1
|
Papadopoulou K, Ainali NM, Mašek O, Bikiaris DN. Biochar as a UV Stabilizer: Its Impact on the Photostability of Poly(butylene succinate) Biocomposites. Polymers (Basel) 2024; 16:3080. [PMID: 39518286 PMCID: PMC11548502 DOI: 10.3390/polym16213080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
In the present study, biocomposite materials were created by incorporating biochar (BC) at rates of 1, 2.5, and 5 wt.% into a poly(butylene succinate) (PBSu) matrix using a two-stage melt polycondensation procedure in order to provide understanding of the aging process. The biocomposites in film form were exposed to UV irradiation for 7, 14, and 21 days. Photostability was examined by several methods, such as Fourier transform infrared spectroscopy (FTIR), which proved that new carbonyl and hydroxyl groups were formed during UV exposure. Moreover, Differential Scanning Calorimetry (DSC) measurements were employed to record the apparent UV effect in their crystalline morphology and thermal transitions. According to the molecular weight measurements of composites, it was apparent that by increasing the biochar content, the molecular weight decreased at a slower rate. Tensile strength tests were performed to evaluate the deterioration of their mechanical properties during UV exposure, while Scanning Electron Microscopy (SEM) images illustrated the notable surface alternations. Cracks were formed at higher UV exposure times, to a lesser extent in PBSu/BC composites than in neat PBSu. Furthermore, the mechanism of the thermal degradation of neat PBSu and its biocomposites prior to and upon UV exposure was studied by Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). From all the obtained results it was proved that biochar can be considered as an efficient UV-protective additive to PBSu, capable of mitigating photodegradation.
Collapse
Affiliation(s)
- Katerina Papadopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; (K.P.); (N.M.A.)
| | - Nina Maria Ainali
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; (K.P.); (N.M.A.)
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK;
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; (K.P.); (N.M.A.)
| |
Collapse
|
2
|
Merino D. Embracing Nature's Clockwork: Crafting Plastics for Degradation in Plant Agricultural Systems. ACS MATERIALS AU 2024; 4:450-458. [PMID: 39280809 PMCID: PMC11393932 DOI: 10.1021/acsmaterialsau.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 09/18/2024]
Abstract
In the 21st century, global agriculture confronts the urgent challenge of increasing food production by 70% by 2050 while simultaneously addressing environmental and health concerns. Plastics, integral to agricultural innovation, present sustainability challenges due to their non-biodegradable nature and contribution to pollution. This perspective examines the transition to bioplastics, emphasizing their bio-based origin and their crucial characteristic of being readily biodegradable in the soil. Key bioplastics such as poly(lactic acid) (PLA), polyhydroxyalkanoates (PHAs), and biomass-derived polymers are discussed, particularly regarding the microplastic generation in soil resulting from their use in specific applications like mulch films, delivery systems, and soil conditioners. Embracing bioplastics signifies a significant step forward in achieving sustainable agriculture and addressing plastic waste. However, it is highlighted that while some bioplastics can be recovered and recycled, special applications where the plastic is in intimate contact with soil pose challenges for recovery. In these cases, that represent more than the 50% of plastics used in agriculture, meticulous design for biodegradation in soil synchronized with agricultural cycles is necessary. This approach ensures minimal environmental impact and promotes a circular approach to plastic use in agriculture.
Collapse
Affiliation(s)
- Danila Merino
- Basque Center for Macromolecular Design and Engineering (POLYMAT), University of the Basque Country (UPV/EHU), Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
3
|
Huang Z, Zhang Y, Zhang C, Yuan F, Gao H, Li Q. Lignin-Based Composite Film and Its Application for Agricultural Mulching. Polymers (Basel) 2024; 16:2488. [PMID: 39274121 PMCID: PMC11397830 DOI: 10.3390/polym16172488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Agricultural mulching is an important input for modern agricultural production and plays an important role in guaranteeing food security worldwide. At present, polyethylene (PE) mulching is still commonly used in agricultural production in most countries around the world, which is non-biodegradable, and years of mulching have caused serious agricultural white pollution. Lignin is one of the three major components of plant cell walls, and it is also the main renewable natural aromatic compounds in nature. Lignin-based composite film materials are green, biodegradable, and show good prospects for development in the field of agricultural mulch. This paper introduces the types, structure, and application status of lignin, summarizes the preparation of lignin-based composite film materials and its latest research progress, focuses on the types, preparation methods, and application examples of lignin-based agricultural mulching, and looks forward to the future development prospects of lignin-based agricultural mulching.
