1
|
Caron B, Maresca M, Leroux A, Lemesle M, Coussegal JL, Guillaneuf Y, Lefay C. Antibacterial Materials: Influence of the Type and Conditions of Biological Tests on the Measured Antibacterial Activity. Macromol Rapid Commun 2024:e2400378. [PMID: 39437182 DOI: 10.1002/marc.202400378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/10/2024] [Indexed: 10/25/2024]
Abstract
In recent years, the growing problem of antibiotic resistance has highlighted the need for antibacterial materials to prevent the development of infections. Different types of tests exist to certify the antibacterial properties of materials. Variations in results can occur due to the unique requirements of each test technique. The antibacterial test result may be influenced, in particular, by the distinct modes of action of leaching and non-leaching compounds. Using antibacterial materials prepared by the dispersion of an amphiphilic cationic synthetic copolymer in a polyurethane matrix, the influence of the reaction medium and the contact time on the results obtained by two well-established tests: ISO 22196 and CERTIKA is investigated. This shows that the kinetics of killing is bacteria dependent and depending on the test conditions (concentration of salt, time of contact, or media), contradictory results could be obtained. Moreover, the influence of the ionic strength (called salt effect) in both free solution and antibacterial surface is highlighted.
Collapse
Affiliation(s)
- Baptiste Caron
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille, 13397, France
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, 13397, France
| | | | | | | | - Yohann Guillaneuf
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille, 13397, France
| | - Catherine Lefay
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille, 13397, France
| |
Collapse
|
2
|
Wu T, Zhou M, Zou J, Chen Q, Qian F, Kurths J, Liu R, Tang Y. AI-guided few-shot inverse design of HDP-mimicking polymers against drug-resistant bacteria. Nat Commun 2024; 15:6288. [PMID: 39060236 PMCID: PMC11282099 DOI: 10.1038/s41467-024-50533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Host defense peptide (HDP)-mimicking polymers are promising therapeutic alternatives to antibiotics and have large-scale untapped potential. Artificial intelligence (AI) exhibits promising performance on large-scale chemical-content design, however, existing AI methods face difficulties on scarcity data in each family of HDP-mimicking polymers (<102), much smaller than public polymer datasets (>105), and multi-constraints on properties and structures when exploring high-dimensional polymer space. Herein, we develop a universal AI-guided few-shot inverse design framework by designing multi-modal representations to enrich polymer information for predictions and creating a graph grammar distillation for chemical space restriction to improve the efficiency of multi-constrained polymer generation with reinforcement learning. Exampled with HDP-mimicking β-amino acid polymers, we successfully simulate predictions of over 105 polymers and identify 83 optimal polymers. Furthermore, we synthesize an optimal polymer DM0.8iPen0.2 and find that this polymer exhibits broad-spectrum and potent antibacterial activity against multiple clinically isolated antibiotic-resistant pathogens, validating the effectiveness of AI-guided design strategy.
Collapse
Affiliation(s)
- Tianyu Wu
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jingcheng Zou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qi Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Feng Qian
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research (PIK), Potsdam, 14473, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
- The Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, 200433, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yang Tang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
3
|
Chiloeches A, Fernández-García R, Fernández-García M, Mariano A, Bigioni I, Scotto d'Abusco A, Echeverría C, Muñoz-Bonilla A. PLA and PBAT-Based Electrospun Fibers Functionalized with Antibacterial Bio-Based Polymers. Macromol Biosci 2023; 23:e2200401. [PMID: 36443243 DOI: 10.1002/mabi.202200401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Indexed: 11/30/2022]
Abstract
Antimicrobial fibers based on biodegradable polymers, poly(lactic acid) (PLA), and poly(butylene adipate-co-terephthalate) (PBAT) are prepared by electrospinning. For this purpose, a biodegradable/bio-based polyitaconate containing azoles groups (PTTI) is incorporated at 10 wt.% into the electrospinning formulations. The resulting fibers functionalized with azole moieties are uniform and free of beads. Then, the accessible azole groups are subjected to N-alkylation, treatment that provides cationic azolium groups with antibacterial activity at the surface of fibers. The positive charge density, roughness, and wettability of the cationic fibers are evaluated and compared with flat films. It is confirmed that these parameters exert an important effect on the antimicrobial properties, as well as the length of the alkylating agent and the hydrophobicity of the matrix. The quaternized PLA/PTTI fibers exhibit the highest efficiency against the tested bacteria, yielding a 4-Log reduction against S. aureus and 1.7-Log against MRSA. Then, biocompatibility and bioactivity of the fibers are evaluated in terms of adhesion, morphology and viability of fibroblasts. The results show no cytotoxic effect of the samples, however, a cytostatic effect is appreciated, which is ascribed to the strong electrostatic interactions between the positive charge at the fiber surface and the negative charge of the cell membranes.
