1
|
Shiva K, Soleimani A, Morshedian J, Farahmandghavi F, Shokrolahi F. Improving the antibacterial properties of polyethylene food packaging films with Ajwain essential oil adsorbed on chitosan particles. Sci Rep 2024; 14:28802. [PMID: 39567677 PMCID: PMC11579371 DOI: 10.1038/s41598-024-80349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024] Open
Abstract
The aim of this research is to develop a composite antibacterial film for food packaging using low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyethylene-graft-maleic anhydride (PE-g-MA), and incorporating chitosan (CS) particles onto which ajwan essential oil (AEO) is adsorbed. The films were characterized using various techniques, including Fourier-transform infrared spectroscopy (FTIR), Gas chromatography/mass spectroscopy (GC-MS), X-ray diffraction (XRD), tensile testing, oxygen transmission rate (OTR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and antibacterial assays. FTIR results confirmed the presence of CS and/or AEO in the films. Mechanical testing indicated a decrease in tensile strength and an increase in elongation at break with the addition of AEO, while CS reduced elongation. In the sample containing only 7.5% chitosan (PE-7.5-0), the oxygen permeability was reduced to 910 cm2/m2·day·bar due to the presence of CS. However, the inclusion of AEO in the sample (PE-0-10) increased the oxygen permeability to 2200 cm2/m2·day·bar, which is higher than that of the control sample (PE-0-0) with an oxygen permeability of 1680 cm2/m2·day·bar. The antibacterial activity results demonstrated a synergistic inhibitory effect of CS and AEO. Data from GC-MS and inhibition zone (IZ) tests indicated that while chitosan alone does not exhibit significant antibacterial activity due to its incorporation in the bulk of the film, its combination with AEO enhances antibacterial efficacy. This enhancement occurs as the oil is adsorbed and protected from evaporation during the film formation process. Overall, the findings from this research suggest that the composite film PE-7.5-10, which possesses suitable mechanical properties and significant antibacterial activity, could be an effective candidate for food packaging applications.
Collapse
Affiliation(s)
- Kasra Shiva
- Department of Polymer Processing, Faculty of Processing, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
- Department of Novel Drug Delivery Systems, Faculty of Science, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| | - Adel Soleimani
- Department of Polymer Processing, Faculty of Processing, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
- Department of Novel Drug Delivery Systems, Faculty of Science, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| | - Jalil Morshedian
- Department of Polymer Processing, Faculty of Processing, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| | - Farhid Farahmandghavi
- Department of Novel Drug Delivery Systems, Faculty of Science, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran.
| | - Fatemeh Shokrolahi
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| |
Collapse
|
2
|
Poosarla VG, Bisoi S, Siripurapu A, Rathod BG, Ramadoss A, Kilaparthi S, Shivshetty N, Rajagopalan G. Extension of shelf life of tomato (Solanum lycopersicum L.) by using a coating of polyhydroxybutyrate-carboxymethyl cellulose-pectin-thymol conjugate. J Food Sci 2024; 89:6232-6252. [PMID: 39175180 DOI: 10.1111/1750-3841.17312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
This study targets explicitly finding an alternative to petroleum-based plastic films that burden the environment, which is a high priority. Hence, polymeric films were prepared with carboxymethyl cellulose (CMC) (4%), pectin (2%), and polyhydroxybutyrate (PHB) (0.5%) with different concentrations of thymol (0.3%, 0.9%, 1.8%, 3%, and 5%) and glycerol as a plasticizer by solution casting technique. The prepared films were tested for mechanical, optical, antimicrobial, and antioxidant properties. Film F5 (CMC + P + PHB + 0.9%thymol) showed an excellent tensile strength of 15 MPa, Young's modulus of 395 MPa, antioxidant activity (AA) (92%), rapid soil biodegradation (21 days), and strong antimicrobial activity against bacterial and fungal cultures such as Klebsiella pneumoniae, Staphylococcus aureus, Escherichia coli, Aspergillus niger, and Aspergillus flavus. The thymol content increase in films F6 (1.8%), F7 (3%), and F8 (5%) displayed a decrease in mechanical properties due to thymol's hydrophobicity. For shelf life studies on tomatoes, F2, a film without thymol (poor antimicrobial and antioxidant activities), F5 (film with superior mechanical, optical, antimicrobial, and antioxidant properties), and F7 (film with low mechanical properties) were selected. Film F5 coatings on tomato fruit enhanced the shelf life of up to 15 days by preventing weight loss, preserving firmness, and delaying changes in biochemical constituents like lycopene, phenols, and AA. Based on the mechanical, optical, antimicrobial, antioxidant, and shelf life results, the film F5 is suitable for active food packaging and preservation. PRACTICAL APPLICATION: The developed active biodegradable composite can be utilized as a coating to extend the shelf life of fruits and vegetables. These coatings are easy to produce and apply, offering a sustainable solution to reduce food waste. On an industrial scale, they can be applied to food products, ensuring longer freshness without any technical challenges.
