1
|
Ding L, Shangguan H, Wang X, Liu J, Shi Y, Xu X, Xie Y. Extraction, purification, structural characterization, biological activity, mechanism of action and application of polysaccharides from Ganoderma lucidum: A review. Int J Biol Macromol 2024; 288:138575. [PMID: 39662574 DOI: 10.1016/j.ijbiomac.2024.138575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/17/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Ganoderma lucidum is a traditional tonic medicine in China, known as the "fairy grass" and "spiritual grass". It contains various chemical components, such as polysaccharides, triterpenoids, alkaloids, nucleosides, sterols, and acid compounds, which have the effects of tonifying qi and calming the mind, stopping cough and asthma, and are used to treat restlessness, lung deficiency cough and asthma, fatigue and shortness of breath, and lack of appetite. Ganoderma lucidum polysaccharides (GLPs) are one of the main bioactive ingredients and are widely used in traditional Chinese medicine and traditional medicine fields. They have shown good medicinal value in enhancing immunity, inhibiting tumor cell growth, delaying aging, lowering blood sugar, lowering blood lipids, protecting the heart, anti-radiation, anti-fatigue, and other aspects. This article reviews the research progress on the extraction and purification, structural characteristics, pharmacological activity, and mechanisms of GLPs, as well as their applications in industries such as medicine, food, and daily chemical products. The aim is to provide theoretical basis for the treatment of traditional Chinese medicine compound preparations and lay the foundation for the potential value development of Ganoderma lucidum products.
Collapse
Affiliation(s)
- Ling Ding
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China
| | - Huizi Shangguan
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China
| | - Xin Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Jiping Liu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Yongheng Shi
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Xinya Xu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Yundong Xie
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province 712046, People's Republic of China.
| |
Collapse
|
2
|
Dong H, Zhuang H, Yu C, Zhang X, Feng T. Interactions between soluble dietary fibers from three edible fungi and gut microbiota. Int J Biol Macromol 2024; 278:134685. [PMID: 39168729 DOI: 10.1016/j.ijbiomac.2024.134685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Edible fungi are emerging as a valuable dietary fiber source with health benefits, where their bioactivity hinges on their structure. This study targets the structure-activity relationship of soluble dietary fibers from Lentinus edodes (LESDF), Agaricus bisporus (ABSDF), and Hericium erinaceus (HESDF), focusing on their impact on gut microbiota and health. We explored the properties and structures of edible fungi, finding their soluble fibers affect metabolites and gut microbiota by increasing gas and lowering pH. Among these, HESDF demonstrated superior effects (pH: △1.4 ± 0.07; Gas production: △24.5 ± 0.4 mL). Furthermore, different types of edible fungi dietary fiber exhibited distinct capabilities in promoting the production of short-chain fatty acids by gut microorganisms. For instance, ABSDF exceled in acetic acid production (26.12 ± 0.35 mM) and propionic acid production (9.50 ± 0.13 mM), while HESDF stood out in butyric acid production (17.86 ± 0.09 mM). LESDF showed higher levels of Phascolarctobacterium, ABSDF had elevated levels of Ruminococcus, and HESDF displayed increased levels of Faecalibacterium. These results contribute to our understanding of how soluble dietary fiber from different edible fungi impacts gut microbiota and offers insights for the development and utilization of these fibers as functional food.
