1
|
Slater B, Tan JC. Triboelectric behaviour of selected zeolitic-imidazolate frameworks: exploring chemical, morphological and topological influences. Chem Sci 2024; 15:10056-10064. [PMID: 38966360 PMCID: PMC11220587 DOI: 10.1039/d4sc01337a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 07/06/2024] Open
Abstract
Tribo- and contact electrification remain poorly understood, baffling and discombobulating scientists for millennia. Despite the technology needed to harvest mechanical energy with triboelectric generators being incredibly rudimentary and the fact that a triboelectric output can be obtained from almost any two material combinations, research into triboelectric generator materials typically focuses on achieving the highest possible output; meanwhile, understanding trends and triboelectric behaviours of related but lower performing materials is often overlooked or not studied. Metal-organic frameworks, a class of typically highly porous and crystalline coordination polymers are excellent media to study to fill this knowledge gap. Their chemistry, topology and morphology can be individually varied while keeping other material properties constant. Here we study 5 closely related zeolitic-imidazolate type metal-organic frameworks for their triboelectric performance and behaviour by contact-separating each one with five counter materials. We elucidate the triboelectric electron transfer behaviour of each material, develop a triboelectric series and characterise the surface potential by Kelvin-probe force microscopy. From our results we draw conclusions on how the chemistry, morphology and topology affect the triboelectric output by testing and characterising our series of frameworks to help better understand triboelectric phenomena.
Collapse
Affiliation(s)
- Ben Slater
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford Parks Road Oxford OX1 3PJ UK
| | - Jin-Chong Tan
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford Parks Road Oxford OX1 3PJ UK
| |
Collapse
|
2
|
Vu DL, Nguyen QT, Chung PS, Ahn KK. Flowing Liquid-Based Triboelectric Nanogenerator Performance Enhancement with Functionalized Polyvinylidene Fluoride Membrane for Self-Powered Pulsating Flow Sensing Application. Polymers (Basel) 2024; 16:536. [PMID: 38399914 PMCID: PMC10891804 DOI: 10.3390/polym16040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Pulsating flow, a common term in industrial and medical contexts, necessitates precise water flow measurement for evaluating hydrodynamic system performance. Addressing challenges in measurement technologies, particularly for pulsating flow, we propose a flowing liquid-based triboelectric nanogenerator (FL-TENG). To generate sufficient energy for a self-powered device, we employed a fluorinated functionalized technique on a polyvinylidene fluoride (PVDF) membrane to enhance the performance of FL-TENG. The results attained a maximum instantaneous power density of 50.6 µW/cm2, and the energy output proved adequate to illuminate 10 white LEDs. Regression analysis depicting the dependence of the output electrical signals on water flow revealed a strong linear relationship between the voltage and flow rate with high sensitivity. A high correlation coefficient R2 within the range from 0.951 to 0.998 indicates precise measurement accuracy for the proposed FL-TENG. Furthermore, the measured time interval between two voltage peaks precisely corresponds to the period of pulsating flow, demonstrating that the output voltage can effectively sense pulsating flow based on voltage and the time interval between two voltage peaks. This work highlights the utility of FL-TENG as a self-powered pulsating flow rate sensor.