Collapse
Affiliation(s)
- Zujian Huang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenwei Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangting Yuan
- College of Horticulture & Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hairong Gao
- College of Horticulture & Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Li
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture & Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Zhao Z, Balu R, Gangadoo S, Duta NK, Choudhury NR. Poly(butylene adipate-co-terephthalate)/Polylactic Acid/Tetrapod-Zinc Oxide Whisker Composite Films with Antibacterial Properties. Polymers (Basel) 2024; 16:1039. [PMID: 38674959 PMCID: PMC11055077 DOI: 10.3390/polym16081039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Biodegradable composite films comprising of poly(butylene adipate-co-terephthalate) (PBAT), polylactic acid (PLA), and tetrapod-zinc oxide (T-ZnO) whisker were prepared by a melt-extrusion and blow molding process. The effect of the incorporation of the T-ZnO whisker (1 to 7 wt.%) in the PBAT/PLA blend film was studied systematically. The composite films with an optimal T-ZnO whisker concentration of 3 wt.% exhibited the highest mechanical (tensile strength ~32 MPa), rheological (complex viscosity~1200 Pa.s at 1 rad/s angular frequency), and gas barrier (oxygen permeability~20 cc/m2·day) properties, whereas the composite films with 7 wt.% T-ZnO whiskers exhibited the highest antibacterial properties. The developed composite films can find potential application as antibacterial food packaging materials.
Collapse
Affiliation(s)
- Zhibo Zhao
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (Z.Z.); (R.B.); (S.G.)
| | - Rajkamal Balu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (Z.Z.); (R.B.); (S.G.)
- ARC Industrial Transformation Research Hub for Transformation of Reclaimed Waste into Engineered Materials and Solutions for a Circular Economy (TREMS), RMIT University, Melbourne, VIC 3000, Australia
| | - Sheeana Gangadoo
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (Z.Z.); (R.B.); (S.G.)
| | - Naba Kumar Duta
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (Z.Z.); (R.B.); (S.G.)
| | - Namita Roy Choudhury
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (Z.Z.); (R.B.); (S.G.)
- ARC Industrial Transformation Research Hub for Transformation of Reclaimed Waste into Engineered Materials and Solutions for a Circular Economy (TREMS), RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
5
|
Hassan F, Mu B, Yang Y. Natural polysaccharides and proteins-based films for potential food packaging and mulch applications: A review. Int J Biol Macromol 2024; 261:129628. [PMID: 38272415 DOI: 10.1016/j.ijbiomac.2024.129628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Conventional nondegradable packaging and mulch films, after reaching the end of their use, become a major source of waste and are primarily disposed of in landfills. Accumulation of non-degradable film residues in the soil leads to diminished soil fertility, reduced crop yield, and can potentially affect humans. Application of degradable films is still limited due to the high cost, poor mechanical, and gas barrier properties of current biobased synthetic polymers. In this respect, natural polysaccharides and proteins can offer potential solutions. Having versatile functional groups, three-dimensional network structures, biodegradability, ease of processing, and the potential for surface modifications make polysaccharides and proteins excellent candidates for quality films. Besides, their low-cost availability as industrial waste/byproducts makes them cost-effective alternatives. This review paper covers the performance properties, cost assessment, and in-depth analysis of macromolecular structures of some natural polysaccharides and proteins-based films that have great potential for packaging and mulch applications. Proper dissolution of biopolymers to improve molecular interactions and entanglement, and establishment of crosslinkages to form an ordered and cohesive polymeric structure can help to obtain films with good properties. Simple aqueous-based film formulation techniques and utilization of waste/byproducts can stimulate the adoption of affordable biobased films on a large-scale.
Collapse
Affiliation(s)
- Faqrul Hassan
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States
| | - Bingnan Mu
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States
| | - Yiqi Yang
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States; Department of Biological Systems Engineering, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States.
| |
Collapse
|
6
|
Shanmugam SD, Praveena SM, Wahid SA, Liew JYC. Occurrence and characteristics of microplastics pollution in tropical agricultural soils in Klang Valley, Malaysia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:144. [PMID: 38214797 DOI: 10.1007/s10661-024-12330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Presently, microplastic pollution has emerged as a growing environmental risk around the world. Nevertheless, knowledge of the occurrence and characteristics of microplastics in tropical agricultural soil is limited. This study investigated the pollution of surface soil microplastics in two agricultural farms located at Klang Valley, Malaysia. An extraction method based on density separation by using saturated extraction solution (sodium sulfate, ρ = 2 g cm-3 and sucrose, ρ = 1.59 g cm-3 with a ratio 1:1, v/v) was carried out. The study revealed the mean particle size of soil microplastics with 3260.76 ± 880.38 μm in farm A and 2822.31 ± 408.48 μm in farm B. The dominant types of soil microplastics were fragments and films with major colors of white (59%) and transparent (28%) in farm A, while black (52%) and white (37.6%) in farm B. Representatives of soil microplastics detected polymers of polyvinyl chloride (PVC), high density polyethylene (HDPE), polycarbonate (PC), and polystyrene (PS). The sources of plastic products were black and white plastic pipes, black plastic films for vegetation, fertilizer bottles, plastic water containers and polystyrene storage boxes, and the breakdown processes, contributed to the microplastic pollution in these farms. The outcomes of this study will establish a better understanding of microplastic pollution in tropical agricultural soil in the Southeast Asian region. The findings would be beneficial as supportive reference for the endeavor to reduce microplastic pollution in agricultural soil.