Collapse
Affiliation(s)
- Huayue Dong
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Haining Zhuang
- School of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai 201415, China
| | - Chuang Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaowei Zhang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
3
|
Han D, Yang L, Liang Q, Sun H, Sun Y, Yan G, Zhang X, Han Y, Wang X, Wang X. Natural resourced polysaccharides: Preparation, purification, structural elucidation, structure-activity relationships and regulating intestinal flora, a system review. Int J Biol Macromol 2024; 280:135956. [PMID: 39317289 DOI: 10.1016/j.ijbiomac.2024.135956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Natural resourced polysaccharides (NRPs), as metabolites synthesized during activity of organisms, widely present in animal cell membranes or plant and microbial cell walls. NRPs have garnered extensive attention in the fields of medicine, foods, and farming owing to their distinct bioactivities and structural diversity. Despite the burgeoning growth in NRPs research, the available literature focuses primarily on a review of specific polysaccharides, necessitating an urgent need for a comprehensive summary of NRPs to offer readers a whole landscape of current advancements in NRPs research. Based on this, this article comprehensively reviews the latest research progress regarding preparation, purification, structure elucidation, structure-activity relationships and regulation of intestinal flora of NRPs in electronic databases, such as PubMed, Wiley, ScienceDirect and Web of Science from last 5 years. This review analyzes the effects of various extraction techniques on NRPs and also delves into the intrinsic correlation between the biological activity and structure of NRPs, highlighting that chemical modification can enhance their structural diversity and confer novel or improved biological functions. Moreover, this article extensively explores the application of NRP in promoting intestinal microecology balance, underscoring its significant potential as a probiotic initiator. This review lays a solid theoretical foundation for the future research and development of NRPs.
Collapse
Affiliation(s)
- Di Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Qichao Liang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiwu Zhang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiaoyu Wang
- Technology Innovation Center of Wusulijiang Ciwujia, Revolution Street, Hulin 154300, China
| | - Xijun Wang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
4
|
Wang Y, Yan M, Zhang P, Wu X, Huang S, Chen S, Rong Y, Sheng Y, Wang Y, Mao G, Chen L, Wang S, Yang B. Structure elucidation and antiviral activity of a cold water-extracted mannogalactofucan Ts1-1A from Trametes sanguinea against human cytomegalovirus in vitro. Carbohydr Polym 2024; 335:122101. [PMID: 38616079 DOI: 10.1016/j.carbpol.2024.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
In this study, we purified a partially acetylated heteropolysaccharide (Ts1-1A) from the fruit bodies of Trametes sanguinea Lloyd through cold water extraction and serial chromatographic separation. The purified polysaccharide Ts1-1A (12.8 kDa) was characterized as a branched mannogalactofucan with a backbone of alternately connected 1,3-linked α-Fucp and 1,6-linked α-Galp, which was partially substituted by non-reducing end units of β-Manp at O-2 and O-3 positions of 1,6-linked α-Galp. Ts1-1A showed pronounced anti-human cytomegalovirus activity at the concentration of 200 and 500 μg/mL in systematical assessments including morphological changes, western blotting, qPCR, indirect immunofluorescence and tissue culture infective dose assays. Moreover, Ts1-1A exerted its antiviral activity at two distinct stages of viral proliferation manifesting as significantly inhibiting viral protein (IE1/2 and p52) expression and reducing viral gene (UL123, UL44 and UL32) replication in the HCMV-infected WI-38 cells. At viral attachment stage, Ts1-1A interacted with HCMV and prevented HCMV from attaching to its host cells. While at early phase of viral replication stage, Ts1-1A suppressed HCMV replication by downregulating NQO1 and HO-1 proteins related to oxidative stress as an antioxidant. To sum up, Ts1-1A is a promising anti-HCMV agent which could be developed for HCMV infection prevention and therapy.
Collapse
Affiliation(s)
- Yiran Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Mengxia Yan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Panpan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Xinna Wu
- Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310030, PR China
| | - Siyang Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Siru Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Yizhou Rong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Yangyang Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China.
| | - Libing Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China.
| | - Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China.
| | - Bo Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou 311402, PR China.
