1
|
Muñoz-Gimena PF, Aragón-Gutiérrez A, Blázquez-Blázquez E, Arrieta MP, Rodríguez G, Peponi L, López D. Avocado Seed Starch-Based Films Reinforced with Starch Nanocrystals. Polymers (Basel) 2024; 16:2868. [PMID: 39458696 PMCID: PMC11511395 DOI: 10.3390/polym16202868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Biopolymers derived from biomass can provide the advantages of both biodegradability and functional qualities from a circular economy point of view, where waste is transformed into raw material. In particular, avocado seeds can be considered an interesting residue for biobased packaging applications due to their high starch content. In this work, avocado seed starch (ASS)-based films containing different glycerol concentrations were prepared by solvent casting. Films were also reinforced with starch nanocrystals (SNCs) obtained through the acid hydrolysis of ASS. The characterization of the extracted starch and starch nanocrystals by scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis has been reported. Adding 1% of SNCs increased elastic modulus by 112% and decreased water vapor permeability by 30% with respect to neat matrix. Interestingly, the bioactive compounds from the avocado seed provided the films with high antioxidant capacity. Moreover, considering the long time required for traditional plastic packaging to degrade, all of the ASS-based films disintegrated within 48 h under lab-scale composting conditions. The results of this work support the valorization of food waste byproducts and the development of reinforced biodegradable materials for potential use as active food packaging.
Collapse
Affiliation(s)
- Pedro Francisco Muñoz-Gimena
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (P.F.M.-G.); (E.B.-B.); (G.R.)
| | - Alejandro Aragón-Gutiérrez
- Grupo de Tecnología de Materiales y Envases, Instituto Tecnológico del Embalaje, Transporte y Logística, ITENE, Unidad Asociada Al CSIC, C/Albert Einstein 1, Paterna, 46980 Valencia, Spain;
| | - Enrique Blázquez-Blázquez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (P.F.M.-G.); (E.B.-B.); (G.R.)
| | - Marina Patricia Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), C/José Gutiérrez Abascal 2, 28006 Madrid, Spain;
| | - Gema Rodríguez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (P.F.M.-G.); (E.B.-B.); (G.R.)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (P.F.M.-G.); (E.B.-B.); (G.R.)
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (P.F.M.-G.); (E.B.-B.); (G.R.)
| |
Collapse
|
2
|
Pei J, Palanisamy CP, Srinivasan GP, Panagal M, Kumar SSD, Mironescu M. A comprehensive review on starch-based sustainable edible films loaded with bioactive components for food packaging. Int J Biol Macromol 2024; 274:133332. [PMID: 38914408 DOI: 10.1016/j.ijbiomac.2024.133332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Biopolymers like starch, a renewable and widely available resource, are increasingly being used to fabricate the films for eco-friendly packaging solutions. Starch-based edible films offer significant advantages for food packaging, including biodegradability and the ability to extend shelf life. However, they also present challenges such as moisture sensitivity and limited barrier properties compared to synthetic materials. These limitations can be mitigated by incorporating bioactive components, such as antimicrobial agents or antioxidants, which enhance the film's resistance to moisture and improve its barrier properties, making it a more viable option for food packaging. This review explores the emerging field of starch-based sustainable edible films enhanced with bioactive components for food packaging applications. It delves into fabrication techniques, structural properties, and functional attributes, highlighting the potential of these innovative films to reduce environmental impact and preserve food quality. Key topics discussed include sustainability issues, processing methods, performance characteristics, and potential applications in the food industry. The review provides a comprehensive overview of current research and developments in starch-based edible films, presenting them as promising alternatives to conventional food packaging that can help reduce plastic waste and environmental impact.
