circular economy.
Collapse
Affiliation(s)
- Yogita Singh
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Sudhir Sharma
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India; Department of Plant Science, Mahatma Jyotiba Phule Rohilkhand University, Bareilly-243006, India.
| | - Pooja Sihag
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University Meerut, 250001, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar 263145, India; Vice-Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly 243001, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA.
| |
Collapse
|
5
|
Putra NE, Zhou J, Zadpoor AA. Sustainable Sources of Raw Materials for Additive Manufacturing of Bone-Substituting Biomaterials. Adv Healthc Mater 2024; 13:e2301837. [PMID: 37535435 PMCID: PMC11468967 DOI: 10.1002/adhm.202301837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/12/2023] [Indexed: 08/05/2023]
Abstract
The need for sustainable development has never been more urgent, as the world continues to struggle with environmental challenges, such as climate change, pollution, and dwindling natural resources. The use of renewable and recycled waste materials as a source of raw materials for biomaterials and tissue engineering is a promising avenue for sustainable development. Although tissue engineering has rapidly developed, the challenges associated with fulfilling the increasing demand for bone substitutes and implants remain unresolved, particularly as the global population ages. This review provides an overview of waste materials, such as eggshells, seashells, fish residues, and agricultural biomass, that can be transformed into biomaterials for bone tissue engineering. While the development of recycled metals is in its early stages, the use of probiotics and renewable polymers to improve the biofunctionalities of bone implants is highlighted. Despite the advances of additive manufacturing (AM), studies on AM waste-derived bone-substitutes are limited. It is foreseeable that AM technologies can provide a more sustainable alternative to manufacturing biomaterials and implants. The preliminary results of eggshell and seashell-derived calcium phosphate and rice husk ash-derived silica can likely pave the way for more advanced applications of AM waste-derived biomaterials for sustainably addressing several unmet clinical applications.
Collapse
Affiliation(s)
- Niko E. Putra
- Department of Biomechanical EngineeringFaculty of MechanicalMaritimeand Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Jie Zhou
- Department of Biomechanical EngineeringFaculty of MechanicalMaritimeand Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Amir A. Zadpoor
- Department of Biomechanical EngineeringFaculty of MechanicalMaritimeand Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| |
Collapse
|
6
|
Yu W, Sun L, Li M, Li M, Lei W, Wei C. FDM 3D Printing and Properties of PBS/PLA Blends. Polymers (Basel) 2023; 15:4305. [PMID: 37959985 PMCID: PMC10649279 DOI: 10.3390/polym15214305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Poly(lactic acid) (PLA) and Poly(butylene succinate) (PBS) were chosen as raw materials and melt blended by a twin screw extruder and pelletized; then, the pellets were extruded into filaments; after that, various PBS/PLA blending samples were prepared by Fused Deposition Molding (FDM) 3D printing technology using the filaments obtained and the effect of the dosage of PBS on technological properties of 3D-printed specimens was investigated. For comparison, the PLA specimen was also prepared by FDM printing. The tensile strength, tensile modulus, thermal stability, and hydrophilicity became poorer with increasing the dosage of PBS, while the flexural strength, flexural modulus, impact strength, and crystallinity increased first and then decreased. The blend containing 10% PBS (10% PBS/PLA) had the greatest flexural strength of 60.12 MPa, tensile modulus of 2360.04 MPa, impact strength of 89.39 kJ/m2, and crystallinity of 7.4%, which were increased by 54.65%, 61.04%, 14.78%, and 51.02% compared to those of printed PLA, respectively; this blend also absorbed the least water than any other specimen when immersed in water. Different from the transparent PLA filament, 10% PBS/PLA filament presented a milky white appearance. The printed 10% PBS/PLA specimen had a smooth surface, while the surface of the printed PLA was rough. All the results indicated that the printed 10% PBS/PLA specimen had good comprehensive properties, including improved mechanical properties, crystallization performance, and surface quality than PLA, as well as proper wettability and water absorption. The prominent conclusion achieved in this work was that 10% PBS/PLA should be an ideal candidate for biodegradable feedstock among all the PBS/PLA blends for FDM 3D printing.