Collapse
Affiliation(s)
- Duy Linh Vu
- Department of Nanoscience and Engineering, Inje University, 197 Inje-ro, Gimhae-si, Gyeongsangnamdo 50834, Republic of Korea;
| | - Quang Tan Nguyen
- School of Mechanical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea;
| | - Pil Seung Chung
- Department of Nanoscience and Engineering, Inje University, 197 Inje-ro, Gimhae-si, Gyeongsangnamdo 50834, Republic of Korea;
- Department of Energy Engineering, Inje University, 197 Inje-ro, Gimhae-si, Gyeongsangnamdo 50834, Republic of Korea
| | - Kyoung Kwan Ahn
- School of Mechanical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea;
| |
Collapse
|
3
|
Sun J, Lee J, Han S, Li Y, Park JJ, Bae J. Output Performance Enhanced Triboelectric Nanogenerators Induced by Magnetic Ink Trapping Property Act as Wearable Sensors. ACS OMEGA 2024; 9:3565-3573. [PMID: 38284057 PMCID: PMC10809701 DOI: 10.1021/acsomega.3c07460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
The demand for clean-energy collection has gradually increased in recent years, making triboelectric nanogenerators a promising research field, because of their advantages in convenient manufacturing, diversified materials, and diverse synthesis and modification possibilities. However, recent studies indicate that charge decay, a major limiting factor in the triboelectric output, prevents the induced charge from combining with the bottom electrode, leading to charge loss. The use of charge-trapping sites to retain the induced charge generated during the friction process is an important solution in the field of triboelectric nanogenerator research. This study proposes the use of an elastic ink with macroscopic magnetism as trapping sites by coating the ink as dots between the polytetrafluoroethylene (PTFE) dielectric layer and the electrode layer. Nickel particles in the magnetic ink are doped into the system as microcapacitors, which prevent the combination of the friction layer and induced charges on the back electrode. Because the nickel itself can be used as a charge-potential trap to capture the charge introduced by the charge-injection process, the charge can be maintained for a long time and achieve a long-term high-output state. The output voltage was more than 6 times that of the reference group without the magnetic-ink coating after 3 h. The results provide a reference direction for research on preventing charge decay and trapping charges in triboelectric nanogenerators.
Collapse
Affiliation(s)
- Jingzhe Sun
- Human-Tech
Convergence Program, Department of Clothing & Textiles, Hanyang University, Seoul 04763, Republic of Korea
- Department
of Polymer Science and Engineering, Chonnam
National University, Gwangju 61186, Republic
of Korea
| | - Jiwoo Lee
- Department
of Polymer Science and Engineering, Chonnam
National University, Gwangju 61186, Republic
of Korea
| | - Seunghye Han
- Department
of Polymer Science and Engineering, Chonnam
National University, Gwangju 61186, Republic
of Korea
| | - Yongwei Li
- Human-Tech
Convergence Program, Department of Clothing & Textiles, Hanyang University, Seoul 04763, Republic of Korea
| | - Jong-Jin Park
- Department
of Polymer Science and Engineering, Chonnam
National University, Gwangju 61186, Republic
of Korea
| | - Jihyun Bae
- Human-Tech
Convergence Program, Department of Clothing & Textiles, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
4
|
Yang Z, Zhang X, Deng T, Xiang G. Mechanically Robust and Electrically Stable High-Performance Triboelectric Nanogenerator Based on Fluffy-Free EC/Nylon-11 and PTFE/PVDF Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37906719 DOI: 10.1021/acsami.3c13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Electrospun nanofiber (NF)-based triboelectric nanogenerators (TENGs) have attracted significant attention in recent years due to their high specific surface area, flexibility, and facile fabrication. However, these TENGs' triboelectric (TE) layers composed of electrospun NFs fail easily due to the poor mechanical properties and fluffy characteristics of the NFs. Herein, electropositive and electronegative TE layers based on ethylcellulose-coated nylon-11 (EC/nylon-11) NFs and polytetrafluoroethylene-coated poly(vinylidene fluoride) (PTFE/PVDF) NFs are prepared via electrospinning and postcoating processes. The obtained EC/nylon-11 and PTFE/PVDF NFs are fluffy-free and exhibit 12.26 and 20.33-fold enhancements of Young's modulus compared with those of pure nylon-11 and PVDF NFs, respectively. The optimized TENG exhibits not only superior performance, including an open-circuit voltage (VOC) of 212 V, a short-circuit current (ISC) of 18.5 μA, and a maximum power density of 1.76 W/m2 but also excellent electrical durability for over 100,000 cycles. The TENG's capability is further demonstrated by continuously driving electronics for over 5 min and by being integrated into a self-powered sensor array of electric skin to detect different in vitro stimuli. This work provides an effective approach to obtaining mechanically robust and electrically stable NF-based high-performance TENGs, which may have potential applications in durable, wearable, and self-powered nanoelectronics.