Collapse
Affiliation(s)
- Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Guru Prasad Srinivasan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mani Panagal
- Department of Biotechnology, Annai College of Arts and Science, Kovilacheri, Kumbakonam, Tamil Nadu 612503, India
| | | | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania.
| |
Collapse
|
3
|
Elgharbawy AS, El Demerdash AGM, Sadik WA, Kasaby MA, Lotfy AH, Osman AI. Enhancing the Biodegradability, Water Solubility, and Thermal Properties of Polyvinyl Alcohol through Natural Polymer Blending: An Approach toward Sustainable Polymer Applications. Polymers (Basel) 2024; 16:2141. [PMID: 39125167 PMCID: PMC11314078 DOI: 10.3390/polym16152141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The escalating environmental crisis posed by single-use plastics underscores the urgent need for sustainable alternatives. This study provides an approach to introduce biodegradable polymer blends by blending synthetic polyvinyl alcohol (PVA) with natural polymers-corn starch (CS) and hydroxypropyl methylcellulose (HPMC)-to address this challenge. Through a comprehensive analysis, including of the structure, mechanical strength, water solubility, biodegradability, and thermal properties, we investigated the enhanced performance of PVA-CS and PVA-HPMC blends over conventional polymers. Scanning electron microscopy (SEM) findings of pure PVA and its blends were studied, and we found a complete homogeneity between the PVA and both types of natural polymers in the case of a high concentration of PVA, whereas at lower concentration of PVA, some granules of CS and HMPC appear in the SEM. Blending corn starch (CS) with PVA significantly boosts its biodegradability in soil environments, since adding starch of 50 w/w duplicates the rate of PVA biodegradation. Incorporating hydroxypropyl methylcellulose (HPMC) with PVA not only improves water solubility but also enhances biodegradation rates, as the addition of HPMC increases the biodegradation of pure PVA from 10 to 100% and raises the water solubility from 80 to 100%, highlighting the significant acceleration of the biodegradation process and water solubility caused by HPMC addition, making these blends suitable for a wide range of applications, from packaging and agricultural films to biomedical engineering. The thermal properties of pure PVA and its blends with natural were studied using diffraction scanning calorimetry (DSC). It is found that the glass transition temperature (Tg) increases after adding natural polymers to PVA, referring to an improvement in the molecular weight and intermolecular interactions between blend molecules. Moreover, the amorphous structure of natural polymers makes the melting temperature ™ lessen after adding natural polymer, so the blends require lower temperature to remelt and be recycled again. For the mechanical properties, both types of natural polymer decrease the tensile strength and elongation at break, which overall weakens the mechanical properties of PVA. Our findings offer a promising pathway for the development of environmentally friendly polymers that do not compromise on performance, marking a significant step forward in polymer science's contribution to sustainability. This work presents detailed experimental and theoretical insights into novel polymerization methods and the utilization of biological strategies for advanced material design.
Collapse
Affiliation(s)
- Abdallah S. Elgharbawy
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
- The Egyptian Ethylene and Derivatives Company (Ethydco), Alexandria 21544, Egypt
| | - Abdel-Ghaffar M. El Demerdash
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
| | - Wagih A. Sadik
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
| | - Mosaad A. Kasaby
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
| | - Ahmed H. Lotfy
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, UK
| |
Collapse
|
4
|
Gómez-Bachar L, Vilcovsky M, González-Seligra P, Famá L. Effects of PVA and yerba mate extract on extruded films of carboxymethyl cassava starch/PVA blends for antioxidant and mechanically resistant food packaging. Int J Biol Macromol 2024; 268:131464. [PMID: 38702248 DOI: 10.1016/j.ijbiomac.2024.131464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/25/2024] [Accepted: 04/06/2024] [Indexed: 05/06/2024]
Abstract
Global concerns over environmental damage caused by non-biodegradable single-use packaging have sparked interest in developing biomaterials. The food packaging industry is a major contributor to non-degradable plastic waste. This study investigates the impact of incorporating different concentrations of polyvinyl alcohol (PVA) and yerba mate extract as a natural antioxidant into carboxymethyl cassava starch films to possibly use as active degradable packaging to enhance food shelf life. Films with starch and PVA blends (SP) at different ratios (SP radios of 100:0, 90:10, 80:20 and 70:30) with and without yerba mate extract (Y) were successfully produced through extrusion and thermoforming. The incorporation of up to 20 wt% PVA improved starch extrusion processing and enhanced film transparency. PVA played a crucial role in improving the hydrophobicity, tensile strength and flexibility of the starch films but led to a slight deceleration in their degradation in compost. In contrast, yerba mate extract contributed to better compost degradation of the blend films. Additionally, it provided antioxidant activity, particularly in hydrophilic and lipophilic food simulants, suggesting its potential to extend the shelf life of food products. Starch-PVA blend films with yerba mate extract emerged as a promising alternative for mechanically resistant and active food packaging.