Collapse
Affiliation(s)
- Wangwang Yu
- School of Mechanical Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210023, China
| | - Liwei Sun
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Mengya Li
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Meihui Li
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Wen Lei
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Chaohui Wei
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Sola A, Trinchi A. Recycling as a Key Enabler for Sustainable Additive Manufacturing of Polymer Composites: A Critical Perspective on Fused Filament Fabrication. Polymers (Basel) 2023; 15:4219. [PMID: 37959900 PMCID: PMC10649055 DOI: 10.3390/polym15214219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Additive manufacturing (AM, aka 3D printing) is generally acknowledged as a "green" technology. However, its wider uptake in industry largely relies on the development of composite feedstock for imparting superior mechanical properties and bespoke functionality. Composite materials are especially needed in polymer AM, given the otherwise poor performance of most polymer parts in load-bearing applications. As a drawback, the shift from mono-material to composite feedstock may worsen the environmental footprint of polymer AM. This perspective aims to discuss this chasm between the advantage of embedding advanced functionality, and the disadvantage of causing harm to the environment. Fused filament fabrication (FFF, aka fused deposition modelling, FDM) is analysed here as a case study on account of its unparalleled popularity. FFF, which belongs to the material extrusion (MEX) family, is presently the most widespread polymer AM technique for industrial, educational, and recreational applications. On the one hand, the FFF of composite materials has already transitioned "from lab to fab" and finally to community, with far-reaching implications for its sustainability. On the other hand, feedstock materials for FFF are thermoplastic-based, and hence highly amenable to recycling. The literature shows that recycled thermoplastic materials such as poly(lactic acid) (PLA), acrylonitrile-butadiene-styrene (ABS), and polyethylene terephthalate (PET, or its glycol-modified form PETG) can be used for printing by FFF, and FFF printed objects can be recycled when they are at the end of life. Reinforcements/fillers can also be obtained from recycled materials, which may help valorise waste materials and by-products from a wide range of industries (for example, paper, food, furniture) and from agriculture. Increasing attention is being paid to the recovery of carbon fibres (for example, from aviation), and to the reuse of glass fibre-reinforced polymers (for example, from end-of-life wind turbines). Although technical challenges and economical constraints remain, the adoption of recycling strategies appears to be essential for limiting the environmental impact of composite feedstock in FFF by reducing the depletion of natural resources, cutting down the volume of waste materials, and mitigating the dependency on petrochemicals.
Collapse
Affiliation(s)
- Antonella Sola
- Advanced Materials and Processing, Manufacturing Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Melbourne, VIC 3169, Australia
| | - Adrian Trinchi
- Advanced Materials and Processing, Manufacturing Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Melbourne, VIC 3169, Australia
| |
Collapse
|
8
|
Yu W, Sun L, Li M, Peng Y, Wei C, Lei W, Qiu R, Ge Y. Effect of Modification and Hydrothermal Ageing on Properties of 3D-Printed Wood Flour-Poly(butylene succinate)-Poly(lactic acid) Biocomposites. Polymers (Basel) 2023; 15:3697. [PMID: 37765551 PMCID: PMC10535038 DOI: 10.3390/polym15183697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Wood flour-poly(butylene succinate)-poly(lactic acid) biocomposite samples were prepared by fused-deposition-molding 3D-printing technology, and modifications with glycerol and a silane coupling agent (KH550) were carried out. The samples were then hydrothermally aged. Modification with glycerol and KH550 enhanced the hydrophilicity of the samples and increased their tensile strength. Hydrothermal aging clearly whitened the surfaces of all the samples and made them more hydrophobic. Meanwhile, their tensile properties and thermal stability became poor; a higher hydrothermal aging temperature affected the mechanical properties more negatively. The modified samples turned out to be more resistant to the hydrothermal aging, and modification with KH550 could improve the anti-hydrothermal aging properties of the samples better than that with glycerol, where the tensile properties and the cross-sectional morphologies of the fractured specimens were concerned. Generally, the effects of hydrothermal aging temperature on the physico-mechanical properties of the printed specimens were greater than those by hydrothermal aging time.