| |
Collapse
|
5
|
Luo HJ, Zhang YK, Wang SZ, Lin SQ, Wang LF, Lin ZX, Lu GD, Lin DM. Structural characterization and anti-oxidative activity for a glycopeptide from Ganoderma lucidum fruiting body. Int J Biol Macromol 2024; 261:129793. [PMID: 38290627 DOI: 10.1016/j.ijbiomac.2024.129793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
A water-soluble glycopeptide (named GL-PWQ3) with a molecular weight (Mw) of 2.40 × 104 g/mol was isolated from Ganoderma lucidum fruiting body by hot water extraction, membrane ultrafiltration, and gel column chromatography, which mainly consisted of glucose and galactose. Based on the methylation, FT-IR, 1D, and 2D NMR analysis, the polysaccharide portion of GL-PWQ3 was identified as a glucogalactan, which was comprised of unsubstituted (1,6-α-Galp, 1,6-β-Glcp, 1,4-β-Glcp) and monosubstituted (1,2,6-α-Galp and 1,3,6-β-Glcp) in the backbone and possible branches that at the O-3 position of 1,3-Glcp and T-Glcp, and the O-2 position of T-Fucp, T-Manp or T-Glcp. The chain conformational study by SEC-MALLS-RI and AFM revealed that GL-PWQ3 was identified as a highly branched polysaccharide with a polydispersity index of 1.25, and might have compact sphere structures caused by stacked multiple chains. Moreover, the GL-PWQ3 shows strong anti-oxidative activity in NRK-52E cells. This study provides a theoretical basis for further elucidating the structure-functionality relationships of GL-PWQ3 and its potential application as a natural antioxidant in pharmacotherapy as well as functional food additives.
Collapse
Affiliation(s)
- Hong-Jian Luo
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China; College of Life Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Yu-Kun Zhang
- Chongqing Key Laboratory for the Development and Utilization of Genuine Medicinal Materials in the Three Gorges Reservoir Area, Chongqing Three Gorge Medical College, Chongqing 404120, China
| | - Sai-Zhen Wang
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China
| | - Shu-Qian Lin
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China
| | - Lian-Fu Wang
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China
| | - Zhan-Xi Lin
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China
| | - Guo-Dong Lu
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China.
| | - Dong-Mei Lin
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China.
| |
Collapse
|
6
|
Fan X, Xiao X, Yu W, Yu B, He J, Zheng P, Yu J, Luo J, Luo Y, Yan H, Wang J, Wu A, Wang Q, Wang H, Mao X. Yucca schidigera purpurea-sourced arabinogalactan polysaccharides augments antioxidant capacity facilitating intestinal antioxidant functions. Carbohydr Polym 2024; 326:121613. [PMID: 38142074 DOI: 10.1016/j.carbpol.2023.121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/25/2023]
Abstract
This study isolated and purified a novel homogeneous arabinogalactan polysaccharide from Yucca schidigera extract (YSE), unveiled its unique structure and explored its antioxidant function. Firstly, the antioxidant potential of YSE was demonstrated in piglet trials. A homogeneous polysaccharide with a molecular weight of 24.2 kDa, designated as Yucca schidigera polysaccharide B (YPB), was isolated and purified from YSE. The monosaccharide composition of YPB was Rha, Araf, Galp, and Glcp, whose molar percentages were 2.8 %, 11.6 %, 45.5 %, and 40.0 %, respectively. Methylation analysis combined with 1D and 2D nuclear magnetic resonance showed that YPB was a complex polysaccharide with a main glycosidic linkage pattern of →2)-α-ʟ-Rha-(1 → 3)-β-ᴅ-Galp-(1→3)-β-ᴅ-Galp-(1 → 3)-β-ᴅ-Galp-(1 → 3)-β-ᴅ-Glcp-(1→, and branched Araf and Galp fragments were connected with the main chain through →3,6)-β-ᴅ-Galp-(1→, →3,4)-β-ᴅ-Glcp-(1→, and →2,4)-α-ʟ-Rha-(1→ linkages. Following the in vitro biochemical assays of bioactive components, YPB should be the contributor to the antioxidant activity in YSE. Based on the establishment of oxidative stress model, YPB exhibited strong antioxidant capacity and activated NRF2 pathway, and then provided protection against the damage induced oxidative stress in IPEC-J2 cells and rats. Further analysis with inhibitors found that this antioxidant effect was attributed to its interaction with epidermal growth factor receptor and mannose receptor, and stimulating PI3K/AKT pathway.