Collapse
Affiliation(s)
- Luca Gómez-Bachar
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos, Buenos Aires, Argentina
| | - Maia Vilcovsky
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos, Buenos Aires, Argentina
| | - Paula González-Seligra
- Instituto de Ingenierías y Nuevas Tecnologías, Universidad Nacional del Oeste, San Antonio de Padua, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Lucía Famá
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Othman SH, Shapi'i RA, Ronzi NDA. Starch biopolymer films containing chitosan nanoparticles: A review. Carbohydr Polym 2024; 329:121735. [PMID: 38286535 DOI: 10.1016/j.carbpol.2023.121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
Starch biopolymer films incorporated with chitosan nanoparticles (CNP) or starch/CNP films are promising alternatives to non-degradable food packaging materials. The films can be utilized for active food packaging applications because CNP exhibits antimicrobial and antioxidant properties, which can improve food shelf-life. Nonetheless, knowledge of the effects of CNP inclusion on the properties of starch films is not fully elucidated. This paper reviews the influences of various concentrations of CNP, sizes of CNP, and other additives on the mechanical, thermal, barrier, antimicrobial, antioxidant, biodegradability, and cytotoxicity properties of starch/CNP films as well as the mechanisms involved in relation to food packaging applications. The usage of starch/CNP films for active food packaging can help to reduce environmental issues and contribute to food safety and security.
Collapse
Affiliation(s)
- Siti Hajar Othman
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Nanomaterials Processing and Technology Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Ruzanna Ahmad Shapi'i
- Nanomaterials Processing and Technology Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Diana Arisya Ronzi
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Estrada-Girón Y, Fernández-Escamilla VVA, Martín-del-Campo A, González-Nuñez R, Canché-Escamilla G, Uribe-Calderón J, Tepale N, Aguilar J, Moscoso-Sánchez FJ. Characterization of Polylactic Acid Biocomposites Filled with Native Starch Granules from Dioscorea remotiflora Tubers. Polymers (Basel) 2024; 16:899. [PMID: 38611157 PMCID: PMC11013063 DOI: 10.3390/polym16070899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Biocomposites were fabricated utilizing polylactic acid (PLA) combined with native starch sourced from mountain's yam (Dioscorea remotiflora Knuth), an underexplored tuber variety. Different starch compositions (7.5, 15.0, 22.5, and 30.0 wt.%) were blended with PLA in a batch mixer at 160 °C to produce PLA/starch biocomposites. The biocomposites were characterized by analyzing their morphology, particle size distribution, thermal, X-ray diffraction (XDR), mechanical, and dynamic mechanical (DMA) properties, water absorption behavior, and color. The results showed that the amylose content of Dioscorea remotiflora starch was 48.43 ± 1.4%, which corresponds to a high-amylose starch (>30% of amylose). Particle size analysis showed large z-average particle diameters (Dz0) of the starch granules (30.59 ± 3.44 μm). Scanning electron microscopy (SEM) images showed oval-shaped granules evenly distributed throughout the structure of the biocomposite, without observable agglomeration or damage to its structure. XDR and DMA analyses revealed an increase in the crystallinity of the biocomposites as the proportion of the starch increased. The tensile modulus (E) underwent a reduction, whereas the flexural modulus (Eflex) increased with the amount of starch incorporated. The biocomposites with the highest Eflex were those with a starch content of 22.5 wt.%, which increased by 8.7% compared to the neat PLA. The water absorption of the biocomposites demonstrated a higher uptake capacity as the starch content increased. The rate of water absorption in the biocomposites followed the principles of Fick's Law. The novelty of this work lies in its offering an alternative for the use of high-amylose mountain's yam starch to produce low-cost bioplastics for different applications.