Collapse
Affiliation(s)
- Wangwang Yu
- School of Mechanical Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210023, China
| | - Liwei Sun
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Meihui Li
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Youxue Peng
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Chaohui Wei
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Wen Lei
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Rui Qiu
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Ge
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Morimoto K, Tsuda K, Mizuno D. Literature Review on the Utilization of Rice Husks: Focus on Application of Materials for Digital Fabrication. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5597. [PMID: 37629890 PMCID: PMC10456955 DOI: 10.3390/ma16165597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
To achieve a sustainable society, it is important to use biological resources effectively to the extent that they are renewable. Rice husk, which is abundantly produced in various regions, is a useful biomass resource. To promote their use further, it is important to expand the fields in which they are used. Therefore, this study reviews the research on rice-husk-based materials that can be used in digital fabrication, such as those used with 3D printers and Computer Numerical Control (CNC) machines, which have become increasingly popular in recent years. After outlining the characteristics of each machining method, the authors surveyed and analyzed the original research on rice-husk-based materials for 3D printers and particleboard available in digital fabrication machines for 2D machining. This review identifies issues and proposes solutions for expanding the use of rice-husk-based materials. It also indicates the need for further research on various aspects, such as the workability and maintainability of the equipment.
Collapse
Affiliation(s)
- Kohei Morimoto
- Graduate School of Design, Nagaoka Institute of Design, Niigata 9402088, Japan
| | - Kazutoshi Tsuda
- Center for the Possible Futures, Kyoto Institute of Technology, Kyoto 6060951, Japan; (K.T.); (D.M.)
| | - Daijiro Mizuno
- Center for the Possible Futures, Kyoto Institute of Technology, Kyoto 6060951, Japan; (K.T.); (D.M.)
| |
Collapse
|
10
|
Rahman AM, Rahman TT, Pei Z, Ufodike CO, Lee J, Elwany A. Additive Manufacturing Using Agriculturally Derived Biowastes: A Systematic Literature Review. Bioengineering (Basel) 2023; 10:845. [PMID: 37508872 PMCID: PMC10376353 DOI: 10.3390/bioengineering10070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Agriculturally derived biowastes can be transformed into a diverse range of materials, including powders, fibers, and filaments, which can be used in additive manufacturing methods. This review study reports a study that analyzes the existing literature on the development of novel materials from agriculturally derived biowastes for additive manufacturing methods. A review was conducted of 57 selected publications since 2016 covering various agriculturally derived biowastes, different additive manufacturing methods, and potential large-scale applications of additive manufacturing using these materials. Wood, fish, and algal cultivation wastes were also included in the broader category of agriculturally derived biowastes. Further research and development are required to optimize the use of agriculturally derived biowastes for additive manufacturing, particularly with regard to material innovation, improving print quality and mechanical properties, as well as exploring large-scale industrial applications.
Collapse
Affiliation(s)
- Al Mazedur Rahman
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Taieba Tuba Rahman
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Zhijian Pei
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Chukwuzubelu Okenwa Ufodike
- Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX 77843, USA
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jaesung Lee
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Alaa Elwany
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
Andanje MN, Mwangi JW, Mose BR, Carrara S. Biocompatible and Biodegradable 3D Printing from Bioplastics: A Review. Polymers (Basel) 2023; 15:2355. [PMID: 37242930 PMCID: PMC10221408 DOI: 10.3390/polym15102355] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
There has been a lot of interest in developing and producing biodegradable polymers to address the current environmental problem caused by the continued usage of synthetic polymers derived from petroleum products. Bioplastics have been identified as a possible alternative to the use of conventional plastics since they are biodegradable and/or derived from renewable resources. Additive manufacturing, also referred to as 3D printing, is a field of growing interest and can contribute towards a sustainable and circular economy. The manufacturing technology also provides a wide material selection with design flexibility increasing its usage in the manufacture of parts from bioplastics. With this material flexibility, efforts have been directed towards developing 3D printing filaments from bioplastics such as Poly (lactic acid) to substitute the common fossil- based conventional plastic filaments such as Acrylonitrile butadiene styrene. Plant biomass is now utilized in the development of biocomposite materials. A lot of literature presents work done toward improving the biodegradability of printing filaments. However, additive manufacture of biocomposites from plant biomass is faced with printing challenges such as warping, low agglomeration between layers and poor mechanical properties of the printed parts. The aim of this paper is to review the technology of 3D printing using bioplastics, study the materials that have been utilized in this technology and how challenges of working with biocomposites in additive manufacture have been addressed.