Collapse
Affiliation(s)
- Xiangqi Fan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Xiangjun Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Wei Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jiangping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Quyuan Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Huifen Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China.
| |
Collapse
|
7
|
Synytsya A, Bleha R, Skrynnikova A, Babayeva T, Čopíková J, Kvasnička F, Jablonsky I, Klouček P. Mid-Infrared Spectroscopic Study of Cultivating Medicinal Fungi Ganoderma: Composition, Development, and Strain Variability of Basidiocarps. J Fungi (Basel) 2023; 10:23. [PMID: 38248933 PMCID: PMC10817577 DOI: 10.3390/jof10010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy was proposed for rapid, versatile, and non-invasive screening of Ganoderma basidiocarps to assess their potential for specific applications. Fifteen species and strains of this fungus were selected for analysis, and fine sections at different parts of young and mature basidiocarps were obtained. The spectra of fungal samples showed significant differences interpreted in terms of biochemical composition using characteristic bands of proteins, polysaccharides, lipids, and triterpenoids. Obviously, for the transverse sections in trama, especially in the basal part, the most intense bands at 950-1200 cm-1 corresponded to polysaccharide vibrations, while for the superficial sections, the bands of carbonyl and aliphatic groups of triterpenoids at 1310-1470, 1550-1740, and 2850-2980 cm-1 predominated. The pilei, especially hymenium tubes, apparently contained more proteins than the bases and stipes, as evidenced by the intense bands of amide vibrations at 1648 and 1545-1550 cm-1. The specificity of the Ganoderma basidiocarp is a densely pigmented surface layer rich in triterpenoids, as proved by ATR-FTIR spectroscopy. The spectral differences corresponding to the specificity of the triterpenoid composition may indicate the prospects of individual strains and species of this genus for cultivation and further use in food, cosmetics, or medicine.
Collapse
Affiliation(s)
- Andriy Synytsya
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (A.S.); (T.B.); (J.Č.)
| | - Roman Bleha
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (A.S.); (T.B.); (J.Č.)
| | - Anastasia Skrynnikova
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (A.S.); (T.B.); (J.Č.)
| | - Tamilla Babayeva
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (A.S.); (T.B.); (J.Č.)
| | - Jana Čopíková
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (A.S.); (T.B.); (J.Č.)
| | - František Kvasnička
- Department of Meat and Preservation, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic;
| | - Ivan Jablonsky
- Department of Gardening, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| | - Pavel Klouček
- Department of Food Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| |
Collapse
|
8
|
Sonets IV, Dovidchenko NV, Ulianov SV, Yarina MS, Koshechkin SI, Razin SV, Krasnopolskaya LM, Tyakht AV. Unraveling the Polysaccharide Biosynthesis Potential of Ganoderma lucidum: A Chromosome-Level Assembly Using Hi-C Sequencing. J Fungi (Basel) 2023; 9:1020. [PMID: 37888276 PMCID: PMC10608111 DOI: 10.3390/jof9101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023] Open
Abstract
Ganoderma lucidum exhibits the ability to synthesize a diverse range of biologically active molecules with significant pharmaceutical potential, including xylomannan and fucogalactan, which have demonstrated antitumor activity. However, there exists considerable intra-species variability in the capacity to produce these metabolites at high concentrations, likely reflecting the high genomic diversity observed from a limited number of strains sequenced to date. We employed high-throughput shotgun sequencing to obtain the complete genome sequence of G. lucidum strain 5.1, which is distinguished by its remarkable xylomannan synthesis capabilities. Through the utilization of semi-automatic reordering based on conformation capture (Hi-C) data, we substantially enhanced the assembly process, resulting in the generation of 12 chromosome-level scaffolds with a cumulative length of 39 Mbp. By employing both de novo and homology-based approaches, we performed comprehensive annotation of the genome, thereby identifying a diverse repertoire of genes likely involved in polysaccharide biosynthesis. The genome sequence generated in this study serves as a valuable resource for elucidating the molecular mechanisms underlying the medicinal potential of Ganoderma species, discovering novel pharmaceutically valuable compounds, and elucidating the ecological mechanisms of the species. Furthermore, the chromosome contact map obtained for the first time for this species extends our understanding of 3D fungal genomics and provides insights into the functional and structural organization within the fungal kingdom.