Collapse
Affiliation(s)
- Shyamala Devi Shanmugam
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Samsuri Abdul Wahid
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Josephine Ying Chyi Liew
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
7
|
Saberi Riseh R. Advancing agriculture through bioresource technology: The role of cellulose-based biodegradable mulches. Int J Biol Macromol 2024; 255:128006. [PMID: 37977475 DOI: 10.1016/j.ijbiomac.2023.128006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Agriculture plays a pivotal role in meeting the world's ever-growing food demands. However, traditional agricultural practices often have negative consequences for the environment, such as soil erosion and chemical runoff. Recently, there has been a pressing need for advance agricultural practices. Cellulose-based mulches offer a solution by optimizing agricultural productivity while minimizing harm. These mulches are made from renewable bioresources derived from cellulose-rich materials. Compared to plastic mulches, cellulose-based alternatives show potential in improving nutrient retention, soil health, weed suppression, water conservation, and erosion mitigation. The article investigates the characteristics and application methods of cellulose-based mulches, highlighting their biodegradability, water retention, crop protection, and weed suppression capabilities. It also evaluates their economic feasibility, emphasizing their potential to transform sustainable farming practices. Overall, cellulose-based mulches have the potential to revolutionize agriculture, addressing environmental concerns while optimizing productivity. They represent a significant step toward a more sustainable and resilient agricultural system.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Departement of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran.
| |
Collapse
|
8
|
Jin A, del Valle LJ, Puiggalí J. Copolymers and Blends Based on 3-Hydroxybutyrate and 3-Hydroxyvalerate Units. Int J Mol Sci 2023; 24:17250. [PMID: 38139077 PMCID: PMC10743438 DOI: 10.3390/ijms242417250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
This review presents a comprehensive update of the biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), emphasizing its production, properties, and applications. The overall biosynthesis pathway of PHBV is explored in detail, highlighting recent advances in production techniques. The inherent physicochemical properties of PHBV, along with its degradation behavior, are discussed in detail. This review also explores various blends and composites of PHBV, demonstrating their potential for a range of applications. Finally, the versatility of PHBV-based materials in multiple sectors is examined, emphasizing their increasing importance in the field of biodegradable polymers.
Collapse
Affiliation(s)
- Anyi Jin
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (A.J.); (L.J.d.V.)
- Venvirotech Biotechnology S.L., Santa Perpètua de Mogoda, 08130 Barcelona, Spain
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (A.J.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (A.J.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| |
Collapse
|
9
|
Briassoulis D. Agricultural plastics as a potential threat to food security, health, and environment through soil pollution by microplastics: Problem definition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164533. [PMID: 37285997 DOI: 10.1016/j.scitotenv.2023.164533] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
The dynamic expansion of the Agricultural Plastics (AP) use has allowed for improved agricultural products quality, yields, and enhanced sustainability along with multiple benefits for the Agrifood sector. The present work investigates the relationship of AP characteristics, use and End-of-Life (EoL) practices with degradation and potential generation of micro-, nanoparticles (MNP) in soil. The composition, functionalities, and degradation behaviour of the contemporary conventional and biodegradable AP categories are systematically analysed. Their market dynamics are briefly presented. The risk and the conditions for the AP potential role in soil pollution and possible MNP generation are analysed based on a qualitative risk assessment approach. AP are classified from high to low-risk products with respect to their probability for soil contamination by MNP based on worst-best scenarios. Proposed alternative sustainable solutions to eliminate the risks are briefly presented for each AP category. Characteristic quantitative estimations of soil pollution by MNP generated by AP are presented for selected case studies reported in the literature. The significance of various indirect sources of agricultural soil pollution by MNP is analysed allowing for appropriate risk mitigation strategies and policies to be designed and implemented.