Collapse
Affiliation(s)
- Maurine Naliaka Andanje
- Department of Mechatronic Engineering, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi 00200, Kenya
| | - James Wamai Mwangi
- Department of Mechatronic Engineering, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi 00200, Kenya
| | - Bruno Roberts Mose
- Department of Mechanical Engineering, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi 00200, Kenya
| | - Sandro Carrara
- Institute of Electrical and Micro Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Colombian Sustainability Perspective on Fused Deposition Modeling Technology: Opportunity to Develop Recycled and Biobased 3D Printing Filaments. Polymers (Basel) 2023; 15:polym15030528. [PMID: 36771829 PMCID: PMC9921848 DOI: 10.3390/polym15030528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
In the context of the preservation of natural resources, researchers show a growing interest in developing eco-friendly materials based on recycled polymers and natural fiber biocomposites to minimize plastic and agroindustrial waste pollution. The development of new materials must be integrated within the circular economy concepts to guarantee sustainable production. In parallel, fused deposition modeling, an additive manufacturing technology, provides the opportunity to use these new materials in an efficient and sustainable manner. This review presents the context of plastics and agro-industrial fiber pollution, followed by the opportunity to give them added value by applying circular economy concepts and implementing these residues to develop new materials for the manufacture of fused deposition modeling 3D printing technique feedstock. Colombian perspective is highlighted since 3D printing technology is growing there, and Colombian biodiversity represents a high reservoir of materials. Also, recycling in Colombia promotes compliance with the 2030 Agenda and the Sustainable Development Goals.
Collapse
|
13
|
Mishra V, Negi S, Kar S. FDM-based additive manufacturing of recycled thermoplastics and associated composites. JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT 2023; 25:758-784. [PMID: 36686404 PMCID: PMC9838364 DOI: 10.1007/s10163-022-01588-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Hailed since the fourth industrial revolution, three-dimensional (3D) printing or additive manufacturing (AM) has been extensively implemented in various manufacturing sectors. This process is popular for generating regular products and incorporating innovative designs into the components like auxetic structures, such as fabrication of engineering products, customized implants and sophisticated biomedical devices. Over the years, one of the interesting outputs of this emerging technology is the reuse of waste thermoplastic materials to produce competent products through the fused deposition modeling (FDM) technique. The strength of FDM components produced from thermoplastic waste is lower than that of virgin plastic FDM counterparts. So, there is a need to understand the significant changes in the recycled thermoplastic material during subsequent extrusions, which are chain scission, change in viscosity and breaking strength. The use of additives has been a promising solution to improve the performance of recycled material for 3D printing applications. Hence, this study aims to provide an overview of reusing plastic waste through FDM-based 3D printing. This review summarizes the current knowledge about the effect of processing on thermo-mechanical properties of recycled plastic FDM parts and the use of various additives to improve the overall quality. In addition, two case studies from open literature have been demonstrated to explain the use of FDM and associated technology for plastic recycling.