Collapse
Affiliation(s)
- Ignat V. Sonets
- Institute of Gene Biology, 34/5 Vavilova Street, 119334 Moscow, Russia; (I.V.S.); (S.V.U.); (S.V.R.); (A.V.T.)
| | - Nikita V. Dovidchenko
- Knomics LLC, 34 Bld. 1 Narodnogo Opolcheniya Street, 123423 Moscow, Russia; (N.V.D.); (S.I.K.)
- Institute of Protein Research, 4 Institutskaya Street, 142290 Pushchino, Russia
| | - Sergey V. Ulianov
- Institute of Gene Biology, 34/5 Vavilova Street, 119334 Moscow, Russia; (I.V.S.); (S.V.U.); (S.V.R.); (A.V.T.)
- Faculty of Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Maria S. Yarina
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia;
| | - Stanislav I. Koshechkin
- Knomics LLC, 34 Bld. 1 Narodnogo Opolcheniya Street, 123423 Moscow, Russia; (N.V.D.); (S.I.K.)
| | - Sergey V. Razin
- Institute of Gene Biology, 34/5 Vavilova Street, 119334 Moscow, Russia; (I.V.S.); (S.V.U.); (S.V.R.); (A.V.T.)
- Faculty of Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | | | - Alexander V. Tyakht
- Institute of Gene Biology, 34/5 Vavilova Street, 119334 Moscow, Russia; (I.V.S.); (S.V.U.); (S.V.R.); (A.V.T.)
- Knomics LLC, 34 Bld. 1 Narodnogo Opolcheniya Street, 123423 Moscow, Russia; (N.V.D.); (S.I.K.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, 34/5 Vavilova Street, 119334 Moscow, Russia
| |
Collapse
|
9
|
Sun L, Jiang J, Jing T, Hu D, Zhu J, Zeng Y, Pang Y, Huang D, Cheng S, Cao C. A polysaccharide NAP-3 from Naematelia aurantialba: Structural characterization and adjunctive hypoglycemic activity. Carbohydr Polym 2023; 318:121124. [PMID: 37479455 DOI: 10.1016/j.carbpol.2023.121124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 07/23/2023]
Abstract
A novel polysaccharide (NAP-3) was isolated and purified from Naematelia aurantialba after water extraction. The structure of NAP-3, which was determined by FT-IR, HPLC, GC-MS, and NMR, indicated that NAP-3 was a homogeneous polysaccharide with the molecular weight of 428 kDa, mainly consisted of β-1, 3-D-Manp, β-1, 2, 3-D-Manp, β-D-Xylp, β-1, 4-D-Glcp, β-1, 4-D-Rhap in a molar ratio of 6.49: 1.11: 2.4: 0.13: 0.83. In vitro α-glucosidase and α-amylase inhibitory assay showed that NAP-3 had a low IC50 value, which exhibited similar enzyme inhibitory activity as acarbose. NAP-3 was evaluated as an adjuvant with metformin for antidiabetic therapy in HFD/STZ-induced diabetic mice and insulin resistance HepG2 cells. The combination of NAP-3 and metformin in diabetic mice exhibited significant hypoglycemic activity, reducing body weight, serum insulin levels, glucose tolerance, insulin tolerance, and increasing antioxidant levels compared to metformin alone. The combination of NAP-3 and metformin improved oxidative stress by increasing ROS clearance, thereby enhancing glucose uptake in HepG2 cells. This study provided new data for the study of Naematelia aurantialba polysaccharides and offers a new adjuvant therapy for the treatment of diabetes.