Collapse
Affiliation(s)
- Venkata Giridhar Poosarla
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Suchitra Bisoi
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Aruna Siripurapu
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Baliram Gurunath Rathod
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Aparna Ramadoss
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Suresh Kilaparthi
- Department of Mechanical Engineering, GITAM School of Technology, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Nagaveni Shivshetty
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Gobinath Rajagopalan
- Industrial Biotechnology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, Delhi, India
| |
Collapse
|
3
|
Annuur RM, Triana D, Ernawati T, Murai Y, Aswad M, Hashimoto M, Tachrim ZP. A Review of Cinnamic Acid's Skeleton Modification: Features for Antibacterial-Agent-Guided Derivatives. Molecules 2024; 29:3929. [PMID: 39203007 PMCID: PMC11357405 DOI: 10.3390/molecules29163929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Antimicrobial resistance has emerged as a significant danger to global health, and the need for more effective antimicrobial resistance (AMR) control has been highlighted. Cinnamic acid is abundant in plant products and is a potential starting material for further modification, focusing on the development of new antimicrobial compounds. In the following review, we describe the classification of critical antibacterial-guided reactions applied to the main skeleton structure of cinnamic acid derivatives over the last decade. Of all of the main parts of cinnamic acids, the phenyl ring and the carboxylic group significantly affect antibacterial activity. The results presented in the following review can provide valuable insights into considerable features in the organic modification of cinnamic acids related to antibacterial medication development and the food industry.
Collapse
Affiliation(s)
- Rose Malina Annuur
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency, Kawasan Sains Teknologi (KST) BJ Habibie, Serpong, South Tangerang 15314, Indonesia
| | - Desita Triana
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 0608589, Japan
| | - Teni Ernawati
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency, Kawasan Sains Teknologi (KST) BJ Habibie, Serpong, South Tangerang 15314, Indonesia
| | - Yuta Murai
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 0608589, Japan
| | - Muhammad Aswad
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia;
| | - Makoto Hashimoto
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 0608589, Japan
| | - Zetryana Puteri Tachrim
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency, Kawasan Sains Teknologi (KST) BJ Habibie, Serpong, South Tangerang 15314, Indonesia
| |
Collapse
|
4
|
Rajendran DS, Venkataraman S, Jha SK, Chakrabarty D, Kumar VV. A review on bio-based polymer polylactic acid potential on sustainable food packaging. Food Sci Biotechnol 2024; 33:1759-1788. [PMID: 38752115 PMCID: PMC11091039 DOI: 10.1007/s10068-024-01543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 05/18/2024] Open
Abstract
Poly(lactic acid) (PLA) stands as a compelling alternative to conventional plastic-based packaging, signifying a notable shift toward sustainable material utilization. This comprehensive analysis illuminates the manifold applications of PLA composites within the realm of the food industry, emphasizing its pivotal role in food packaging and preservation. Noteworthy attributes of PLA composites with phenolic active compounds (phenolic acid and aldehyde, terpenes, carotenoid, and so on) include robust antimicrobial and antioxidant properties, significantly enhancing its capability to bolster adherence to stringent food safety standards. The incorporation of microbial and synthetic biopolymers, polysaccharides, oligosaccharides, oils, proteins and peptides to PLA in packaging solutions arises from its inherent non-toxicity and outstanding mechanical as well as thermal resilience. Functioning as a proficient film producer, PLA constructs an ideal preservation environment by merging optical and permeability traits. Esteemed as a pioneer in environmentally mindful packaging, PLA diminishes ecological footprints owing to its innate biodegradability. Primarily, the adoption of PLA extends the shelf life of products and encourages an eco-centric approach, marking a significant stride toward the food industry's embrace of sustainable packaging methodologies. Graphical abstract
Collapse
Affiliation(s)
- Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Satyendra Kumar Jha
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Disha Chakrabarty
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
5
|
Plota-Pietrzak A, Czechowski L, Miszczak S, Masek A. Innovative Materials Based on Epoxy Resin for Use as Seat Elements in Bulk Transport. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1829. [PMID: 38673186 PMCID: PMC11051280 DOI: 10.3390/ma17081829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The subject of this research is the development of epoxy composites with a defined service life for the purpose of seat elements in rail vehicles, which will be more environmentally friendly. The produced materials based on epoxy resin filled with PLA or PLA and quercetin were subjected to solar aging tests for 800 h to investigate the impact of the additives used on the aging behavior of the epoxy matrix. Firstly, the TGA analysis showed that the use of the proposed additives allowed for the maintenance of the thermal stability of the epoxy resin. Moreover, based on an optical microscopy test, it was noticed that the introduction of PLA and PLA with quercetin did not contribute to an increase in matrix defects. The one-directional tensile tests carried out before and after solar aging showed that the presence of polylactide in epoxy composites causes a slight growth of the stiffness and strength. Based on contact angle and color change measurements, it was found that quercetin was oxidized, thus ensuring protection for the epoxy matrix. This phenomenon was confirmed by FTIR study, where the carbonyl index (CI) value for the R-PLA-Q composite was lower than for the reference sample. The obtained composite structures may be a good alternative to traditionally used systems as seat elements in rail vehicles, which are not only characterized by high aging resistance but are also more eco-friendly.