Collapse
Affiliation(s)
- Vishal Mishra
- National Institute of Technology Silchar, Silchar, Assam India
| | - Sushant Negi
- National Institute of Technology Silchar, Silchar, Assam India
| | - Simanchal Kar
- National Institute of Technology Silchar, Silchar, Assam India
| |
Collapse
|
14
|
Plastic Waste Upcycling: A Sustainable Solution for Waste Management, Product Development, and Circular Economy. Polymers (Basel) 2022; 14:polym14224788. [PMID: 36432915 PMCID: PMC9694193 DOI: 10.3390/polym14224788] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Plastic waste pollution, including non-biodegradable landfills, leaching of toxic chemicals into soil and waterways, and emission of toxic gases into the atmosphere, is significantly affecting our environment. Conventional plastic waste recycling approaches generally produce lower value materials compared to the original plastic or recover inefficient heat energy. Lately, upcycling or the valorization approach has emerged as a sustainable solution to transform plastic waste into value-added products. In this review, we present an overview of recent advancements in plastic waste upcycling, such as vitrimerization, nanocomposite fabrication, additive manufacturing, catalytic transformation, and industrial biotechnology, envisaged with technical challenges, future developments, and new circular economy opportunities.
Collapse
|
15
|
Liu M, Han B, Dyson PJ. Simultaneous Generation of Methyl Esters and CO in Lignin Transformation. Angew Chem Int Ed Engl 2022; 61:e202209093. [PMID: 35979750 PMCID: PMC9826404 DOI: 10.1002/anie.202209093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/11/2023]
Abstract
Lignin is an abundant renewable carbon source. Due to its complex structure, utilization of lignin is very challenging. Herein, we describe an efficient strategy for the simultaneous utilization of lignin, in which the methoxy groups in lignin react with carboxylic acids to generate methyl carboxylates and the other alkyl and phenyl carbons react with oxygen to predominantly form CO that can be used directly in carbonylation reactions. The method was applied to the methylation of various functionalized aryl and alkyl carboxylic acids, including natural compounds, to produce valuable chemicals, including pharmaceuticals. No solid or liquid residues remain after the reaction. Mechanistic studies demonstrate that a well-ordered C-C and C-O bond activation sequence takes place to realize total transformation of lignin. This work opens a way for transformation of the entire lignin polymer into valuable products, exemplified by the synthesis of the pharmaceutical, Ramipril, on a gram scale.
Collapse
Affiliation(s)
- Mingyang Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- Institute of Chemical Sciences and EngineeringSwiss Federal Institute of Technology (EPFL)1015LausanneSwitzerland
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Paul J. Dyson
- Institute of Chemical Sciences and EngineeringSwiss Federal Institute of Technology (EPFL)1015LausanneSwitzerland
| |
Collapse
|
16
|
Simultaneous Generation of Methyl Esters and CO in Lignin Transformation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Influence of Biofillers on the Properties of Regrind Crystalline Poly(ethylene terephthalate) (CPET). Polymers (Basel) 2022; 14:polym14153210. [PMID: 35956723 PMCID: PMC9371099 DOI: 10.3390/polym14153210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
As the demand for plastics only increases, new methods are required to economically and sustainably increase plastic usage without landfill and environmental accumulation. In addition, the use of biofillers is encouraged as a way to reduce the cost of the final resin by incorporating agricultural and industrial waste by-products, such as rice hulls and coffee chaff to further reduce waste being sent to landfills. Crystalline poly(ethylene terephthalate) (CPET) is a resin commonly used for microwave and ovenable food packaging containers that have not been fully explored for recycling. In this article, we investigate how the incorporation of biofillers at 5% wt. and 10% wt. impacts critical polymer properties. The thermal and mechanical properties were not significantly altered with the presence of rice hulls or coffee chaff in the polymer matrix at 5% wt. loading, but some reduction in melt temperature, thermal stability, and maximum stress and strain was more noticed at 10% wt. The complex viscosity was also reduced with the introduction of biofillers. The levels of heavy metals of concern, such as Cd, Cr, and Pb, were below the regulatory limits applicable in the United States and Europe. Additional studies are suggested to improve the performance of CPET/biofiller blends by pre-treating the biofiller and using compatibilizers.