Collapse
Affiliation(s)
- Lu Sun
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jiang Jiang
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Tao Jing
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dejun Hu
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Zhu
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Zeng
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yalun Pang
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dechun Huang
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shujie Cheng
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Chongjiang Cao
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
10
|
Zhang H, Zhang J, Liu Y, Tang C. Recent Advances in the Preparation, Structure, and Biological Activities of β-Glucan from Ganoderma Species: A Review. Foods 2023; 12:2975. [PMID: 37569244 PMCID: PMC10419088 DOI: 10.3390/foods12152975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Ganoderma has served as a valuable food supplement and medicinal ingredient with outstanding active compounds that are essential for human protection against chronic diseases. Modern pharmacology studies have proven that Ganoderma β-d-glucan exhibits versatile biological activities, such as immunomodulatory, antitumor, antioxidant, and antiviral properties, as well as gut microbiota regulation. As a promising polysaccharide, β-d-glucan is widely used in the prevention and treatment of various diseases. In recent years, the extraction, purification, structural characterization, and pharmacological activities of polysaccharides from the fruiting bodies, mycelia, spores, and fermentation broth of Ganoderma species have received wide attention from scholars globally. Unfortunately, comprehensive studies on the preparation, structure and bioactivity, toxicology, and utilization of β-d-glucans from Ganoderma species still need to be further explored, which may result in limitations in future sustainable industrial applications of β-d-glucans. Thus, this review summarizes the research progress in recent years on the physicochemical properties, structural characteristics, and bioactivity mechanisms of Ganoderma β-d-glucan, as well as its toxicological assessment and applications. This review is intended to provide a theoretical basis and reference for the development and application of β-d-glucan in the fields of pharmaceuticals, functional foods, and cosmetics.
Collapse
Affiliation(s)
| | | | | | - Chuanhong Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China; (H.Z.); (J.Z.); (Y.L.)
| |
Collapse
|
11
|
Rosdan Bushra SM, Nurul AA. Bioactive mushroom polysaccharides: The structure, characterization and biological functions. J LIQ CHROMATOGR R T 2023. [DOI: 10.1080/10826076.2023.2182317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
| | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
12
|
Galappaththi MCA, Patabendige NM, Premarathne BM, Hapuarachchi KK, Tibpromma S, Dai DQ, Suwannarach N, Rapior S, Karunarathna SC. A Review of Ganoderma Triterpenoids and Their Bioactivities. Biomolecules 2022; 13:24. [PMID: 36671409 PMCID: PMC9856212 DOI: 10.3390/biom13010024] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
For centuries, Ganoderma has been used as a traditional medicine in Asian countries to prevent and treat various diseases. Numerous publications are stating that Ganoderma species have a variety of beneficial medicinal properties, and investigations on different metabolic regulations of Ganoderma species, extracts or isolated compounds have been performed both in vitro and in vivo. However, it has frequently been questioned whether Ganoderma is simply a dietary supplement for health or just a useful "medication" for restorative purposes. More than 600 chemical compounds including alkaloids, meroterpenoids, nucleobases, nucleosides, polysaccharides, proteins, steroids and triterpenes were extracted and identified from Ganoderma, with triterpenes serving as the primary components. In recent years, Ganoderma triterpenes and other small molecular constituents have aroused the interest of chemists and pharmacologists. Meanwhile, considering the significance of the triterpene constituents in the development of new drugs, this review describes 495 compounds from 25 Ganoderma species published between 1984 and 2022, commenting on their source, biosynthetic pathway, identification, biological activities and biosynthesis, together with applications of advanced analytical techniques to the characterization of Ganoderma triterpenoids.
Collapse
Affiliation(s)
- Mahesh C. A. Galappaththi
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Postgraduate Institute of Science (PGIS), University of Peradeniya, Peradeniya 20400, Sri Lanka
| | | | | | - Kalani K. Hapuarachchi
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resource Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sylvie Rapior
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, Univ Montpellier, 15 Avenue Charles Flahault, CS 14491, CEDEX 5, 34093 Montpellier, France
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Natural Substances and Chemical Mediation Team, 15 Avenue Charles Flahault, CS 14491, CEDEX 5, 34093 Montpellier, France
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
13
|
Zheng M, Pi X, Li H, Cheng S, Su Y, Zhang Y, Man C, Jiang Y. Ganoderma spp. polysaccharides are potential prebiotics: a review. Crit Rev Food Sci Nutr 2022; 64:909-927. [PMID: 35980144 DOI: 10.1080/10408398.2022.2110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The gut microbiota (GM) is a complex ecosystem that is closely linked to host health. Ganoderma spp. polysaccharides (GPs), a major bioactive component of the fungal genus Ganoderma, can modulate the GM, exhibiting various health effects and prebiotic potential. This review comprehensively concluded the structural features and extraction method of GPs. The mechanism of GPs for anti-obesity, anti-diabetes, anti-inflammatory, and anti-cancer were further evaluated. The simulated gastrointestinal digestion of GPs and the utilization mechanism of host microorganisms were discussed. It was found that the physicochemical properties and biological activities of GPs depend on their structural characteristics (molecular weight, monosaccharide composition, glycosidic bonds, etc.). Their extraction method also affects the structure and bioactivities of polysaccharides. GPs supplementation could increase the relative abundance of beneficial bacteria (e.g. Bacteroides, Parabacteroides, Akkermansia, and Bifidobacterium), while reducing that of pathogenic bacteria (e.g. Aerococcus, Ruminococcus), thus promoting health. Moreover, GPs are resistant to digestion in the stomach and small intestine but are digested in the large intestine. Therefore, GPs can be considered as potential prebiotics. However, further studies should investigate how GPs as prebiotics regulate GM and improve host health.