Collapse
Affiliation(s)
- Angelika Plota-Pietrzak
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-537 Lodz, Poland;
| | - Leszek Czechowski
- Department of Strength of Materials, Lodz University of Technology, 90-537 Lodz, Poland;
| | - Sebastian Miszczak
- Institute of Materials Science and Engineering, Lodz University of Technology, 90-537 Lodz, Poland;
| | - Anna Masek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-537 Lodz, Poland;
| |
Collapse
|
6
|
Muccilli V, Maccarronello AE, Rasoanandrasana C, Cardullo N, de Luna MS, Pittalà MG, Riccobene PM, Carroccio SC, Scamporrino AA. Green 3: A green extraction of green additives for green plastics. Heliyon 2024; 10:e24469. [PMID: 38298717 PMCID: PMC10828702 DOI: 10.1016/j.heliyon.2024.e24469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
PLA/PBAT bioplastic is a commercial biodegradable plastic employed for packaging and several food and agriculture applications. In this regard, properties such as the antioxidant ability to extend food shelf life and light resistance, are of great interest in the production of packaging and mulching films, respectively. These features are obtained by developing blends with pure chemicals and/or natural products as additives. In the present work blend formulations of PLA/PBAT with a walnut shell extract rich in antioxidants were developed and evaluated for their properties in comparison with classic PLA/PBAT. Specifically, natural additives, and most importantly the production process were purposely selected to i) be green and cost-effective; ii) confer antioxidant properties; and iii) improve material performance. To this aim, a walnut shell extract (EWS) with high antioxidant activity was obtained thanks to a novel green and cost-effective microwave-assisted extraction (MAE) procedure. A response surface methodology was utilized to explore how the total phenolic content (TPC) and antioxidant activity are influenced by varying aqueous ethanol concentration, extraction time, and microwave power. The highest predicted TPC and antioxidant activity were achieved when employing the ideal conditions for Microwave-Assisted Extraction (MAE): using a mixture of 30 % ethanol in water, an irradiation time of 120 s, and a microwave power of 670 W. The optimized EWS was characterized by HPLC-MS determining qualitative and quantitative data with the identification of flavonoids, fatty acids, and anacardic acids among the main components, responsible for antioxidant activity. The resulting EWS powder was melt-mixed at 140C° and 20 RPM with the bio-based PLA/PBAT bioplastic at two different concentrations (0.5 and 1.5 w/w) by forming film specimens. All EWS-based bioplastic films showed increased antioxidant features determined by the DPPH bleaching test, TEAC, and ORAC assays. The films keep the antioxidant capacity even after 7 days of UV-accelerated aging. Remarkably, adding 1.5 % EWS boosted the bioplastic UV light resistance, reducing the abatement of molecular masses by more than 60 % without affecting mechanical properties.