Collapse
Affiliation(s)
- Yokiushirdhilgilmara Estrada-Girón
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Víctor Vladimir Amílcar Fernández-Escamilla
- Departamento de Ciencias Tecnológicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico
| | - Angelina Martín-del-Campo
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Rubén González-Nuñez
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Gonzalo Canché-Escamilla
- Unidad Académica de Materiales, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico
| | - Jorge Uribe-Calderón
- Unidad Académica de Materiales, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico
| | - Nancy Tepale
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur S/N, Col. San Manuel, Puebla 72570, Puebla, Mexico
| | - Jacobo Aguilar
- Departamento de Ciencias Tecnológicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico
| | - Francisco Javier Moscoso-Sánchez
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico
| |
Collapse
|
7
|
Zarski A, Kapusniak K, Ptak S, Rudlicka M, Coseri S, Kapusniak J. Functionalization Methods of Starch and Its Derivatives: From Old Limitations to New Possibilities. Polymers (Basel) 2024; 16:597. [PMID: 38475281 DOI: 10.3390/polym16050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
It has long been known that starch as a raw material is of strategic importance for meeting primarily the nutritional needs of people around the world. Year by year, the demand not only for traditional but also for functional food based on starch and its derivatives is growing. Problems with the availability of petrochemical raw materials, as well as environmental problems with the recycling of post-production waste, make non-food industries also increasingly interested in this biopolymer. Its supporters will point out countless advantages such as wide availability, renewability, and biodegradability. Opponents, in turn, will argue that they will not balance the problems with its processing and storage and poor functional properties. Hence, the race to find new methods to improve starch properties towards multifunctionality is still ongoing. For these reasons, in the presented review, referring to the structure and physicochemical properties of starch, attempts were made to highlight not only the current limitations in its processing but also new possibilities. Attention was paid to progress in the non-selective and selective functionalization of starch to obtain materials with the greatest application potential in the food (resistant starch, dextrins, and maltodextrins) and/or in the non-food industries (hydrophobic and oxidized starch).
Collapse
Affiliation(s)
- Arkadiusz Zarski
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Kamila Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sylwia Ptak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Magdalena Rudlicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sergiu Coseri
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, 41 A, Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Janusz Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| |
Collapse
|
8
|
Flores-Hernández CG, López-Barroso J, Salazar-Cruz BA, Saucedo-Rivalcoba V, Almendarez-Camarillo A, Rivera-Armenta JL. Evaluation of Starch-Garlic Husk Polymeric Composites through Mechanical, Thermal, and Thermo-Mechanical Tests. Polymers (Basel) 2024; 16:289. [PMID: 38276697 PMCID: PMC10818331 DOI: 10.3390/polym16020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The present work evaluates the influence of different properties of composite materials from natural sources. Films were prepared using the evaporative casting technique from corn starch reinforced with a waste material such as garlic husk (GH), using glycerin as a plasticizer. The results of the syntheses carried out demonstrated the synergy between these materials. In the morphological analysis, the compatibility and adequate dispersion of the reinforcer in the matrix were confirmed. Using Fourier transform infrared spectroscopy (FTIR), the interaction and formation of bonds between the matrix and the reinforcer were confirmed by the presence of some signals such as S-S and C-S. Similarly, thermogravimetric analysis (TGA) revealed that even at low concentrations, GH can slightly increase the decomposition temperature. Finally, from the results of dynamic mechanical analysis (DMA), it was possible to identify that the storage modulus increases significantly, up to 115%, compared to pure starch, especially at low concentrations of the reinforcer.