Collapse
Affiliation(s)
- Miao Zheng
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaowen Pi
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Hongxuan Li
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shasha Cheng
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yue Su
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yu Zhang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
14
|
Zhao J, Liang K, Zhong H, Liu S, Sun P, He R. A cold-water polysaccharide-protein complex from Grifola frondosa exhibited antiproliferative activity via mitochondrial apoptotic and Fas/FasL pathways in HepG2 cells. Int J Biol Macromol 2022; 218:1021-1032. [PMID: 35863663 DOI: 10.1016/j.ijbiomac.2022.07.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 12/26/2022]
Abstract
Grifola frondosa (G. frondosa) is widely known for its anti-tumor potential, which has been demonstrated by numerous scientific researches. In this study, two water soluble polysaccharide-protein complexes were extracted from G. frondosa at 4 °C (GFG-4) and 100 °C (GFG-100) and purified. Compared with GFG-100, GFG-4 had a higher protein content and molecular weight. The main monosaccharides of GFG-4 and GFG-100 were rhamnose, glucose, and galactose, with an approximate ratio of 3.00: 1.00: 0.86 and 2.85: 1.00: 0.94, respectively. The Fourier transform infrared spectra indicated that the two polysaccharide-protein complexes displayed characteristic functional groups of polysaccharides and proteins, and mainly contain pyranose ring with α-glycosidic linkage. Atomic force microscope images showed that both GFG-4 and GFG-100 exhibited straight chains, and GFG-4 possessed a relatively abundant fraction of branched chains. Intriguingly, GFG-4 showed a stronger antiproliferative activity against HepG2 cells than GFG-100. The mechanisms were further investigated by quantitative real-time PCR and western blot, it found that GFG-4 inhibited the proliferation of HepG2 cells mainly through the intrinsic activation of mitochondrial pathway and the Fas/FasL-mediated Caspase-8/-3 pathway. Conclusively, G. frondosa cold-water extracted polysaccharide-protein complexes could be used as a functional food for preventing or treating hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jiahui Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kaiyue Liang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China
| | - Shizhu Liu
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Hangzhou 310014, China; Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China.
| | - Rongjun He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China; Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China.
| |
Collapse
|
15
|
Costanzo V, Gilhen-Baker M, Beresford-Kroeger D, Roviello GN. Tree-inhabiting polypore fungi as sources of a cornucopia of bioactive compounds. Future Microbiol 2022; 17:899-902. [PMID: 35694907 DOI: 10.2217/fmb-2022-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Vincenzo Costanzo
- Department of Experimental, Diagnostic & Specialty Medicine, University of Bologna Alma Mater Studiorum, Via Zamboni 33, Bologna, 40126, Italy
| | - Melinda Gilhen-Baker
- Faculty of Physical Medicine & Rehabilitation, Georgian State Teaching University of Physical Education & Sport, 49, Chavchavadze avenue, Tbilisi, 0162, Georgia
| | - Diana Beresford-Kroeger
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Giovanni N Roviello
- Institute of Biostructures & Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca site & Headquarters, Via Pietro Castellino 111, Naples, 80131, Italy
| |
Collapse
|