Collapse
Affiliation(s)
- Vera Muccilli
- University of Catania – Department of Chemical Sciences, Viale A. Doria 6, 95125, Catania, CT, Italy
| | - Anna E. Maccarronello
- University of Catania – Department of Chemical Sciences, Viale A. Doria 6, 95125, Catania, CT, Italy
| | - Carolle Rasoanandrasana
- Sorbonne Polytech - Bâtiment Esclangon, 4 Place Jussieu, Case Courrier 135, 75252, Paris, Cedex 05, Italy
| | - Nunzio Cardullo
- University of Catania – Department of Chemical Sciences, Viale A. Doria 6, 95125, Catania, CT, Italy
| | - Martina S. de Luna
- University of Naples Federico II - Department of Chemical Engineering, Materials and Industrial Production, DICMaPI, P. le Tecchio 80, 80125, Naples, Italy
| | - Maria G.G. Pittalà
- University of Catania – Department of Chemical Sciences, Viale A. Doria 6, 95125, Catania, CT, Italy
| | - Paolo M. Riccobene
- Institute for Polymers, Composites and Biomaterials CNR, Via P. Gaifami, 18, 95125, Catania, CT, Italy
| | - Sabrina C. Carroccio
- Institute for Polymers, Composites and Biomaterials CNR, Via P. Gaifami, 18, 95125, Catania, CT, Italy
| | - Andrea A. Scamporrino
- Institute for Polymers, Composites and Biomaterials CNR, Via P. Gaifami, 18, 95125, Catania, CT, Italy
| |
Collapse
|
7
|
Zhao Y, Xiao M, Eweys AS, Bai J, Darwesh OM, Xiao X. Cinnamaldehyde Alleviates the Oxidative Stress of Caenorhabditis elegans in the Presence of Lactic Acid. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:683-690. [PMID: 37688685 DOI: 10.1007/s11130-023-01094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/11/2023]
Abstract
Cinnamaldehyde is an excellent natural antioxidant with high antioxidant activity, but its function in food or human digestive tract under acidic conditions remains to be studied. The effects of cinnamaldehyde in the presence of lactic acid on oxidative stress of Caenorhabditis elegans and the underlying molecular mechanisms were investigated in the present study. Results showed that cinnamaldehyde with or without lactic acid exhibited good antioxidant ability, represented by high SOD and CAT activities in C. elegans, while lactic acid exerted no effect on the antioxidant enzymes. Trace elements, like Cu, Fe, or Se, are important for the activities of antioxidant enzymes. Data of metal elements analysis revealed that cinnamaldehyde made big differences on the levels of Mn, Cu, Se of worms compared with single lactic acid treatment. Moreover, mechanistic study suggested that in the presence of lactic acid, cinnamaldehyde could enhance the expressions of akt-2, age-1 to increase the antioxidant activities. In addition, we found that lactic acid was able to change the metabolic profile of cinnamaldehyde in C. elegans, characterized by nucleosides and amino acids, which were involved in the purine metabolism, the biosynthesis, and metabolism of some amino acids, etc. This study provides a theoretical basis for further revealing the functional activity and mechanism of cinnamaldehyde under acidic conditions.
Collapse
Affiliation(s)
- Yansheng Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mei Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Aya Samy Eweys
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Osama M Darwesh
- Agricultural Microbiology Department, National Research Centre, Cairo, 12622, Egypt
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
8
|
Belioka MP, Markozanne G, Chrissopoulou K, Achilias DS. Advanced Plastic Waste Recycling-The Effect of Clay on the Morphological and Thermal Behavior of Recycled PET/PLA Sustainable Blends. Polymers (Basel) 2023; 15:3145. [PMID: 37514534 PMCID: PMC10383187 DOI: 10.3390/polym15143145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Bio-based polymers such as poly(lactic acid), PLA, are facing increased use in everyday plastic packaging, imposing challenges in the recycling process of its counterpart polyester poly(ethylene terephthalate), PET. This work presents the exploration of the properties of PET/PLA blends with raw materials obtained from recycled plastics. Several blends were prepared, containing 50 to 90% PET. Moreover, multiscale nanocomposite blends were formed via melt mixing using different amounts and types of nanoclay in order to study their effect on the morphology, surface properties, and thermal stability of the blends. The materials were characterized by X-ray diffraction analysis (XRD), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). The nanoclay was found to exhibit a uniform dispersion in the polymer matrix, presenting mainly intercalated structures with some exfoliated at low loading and some agglomerates at high loading (i.e., 10%). The addition of nanoclay to PET/PLA matrices increased the roughness of the blends and improved their thermal stability. Thermal degradation of the blends occurs in two steps following those of the individual polymers. Contamination of rPET with rPLA results in materials having poor thermal stability relative to rPET, presenting the onset of thermal degradation at nearly 100 °C lower. Therefore, important information was obtained concerning the recyclability of mixed PET and PLA waste. The perspective is to study the properties and find potential applications of sustainable blends of recycled PET and PLA by also examining the effect of different clays in different loadings. Therefore, useful products could be produced from blends of waste polyester.