Collapse
|
18
|
Al-Mazrouei N, Ismail A, Ahmed W, Al-Marzouqi AH. ABS/Silicon Dioxide Micro Particulate Composite from 3D Printing Polymeric Waste. Polymers (Basel) 2022; 14:polym14030509. [PMID: 35160497 PMCID: PMC8837957 DOI: 10.3390/polym14030509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
In this paper, Acrylonitrile-Butadiene-Styrene matrix composites reinforced with Nano-silica dioxide particles were examined and prepared to study their mechanical properties. The composite sheets were pre-prepared using the hot extrusion process. Due to its wide characteristics, silica dioxide additions can strengthen the usability and mechanical features of composite thermoplastics and polymers. Furthermore, introducing silica dioxide as a filler in various attributes can help to maintain the smooth flow of sufficient powders, reduce caking, and manage viscoelasticity. Despite its advantages, 3D printing generates a significant amount of waste due to limited prints or destroyed support structures. ABS is an ideal material to use because it is a thermoplastic and amorphous polymer with outstanding thermal properties that is also applicable with the FFF (Fused Filament Fabrication) technique. The findings showed that increasing the silica dioxide content reduces the tensile strength to 22.4 MPa at 10 wt%. Toughness, ductility, and yield stress values of ABS/silica dioxide composites at 15 wt% increased, indicating that the composite material reinforced by the silica dioxide particles improved material characteristics. It is essential to consider the impact of recycling in polymer reinforcement with fillers. Furthermore, the improved mechanical qualities of the composite material encourages successful ABS recycling from 3D printing, as well as the possibility of reusing it in a similar application.
Collapse
Affiliation(s)
- Noura Al-Mazrouei
- Chemical and Petroleum Engineering Department, UAE University, Al-Ain P.O. Box 15551, United Arab Emirates; (N.A.-M.); (A.I.); (A.H.A.-M.)
| | - Ahmed Ismail
- Chemical and Petroleum Engineering Department, UAE University, Al-Ain P.O. Box 15551, United Arab Emirates; (N.A.-M.); (A.I.); (A.H.A.-M.)
| | - Waleed Ahmed
- Engineering Requirements Unit, UAE University, Al-Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| | - Ali H. Al-Marzouqi
- Chemical and Petroleum Engineering Department, UAE University, Al-Ain P.O. Box 15551, United Arab Emirates; (N.A.-M.); (A.I.); (A.H.A.-M.)
| |
Collapse
|
19
|
He L, Xia F, Wang Y, Yuan J, Chen D, Zheng J. Mechanical and Dynamic Mechanical Properties of the Amino Silicone Oil Emulsion Modified Ramie Fiber Reinforced Composites. Polymers (Basel) 2021; 13:polym13234083. [PMID: 34883588 PMCID: PMC8659282 DOI: 10.3390/polym13234083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
The mechanical and dynamic mechanical properties, interface adhesion and microstructures of the amino silicone oil emulsion (ASO) modified short ramie fiber reinforced polypropylene composites (RFPCs) with different fiber fractions were investigated. The RFPCs were made through a combined process of extrusion and injection molding. Mechanical property tests of the RFPCs revealed enhancements in tensile and flexural strengths with increase of the fiber fraction due to the high stiffness of the fiber filler and a better interfacial bonding from ASO treatment. The dynamic mechanical analysis (DMA) results indicated that fiber incorporation plays an important role in DMA parameters (storage modulus, loss modulus, and damping ratio) at Tg by forming an improved interfacial adhesion and providing more effective stress transfer rate and energy dissipation between matrix and fiber. The phase behavior analysis suggests all the RFPCs are a kind of heterogeneity system based on the Cole-Cole plot analysis.
Collapse
Affiliation(s)
- Liping He
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China;
- Correspondence: (L.H.); (J.Z.)
| | - Fan Xia
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China;
| | - Yuan Wang
- Department of Vehicle Body Testing Research, CATARC Automotive Test Center (Tianjin) Co., Ltd., Tianjin 300300, China;
| | - Jianmin Yuan
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China;
| | - Dachuan Chen
- College of Civil Engineering, Hunan University, Changsha 410082, China;
| | - Junchao Zheng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Correspondence: (L.H.); (J.Z.)