Collapse
Affiliation(s)
- Demetres Briassoulis
- Department of Natural Resources & Agricultural Engineering, Agricultural University of Athens, 75, Iera Odos Str, 11855 Athens, Greece.
| |
Collapse
|
10
|
Graf M, Greenfield LM, Reay MK, Bargiela R, Williams GB, Onyije C, Lloyd CEM, Bull ID, Evershed RP, Golyshin PN, Chadwick DR, Jones DL. Increasing concentration of pure micro- and macro-LDPE and PP plastic negatively affect crop biomass, nutrient cycling, and microbial biomass. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131932. [PMID: 37390687 DOI: 10.1016/j.jhazmat.2023.131932] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/29/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Over the last 50 years, the intense use of agricultural plastic in the form of mulch films has led to an accumulation of plastic in soil, creating a legacy of plastic in agricultural fields. Plastic often contains additives, however it is still largely unknown how these compounds affect soil properties, potentially influencing or masking effects of the plastic itself. Therefore, the aim of this study was to investigate the effects of pure plastics of varying sizes and concentrations, to improve our understanding of plastic-only interactions within soil-plant mesocosms. Maize (Zea mays L.) was grown over eight weeks following the addition of micro and macro low-density polyethylene and polypropylene at increasing concentrations (equivalent to 1, 10, 25, and 50 years mulch film use) and the effects of plastic on key soil and plant properties were measured. We found the effect of both macro and microplastic on soil and plant health is negligible in the short-term (1 to <10 years). However, ≥ 10 years of plastic application for both plastic types and sizes resulted in a clear negative effect on plant growth and microbial biomass. This study provides vital insight into the effect of both macro and microplastics on soil and plant properties.
Collapse
Affiliation(s)
- Martine Graf
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Lucy M Greenfield
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Michaela K Reay
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Rafael Bargiela
- Centre of Environmental Biotechnology, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Gwion B Williams
- Centre of Environmental Biotechnology, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Charles Onyije
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Charlotte E M Lloyd
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Ian D Bull
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Richard P Evershed
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Peter N Golyshin
- Centre of Environmental Biotechnology, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - David R Chadwick
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Davey L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Centre of Environmental Biotechnology, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
11
|
Pagliarini E, Totaro G, Saccani A, Gaggìa F, Lancellotti I, Di Gioia D, Sisti L. Valorization of coffee wastes as plant growth promoter in mulching film production: A contribution to a circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162093. [PMID: 36758689 DOI: 10.1016/j.scitotenv.2023.162093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Food waste valorization, considered as energy and/or chemicals source, via biorefinery or biotechnology, gained great attention in recent years, because of the fast depletion of primary resources, increased waste generation and landfilling worldwide. Coffee by-products for example (i.e. coffee pulp, coffee husks, silver skin, spent coffee, etc.) have been investigated in different forms either as a source of antioxidant and valuable chemicals and as a filler in composites. A new valorization route for coffee silver skin (CSS), up to now just sent to damping, is here investigated: particulate bio-composites based on poly(butylene succinate-co-adipate) (PBSA), an aliphatic biodegradable polyester commercially available, have been formulated with up to a 30 wt% of CSS, in order to prepare mulching films for agriculture. The bacterial analysis of the filler indeed, has underlined the presence of potential Plant Growth-Promoting Bacteria species, mainly ascribed to the Bacillus genus, which can survive both the roasting and the compounding processes. The obtained composites have been characterized mechanically and thermally and their hydrophilic nature has been investigated by measuring their contact angle. Eventually, the bacteria release from the composite films has been examined by means of in-vitro tests. The plant growth promoting capability of the films was preliminarily evaluated in pot experiments using lettuce as a model crop. The composite films were able to release the endogenous bacteria in the soil and to stimulate plant and root growth of the assayed crop. The possibility to produce functionalized biodegradable mulching films by recycling agricultural wastes can thus be forecast, highlighting potential multiple advantages in terms of soil preservation/fertilization, decrease of polymeric materials in mulching products, exploitation of a waste.
Collapse
Affiliation(s)
- Elia Pagliarini
- Department of Agricultural and Food Sciences, University of Bologna, Via Fanin 40, Bologna, Italy
| | - Grazia Totaro
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, Bologna, Italy.
| | - Andrea Saccani
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, Bologna, Italy
| | - Francesca Gaggìa
- Department of Agricultural and Food Sciences, University of Bologna, Via Fanin 40, Bologna, Italy
| | - Isabella Lancellotti
- Department of Engineering "E. Ferrari", University of Modena and Reggio Emilia, Via Vivarelli 10, Modena, Italy
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Via Fanin 40, Bologna, Italy
| | - Laura Sisti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, Bologna, Italy
| |
Collapse
|