Collapse
Affiliation(s)
- Zhuanqing Yang
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Xi Zhang
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Tianjie Deng
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Gang Xiang
- College of Physics, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Yurkov G, Kozinkin A, Kubrin S, Zhukov A, Podsukhina S, Vlasenko V, Fionov A, Kolesov V, Zvyagintsev D, Vyatkina M, Solodilov V. Nanocomposites Based on Polyethylene and Nickel Ferrite: Preparation, Characterization, and Properties. Polymers (Basel) 2023; 15:3988. [PMID: 37836036 PMCID: PMC10575271 DOI: 10.3390/polym15193988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Composite materials based on NiFe2O4 nanoparticles and polyethylene matrix have been synthesized by thermal decomposition to expand the application area of high-pressure polyethylene by filling it with nanoscale particles. The synthesized compositions were obtained in the form of a dark gray powder and compressed for further study According to TEM, the average particle size in composites was 2, 3, and 4 nm in samples with a filling of 10%, 20% and 30%. The concentration dependences of the specific electrical resistivity ρV, dielectric permittivity ε, saturation magnetization MS and the parameters of reflection and attenuation of microwave power of the obtained composites were investigated. The threshold for percolation in such materials is found to be within a concentration range of 20…30%. The electronic and atomic structure of composites was studied by methods of Mössbauer spectroscopy, X-ray diffraction and X-ray absorption spectroscopy. The closest atomic environment of nickel and iron in nanoparticles is close to that of crystalline NiFe2O4. The dependence of the nanoparticles size as well as the dependence of the number of tetrahedral or octahedral iron positions in nickel ferrite nanoparticles to their content in polyethylene matrix is established. It is shown that composite materials based on NiFe2O4 nanoparticles and polyethylene matrix can be used as components of electromagnetic compatibility systems.
Collapse
Affiliation(s)
- Gleb Yurkov
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Kosygina 4, 119991 Moscow, Russia; (A.Z.); (V.S.)
| | - Alexander Kozinkin
- Research Institute of Physics, Southern Federal University, pr. Stachki 194, 344090 Rostov-on-Don, Russia
| | - Stanislav Kubrin
- Research Institute of Physics, Southern Federal University, pr. Stachki 194, 344090 Rostov-on-Don, Russia
| | - Alexander Zhukov
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Kosygina 4, 119991 Moscow, Russia; (A.Z.); (V.S.)
| | - Svetlana Podsukhina
- Research Institute of Physics, Southern Federal University, pr. Stachki 194, 344090 Rostov-on-Don, Russia
| | - Valeriy Vlasenko
- Research Institute of Physics, Southern Federal University, pr. Stachki 194, 344090 Rostov-on-Don, Russia
| | - Alexander Fionov
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia
| | - Vladimir Kolesov
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia
| | - Dmitry Zvyagintsev
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Kosygina 4, 119991 Moscow, Russia; (A.Z.); (V.S.)
| | - Maria Vyatkina
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Kosygina 4, 119991 Moscow, Russia; (A.Z.); (V.S.)
| | - Vitaliy Solodilov
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Kosygina 4, 119991 Moscow, Russia; (A.Z.); (V.S.)
| |
Collapse
|
6
|
Nguyen QT, Vu DL, Le CD, Ahn KK. Recent Progress in Self-Powered Sensors Based on Liquid-Solid Triboelectric Nanogenerators. SENSORS (BASEL, SWITZERLAND) 2023; 23:5888. [PMID: 37447740 DOI: 10.3390/s23135888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
Recently, there has been a growing need for sensors that can operate autonomously without requiring an external power source. This is especially important in applications where conventional power sources, such as batteries, are impractical or difficult to replace. Self-powered sensors have emerged as a promising solution to this challenge, offering a range of benefits such as low cost, high stability, and environmental friendliness. One of the most promising self-powered sensor technologies is the L-S TENG, which stands for liquid-solid triboelectric nanogenerator. This technology works by harnessing the mechanical energy generated by external stimuli such as pressure, touch, or vibration, and converting it into electrical energy that can be used to power sensors and other electronic devices. Therefore, self-powered sensors based on L-S TENGs-which provide numerous benefits such as rapid responses, portability, cost-effectiveness, and miniaturization-are critical for increasing living standards and optimizing industrial processes. In this review paper, the working principle with three basic modes is first briefly introduced. After that, the parameters that affect L-S TENGs are reviewed based on the properties of the liquid and solid phases. With different working principles, L-S TENGs have been used to design many structures that function as self-powered sensors for pressure/force change, liquid flow motion, concentration, and chemical detection or biochemical sensing. Moreover, the continuous output signal of a TENG plays an important role in the functioning of real-time sensors that is vital for the growth of the Internet of Things.