| |
Collapse
|
20
|
Effect of Eco-Friendly Peanut Shell Powder on the Chemical Resistance, Physical, Thermal, and Thermomechanical Properties of Unsaturated Polyester Resin Composites. Polymers (Basel) 2021; 13:polym13213690. [PMID: 34771247 PMCID: PMC8588497 DOI: 10.3390/polym13213690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
The paper investigates the synthesis of eco-friendly composites and their properties before and after immersion in solvents of different chemical natures. For their preparation, unsaturated polyester resin (UPR) based on recycled poly (ethylene terephthalate) (PET) and peanut shell powder (PSP) were used. Polymerization was carried out in the presence of environmentally friendly polymeric cobalt. Distilled water, acetone, 10% hydrochloric acid, 40% sodium hydroxide, toluene, and 2% sodium carbonate were used as solvents in the chemical resistance test. Changes in the structure, properties, and appearance (morphology) of composites after 140 days of immersion in solvents were investigated. The results show that both the resin and its composites show resistance towards 10% HCl and toluene. The immersion in water has no significant effect on the resin, but for PSP composites, the plasticizing effect of water was observed. In acetone, after only one day, the resin and its composite with 10% PSP shrink and fall into pieces. However, the most destructive is an alkaline environment. After the immersion test, a huge increase in mass and a deterioration of gloss and thermomechanical properties were observed. The destructive influence of the 40% NaOH environment mainly concerned the resin.
Collapse
|
21
|
Morales MA, Maranon A, Hernandez C, Porras A. Development and Characterization of a 3D Printed Cocoa Bean Shell Filled Recycled Polypropylene for Sustainable Composites. Polymers (Basel) 2021; 13:3162. [PMID: 34578062 PMCID: PMC8472922 DOI: 10.3390/polym13183162] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Natural filler-based composites are an environmentally friendly and potentially sustainable alternative to synthetic or plastic counterparts. Recycling polymers and using agro-industrial wastes are measures that help to achieve a circular economy. Thus, this work presents the development and characterization of a 3D printing filament based on recycled polypropylene and cocoa bean shells, which has not been explored yet. The obtained composites were thermally and physically characterized. In addition, the warping effect, mechanical, and morphological analyses were performed on 3D printed specimens. Thermal analysis exhibited decreased thermal stability when cacao bean shell (CBS) particles were added due to their lignocellulosic content. A reduction in both melting enthalpy and crystallinity percentage was identified. This is caused by the increase in the amorphous structures present in the hemicellulose and lignin of the CBS. Mechanical tests showed high dependence of the mechanical properties on the 3D printing raster angle. Tensile strength increased when a raster angle of 0° was used, compared to specimens printed at 90°, due to the load direction. Tensile strength and fracture strain were improved with CBS addition in specimens printed at 90°, and better bonding between adjacent layers was achieved. Electron microscope images identified particle fracture, filler-matrix debonding, and matrix breakage as the central failure mechanisms. These failure mechanisms are attributed to the poor interfacial bonding between the CBS particles and the matrix, which reduced the tensile properties of specimens printed at 0°. On the other hand, the printing process showed that cocoa bean shell particles reduced by 67% the characteristic warping effect of recycled polypropylene during 3D printing, which is advantageous for 3D printing applications of the rPP. Thereby, potential sustainable natural filler composite filaments for 3D printing applications with low density and low cost can be developed, adding value to agro-industrial and plastic wastes.
Collapse
Affiliation(s)
- Maria A. Morales
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, CR 1 18a 12, Bogotá 111711, Colombia;
| | - Alejandro Maranon
- Structural Integrity Research Group, Department of Mechanical Engineering, Universidad de los Andes, CR 1 18a 12, Bogotá 111711, Colombia;
| | - Camilo Hernandez
- Sustainable Design in Mechanical Engineering Research Group (DSIM), Department of Mechanical, Engineering, Escuela Colombiana de Ingenieria Julio Graravito, Autopista Norte AK 45 205 59, Bogotá 111166, Colombia;
| | - Alicia Porras
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, CR 1 18a 12, Bogotá 111711, Colombia;
| |
Collapse
|