Collapse
Affiliation(s)
- A Chiloeches
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/ Juan de la Cierva 3, Madrid, 28006, Spain.,Escuela Internacional de Doctorado de la Universidad Nacional de Educación a Distancia (UNED), C/ Bravo Murillo, 38, Madrid, 28015, Spain
| | - R Fernández-García
- Hospital Universitario de Móstoles C/ Dr. Luis Montes, s/n, Móstoles, Madrid, 28935, Spain
| | - M Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/ Juan de la Cierva 3, Madrid, 28006, Spain.,Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - A Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, Rome, 00185, Italy
| | - I Bigioni
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, Rome, 00185, Italy
| | - A Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, Rome, 00185, Italy
| | - C Echeverría
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/ Juan de la Cierva 3, Madrid, 28006, Spain.,Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - A Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/ Juan de la Cierva 3, Madrid, 28006, Spain.,Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| |
Collapse
|
4
|
Takahashi H, Sovadinova I, Yasuhara K, Vemparala S, Caputo GA, Kuroda K. Biomimetic antimicrobial polymers—Design, characterization, antimicrobial, and novel applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1866. [PMID: 36300561 DOI: 10.1002/wnan.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Biomimetic antimicrobial polymers have been an area of great interest as the need for novel antimicrobial compounds grows due to the development of resistance. These polymers were designed and developed to mimic naturally occurring antimicrobial peptides in both physicochemical composition and mechanism of action. These antimicrobial peptide mimetic polymers have been extensively investigated using chemical, biophysical, microbiological, and computational approaches to gain a deeper understanding of the molecular interactions that drive function. These studies have helped inform SARs, mechanism of action, and general physicochemical factors that influence the activity and properties of antimicrobial polymers. However, there are still lingering questions in this field regarding 3D structural patterning, bioavailability, and applicability to alternative targets. In this review, we present a perspective on the development and characterization of several antimicrobial polymers and discuss novel applications of these molecules emerging in the field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Haruko Takahashi
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Hiroshima Japan
| | - Iva Sovadinova
- RECETOX, Faculty of Science Masaryk University Brno Czech Republic
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology Nara Institute of Science and Technology Nara Japan
- Center for Digital Green‐Innovation Nara Institute of Science and Technology Nara Japan
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences CIT Campus Chennai India
- Homi Bhabha National Institute Training School Complex Mumbai India
| | - Gregory A. Caputo
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
5
|
Allyn MM, Luo RH, Hellwarth EB, Swindle-Reilly KE. Considerations for Polymers Used in Ocular Drug Delivery. Front Med (Lausanne) 2022; 8:787644. [PMID: 35155469 PMCID: PMC8831705 DOI: 10.3389/fmed.2021.787644] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Age-related eye diseases are becoming more prevalent. A notable increase has been seen in the most common causes including glaucoma, age-related macular degeneration (AMD), and cataract. Current clinical treatments vary from tissue replacement with polymers to topical eye drops and intravitreal injections. Research and development efforts have increased using polymers for sustained release to the eye to overcome treatment challenges, showing promise in improving drug release and delivery, patient experience, and treatment compliance. Polymers provide unique properties that allow for specific engineered devices to provide improved treatment options. Recent work has shown the utilization of synthetic and biopolymer derived biomaterials in various forms, with this review containing a focus on polymers Food and Drug Administration (FDA) approved for ocular use. METHODS This provides an overview of some prevalent synthetic polymers and biopolymers used in ocular delivery and their benefits, brief discussion of the various types and synthesis methods used, and administration techniques. Polymers approved by the FDA for different applications in the eye are listed and compared to new polymers being explored in the literature. This article summarizes research findings using polymers for ocular drug delivery from various stages: laboratory, preclinical studies, clinical trials, and currently approved. This review also focuses on some of the challenges to bringing these new innovations to the clinic, including limited selection of approved polymers. RESULTS Polymers help improve drug delivery by increasing solubility, controlling pharmacokinetics, and extending release. Several polymer classes including synthetic, biopolymer, and combinations were discussed along with the benefits and challenges of each class. The ways both polymer synthesis and processing techniques can influence drug release in the eye were discussed. CONCLUSION The use of biomaterials, specifically polymers, is a well-studied field for drug delivery, and polymers have been used as implants in the eye for over 75 years. Promising new ocular drug delivery systems are emerging using polymers an innovative option for treating ocular diseases because of their tunable properties. This review touches on important considerations and challenges of using polymers for sustained ocular drug delivery with the goal translating research to the clinic.