Collapse
Affiliation(s)
- Cynthia Graciela Flores-Hernández
- Departamento de Metal Mecánica—División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Querétaro/Tecnológico Nacional de México, Av. Tecnológico S/n Esq. Gral. Mariano Escobedo, Santiago de Querétaro 76000, Querétaro, Mexico; (C.G.F.-H.); (J.L.-B.)
| | - Juventino López-Barroso
- Departamento de Metal Mecánica—División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Querétaro/Tecnológico Nacional de México, Av. Tecnológico S/n Esq. Gral. Mariano Escobedo, Santiago de Querétaro 76000, Querétaro, Mexico; (C.G.F.-H.); (J.L.-B.)
| | - Beatriz Adriana Salazar-Cruz
- Centro de Investigación en Petroquímica, Instituto Tecnológico de Ciudad Madero/Tecnológico Nacional de México, Pról. Bahía de Aldair y Ave. de las Bahías, Parque de la Pequeña y Mediana Industria, Altamira 89603, Tamaulipas, Mexico;
| | - Verónica Saucedo-Rivalcoba
- Ingeniería en Procesos Biotecnológicos y Alimentarios, Instituto Tecnológico Superior de Tierra Blanca/Tecnológico Nacional de México, Av. Veracruz s/n Esquina Héroes de Puebla, Col. Pemex, Tierra Blanca 95180, Veracruz, Mexico;
| | - Armando Almendarez-Camarillo
- Departamento de Ingeniería Química, Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Antonio García Cubas Pte. #600 Esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico;
| | - José Luis Rivera-Armenta
- Centro de Investigación en Petroquímica, Instituto Tecnológico de Ciudad Madero/Tecnológico Nacional de México, Pról. Bahía de Aldair y Ave. de las Bahías, Parque de la Pequeña y Mediana Industria, Altamira 89603, Tamaulipas, Mexico;
| |
Collapse
|
9
|
Shen Y, Seidi F, Ahmad M, Liu Y, Saeb MR, Akbari A, Xiao H. Recent Advances in Functional Cellulose-based Films with Antimicrobial and Antioxidant Properties for Food Packaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16469-16487. [PMID: 37877425 DOI: 10.1021/acs.jafc.3c06004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The packaging of food plays a crucial role in food preservation worldwide. However, traditional packaging systems are passive layers with weak efficiency in protecting the food quality. Therefore, packaged foods are gradually spoiled due to the oxidation and growth of microorganisms. Additionally, most of the commercial packaging films are made of petroleum-based materials which raise environmental concerns. Accordingly, the development of eco-friendly natural-derived active packaging systems has increased the attention of scientists. Cellulose as the most abundant polysaccharide on earth with high biocompatibility, no toxicity, and high biodegradability has extensively been applied for the fabrication of packaging films. However, neat cellulose-based films lack antioxidant and antimicrobial activities. Therefore, neat cellulose-based films are passive films with weak food preservation performance. Active films have been developed by incorporating antioxidants and antimicrobial agents into the films. In this review, we have explored the latest research on the fabrication of antimicrobial/antioxidant cellulose-based active packaging films by incorporating natural extracts, natural polyphenols, nanoparticles, and microparticles into the cellulose-based film formulations. We categorized these types of packaging films into two main groups: (i) blend films which are obtained by mixing solutions of cellulose with other soluble antimicrobial/antioxidant agents such as natural extracts and polyphenols; and (ii) composite films which are fabricated by dispersing antimicrobial/antioxidant nano- or microfillers into the cellulose solution. The effect of these additives on the antioxidant and antimicrobial properties of the films has been explained. Additionally, the changes in the other properties of the films such as hydrophilicity, water evaporation rate, and mechanical properties have also been briefly addressed.
Collapse
Affiliation(s)
- Yihan Shen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Mehraj Ahmad
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa Street, Ershad Boulevard, P.O. Box: 1138, Urmia 57147, Iran
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3 Canada
| |
Collapse
|