Collapse
Affiliation(s)
- Maria-Paraskevi Belioka
- Lab of Polymer and Color Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgia Markozanne
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
| | - Kiriaki Chrissopoulou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
| | - Dimitrios S Achilias
- Lab of Polymer and Color Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
9
|
Zhang G, Li T, Liu J, Wu X, Yi H. Cinnamaldehyde-Contained Polymers and Their Biomedical Applications. Polymers (Basel) 2023; 15:polym15061517. [PMID: 36987298 PMCID: PMC10051895 DOI: 10.3390/polym15061517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Cinnamaldehyde, a natural product that can be extracted from a variety of plants of the genus Cinnamomum, exhibits excellent biological activities including antibacterial, antifungal, anti-inflammatory, and anticancer properties. To overcome the disadvantages (e.g., poor water solubility and sensitivity to light) or enhance the advantages (e.g., high reactivity and promoting cellular reactive oxygen species production) of cinnamaldehyde, cinnamaldehyde can be loaded into or conjugated with polymers for sustained or controlled release, thereby prolonging the effective action time of its biological activities. Moreover, when cinnamaldehyde is conjugated with a polymer, it can also introduce environmental responsiveness to the polymer through the form of stimuli-sensitive linkages between its aldehyde group and various functional groups of polymers. The environmental responsiveness provides the great potential of cinnamaldehyde-conjugated polymers for applications in the biomedical field. In this review, the strategies for preparing cinnamaldehyde-contained polymers are summarized and their biomedical applications are also reviewed.
Collapse
Affiliation(s)
- Guangyan Zhang
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
- Correspondence: (G.Z.); (J.L.)
| | - Tianlong Li
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Jia Liu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (G.Z.); (J.L.)
| | - Xinran Wu
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Hui Yi
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
10
|
Wu H, Geng Q, Li Y, Song Y, Chu J, Zhou R, Ning X, Dong S, Yuan D. CuMOF-decorated biodegradable nanofibrous membrane: facile fabrication, high-efficiency filtration/separation and effective antibacterial property. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Lai WF. Design of Polymeric Films for Antioxidant Active Food Packaging. Int J Mol Sci 2021; 23:12. [PMID: 35008439 PMCID: PMC8744826 DOI: 10.3390/ijms23010012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Antioxidant active food packaging can extend the shelf life of foods by retarding the rate of oxidation reactions of food components. Although significant advances in the design and development of polymeric packaging films loaded with antioxidants have been achieved over the last several decades, few of these films have successfully been translated from the laboratory to commercial applications. This article presents a snapshot of the latest advances in the design and applications of polymeric films for antioxidant active food packaging. It is hoped that this article will offer insights into the optimisation of the performance of polymeric films for food packaging purposes and will facilitate the translation of those polymeric films from the laboratory to commercial applications in the food industry.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China;
- Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| |
Collapse
|
12
|
Capatina L, Napoli EM, Ruberto G, Hritcu L. Origanum vulgare ssp. hirtum (Lamiaceae) Essential Oil Prevents Behavioral and Oxidative Stress Changes in the Scopolamine Zebrafish Model. Molecules 2021; 26:7085. [PMID: 34885665 PMCID: PMC8659137 DOI: 10.3390/molecules26237085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Origanum vulgare ssp. hirtum has been used as medicinal herbs promoting antioxidant, anti-inflammatory, antimicrobial, and neuroprotective activities. We investigated the protective effects and the mechanism of O. vulgare ssp. hirtum essential oil (OEO) on cognitive impairment and brain oxidative stress in a scopolamine (Sco)-induced zebrafish (Danio rerio) model of cognitive impairment. Our results show that exposure to Sco (100 µM) leads to anxiety, spatial memory, and response to novelty dysfunctions, whereas the administration of OEO (25, 150, and 300 µL/L, once daily for 13 days) reduced anxiety-like behavior and improved cognitive ability, which was confirmed by behavioral tests, such as the novel tank-diving test (NTT), Y-maze test, and novel object recognition test (NOR) in zebrafish. Additionally, Sco-induced brain oxidative stress and increasing of acetylcholinesterase (AChE) activity were attenuated by the administration of OEO. The gas chromatography-mass spectrometry (GC-MS) analyses were used to elucidate the OEO composition, comprising thymol (38.82%), p-cymene (20.28%), and γ-terpinene (19.58%) as the main identified components. These findings suggest the ability of OEO to revert the Sco-induced cognitive deficits by restoring the cholinergic system activity and brain antioxidant status. Thus, OEO could be used as perspective sources of bioactive compounds, displaying valuable biological activities, with potential pharmaceutical applications.
Collapse
Affiliation(s)
- Luminita Capatina
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania;
| | - Edoardo Marco Napoli
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Giuseppe Ruberto
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania;
| |
Collapse
|