Collapse
Affiliation(s)
- Quang Tan Nguyen
- Graduate School of Mechanical Engineering, University of Ulsan, Daehakro 93, Nam-gu, Ulsan 44610, Republic of Korea
| | - Duy Linh Vu
- School of Mechanical Engineering, University of Ulsan, Daehakro 93, Nam-gu, Ulsan 44610, Republic of Korea
| | - Chau Duy Le
- Faculty of Electrical and Electronic Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam
- Vietnam National University Ho Chi MInh City, Linh Trung Ward, Ho Chi Minh City 700000, Vietnam
| | - Kyoung Kwan Ahn
- School of Mechanical Engineering, University of Ulsan, Daehakro 93, Nam-gu, Ulsan 44610, Republic of Korea
| |
Collapse
|
7
|
Qin Q, Cao X, Wang N. Ball-Mill-Inspired Durable Triboelectric Nanogenerator for Wind Energy Collecting and Speed Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:939. [PMID: 36903817 PMCID: PMC10005644 DOI: 10.3390/nano13050939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Triboelectric nanogenerators have attracted extensive attention in energy harvesting due to its light weight, low cost, high flexibility, and diversity of function. However, deterioration in terms of mechanical durability and electrical stability of the triboelectric interface during operation, which are the results of material abrasion, severely limits their practical applications. In this paper, a durable triboelectric nanogenerator inspired by a ball mill was designed by using metal balls in hollow drums as carriers for charge generation and transfer. Composite nanofibers were deposited onto the balls, increasing the triboelectrification with the interdigital electrodes in the inner surface of the drum for higher output and electrostatic repulsion to each other for lower wear. Such a rolling design cannot only increase mechanical durability and maintenance convenience, where the filler can be easily replaced and recycled but also collect wind power with the decreased wearing of materials and sound efficiency in comparison with the typical rotation TENG. In addition, the short circuit current shows a strong linear relationship with the rotation speed in a wide range, which can be used to detect wind speed, thus showing potential applications in distributed energy conversion and self-powered environmental monitoring systems.
Collapse
Affiliation(s)
- Qinghao Qin
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xia Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| |
Collapse
|
8
|
Hedau B, Kang BC, Ha TJ. Enhanced Triboelectric Effects of Self-Poled MoS 2-Embedded PVDF Hybrid Nanocomposite Films for Bar-Printed Wearable Triboelectric Nanogenerators. ACS NANO 2022; 16:18355-18365. [PMID: 36040188 DOI: 10.1021/acsnano.2c06257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-poled molybdenum disulfide embedded polyvinylidene fluoride (MoS2@PVDF) hybrid nanocomposite films fabricated by a bar-printing process are demonstrated to improve the output performances of triboelectric nanogenerators (TENGs). Comparative analyses of MoS2@PVDF films with different MoS2 concentrations and the synergic effect based on postannealing at different temperatures were examined to increase the triboelectric open-circuit voltage and the short-circuit current (∼200 V and ∼11.8 μA, respectively). A further comprehensive study of the structural and electrical changes that occur on the surfaces of the proposed hybrid nanocomposite films revealed that both MoS2 incorporation into PVDF and postannealing can individually promote the formation of the β-crystal phase and generate polarity in the PVDF. In addition, MoS2, which provides triboelectric trap states, was found to play a significant role in improving the charge capture capacity of the nanocomposite film and increasing the potential difference between two electrodes of TENGs. The produced electrical energy of the developed wearable TENGs with excellent operational stability for a long duration was utilized to power a variety of mobile smart gadgets in addition to low-power electronic devices. We believe that this study can provide a simple and effective approach to improving the energy-harvesting capabilities of wearable TENGs based on hybrid nanocomposite films.
Collapse
Affiliation(s)
- Bhavna Hedau
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Byeong-Cheol Kang
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Tae-Jun Ha
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
9
|
Comparative Study of Octavinyl Oligomeric Sesquisiloxane Nanomaterial-Modified Asphalt Using Molecular Dynamics Method. Polymers (Basel) 2022; 14:polym14214577. [DOI: 10.3390/polym14214577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
This paper mainly studies the compatibility and properties of octavinyl oligomeric silsesquioxane nanomaterial (nano-OvPOSS)-modified asphalt, in comparison with those of traditional zinc oxide nanomaterial (nano-ZnO) and silica nanomaterial (nano-SiO2), through the method of molecular dynamics simulation. Nano-OvPOSS, an organic–inorganic nano-hybrid material, is studied for the first time in the application of asphalt modification. By studying different sizes and types of nanomaterials, this paper elucidates the superiority of nano-OvPOSS as an asphalt modifier owing to the unique microstructure of eight organic groups of its inorganic framework. According to the results, nano-OvPOSS does not aggregate in the modified asphalt system and displays the best compatibility with asphalt when compared with nano-SiO2 and nano-ZnO. Moreover, nano-OvPOSS exhibits the most favorable compatibility with resinous oil out of the four asphalt components. The size of nano-OvPOSS determines its compatibility with asphalt. The smaller the particle size of nano-OvPOSS, the better its compatibility with asphalt. Therefore, out of all the four sizes of nano-OvPOSS (4.4 Å, 7 Å, 10 Å, and 20 Å) adopted in this study, the 4.4 Å nano-OvPOSS exhibits the best compatibility with asphalt. Additionally, compared with nano-SiO2 and nano-ZnO, nano-OvPOSS is capable of attracting more asphalt molecules around it so that it reduces the largest amount of ratio of free volume (RFV) of matrix asphalt, which can be reduced by 9.4%. Besides these characteristics, the addition of nano-OvPOSS into the matrix asphalt contributes to higher heat capacity, bulk modulus, and shear modulus of the asphalt system, which were increased by 14.3%, 74.7%, and 80.2%, respectively, thereby guaranteeing a more desirable temperature stability and deformation resistance in the asphalt system. Accordingly, nano-OvPOSS can be employed as a viable asphalt modifier to ensure a well-rounded performance of modified asphalt.
Collapse
|
10
|
Study on the Influence of Nano-OvPOSS on the Compatibility, Molecular Structure, and Properties of SBS Modified Asphalt by Molecular Dynamics Simulation. Polymers (Basel) 2022; 14:polym14194121. [PMID: 36236070 PMCID: PMC9571119 DOI: 10.3390/polym14194121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
The present research is carried out to inspect the influence of nano-OvPOSS (octavinyl oligomeric silsesquioxane) with different particle sizes on styrene-butadiene-styrene (SBS) modified asphalt through the method of molecular dynamics simulation. This nanomaterial is investigated for the first time to be used in asphalt modification. With the construction of modified asphalt simulation models and the analysis of their mixing energy, radius of gyration (Rg), radial distribution function (RDF), ratio of free volume (RFV), heat capacity, bulk modulus, and shear modulus, this study elucidates the influence of nano-OvPOSS on the compatibility between SBS and asphalt, on the structure of SBS as well as that of asphalt molecules and on the temperature stability and mechanical properties of SBS modified asphalt. The results show that nano-OvPOSS not only is compatible with SBS as well as with asphalt, but also is able to improve the compatibility between SBS and asphalt. Nano-OvPOSS is able to reinforce the tractility of branched chains of SBS and make SBS easier to wrap the surrounding asphalt molecules. The free movement space of molecules in the SBS modified asphalt system also shrinks. Moreover, the addition of nano-OvPOSS into SBS modified asphalt results in higher heat capacity, bulk modulus, and shear modulus of modified asphalt. All of these effects contribute to a more stable colloidal structure as well as more desirable temperature stability and deformation resistance of the modified asphalt system. The overall results of the study show that nano-OvPOSS can be used as a viable modifier to better the performance of conventional SBS modified asphalt.
Collapse
|