Collapse
Affiliation(s)
- Megan M. Allyn
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Richard H. Luo
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Elle B. Hellwarth
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Katelyn E. Swindle-Reilly
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Hadiouch S, Maresca M, Gigmes D, Machado G, Maurel-Pantel A, Frik S, Saunier J, Deniset-Besseau A, Yagoubi N, Michalek L, Barner-Kowollik C, Guillaneuf Y, Lefay C. A versatile and straightforward process to turn plastics into antibacterial materials. Polym Chem 2022. [DOI: 10.1039/d1py01344k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antibacterial activity without cell cytotoxicity is conferred to common plastic materials by dispersion of amphiphilic cationic methacrylate-based block copolymers (0.5–2 wt%), while maintaining the mechanical properties of the materials.
Collapse
Affiliation(s)
- Slim Hadiouch
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Marc Maresca
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Didier Gigmes
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Guilherme Machado
- Aix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France
| | | | - Sabrina Frik
- Université Paris Saclay, UFR de pharmacie, Matériaux et Santé, 92290 Chatenay Malabry, France
| | - Johanna Saunier
- Université Paris Saclay, UFR de pharmacie, Matériaux et Santé, 92290 Chatenay Malabry, France
| | - Ariane Deniset-Besseau
- Institut de Chimie Physique (ICP), CNRS UMR 8000, Univ. of Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Najet Yagoubi
- Université Paris Saclay, UFR de pharmacie, Matériaux et Santé, 92290 Chatenay Malabry, France
| | - Lukas Michalek
- Centre of Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Christopher Barner-Kowollik
- Centre of Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Yohann Guillaneuf
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Catherine Lefay
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| |
Collapse
|
7
|
Tyagi A, Mishra A. Optimal Balance of Hydrophobic Content and Degree of Polymerization Results in a Potent Membrane-Targeting Antibacterial Polymer. ACS OMEGA 2021; 6:34724-34735. [PMID: 34963955 PMCID: PMC8697380 DOI: 10.1021/acsomega.1c05148] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/01/2021] [Indexed: 05/09/2023]
Abstract
Globally, excessive use of antibiotics has drastically raised the resistance frequency of disease-causing microorganisms among humans, leading to a scarcity of efficient and biocompatible drugs. Antimicrobial polymers have emerged as a promising candidate to combat drug-resistance pathogens. Along with the amphiphilic balance, structural conformation and molecular weight (M n) play an indispensable role in the antimicrobial potency and cytotoxic activity of polymers. Here, we synthesize cationic and amphiphilic methacrylamide random copolymers using free-radical copolymerization. The mole fraction of the hydrophobic groups is kept constant at approximately 20%, while the molecular weight (average number of linked polymeric units) is varied and the antibacterial and cytotoxic activities are studied. The chemical composition of the copolymers is characterized by 1H NMR spectroscopy. We observe that the average number of linked units in a polymer chain (i.e., molecular weight) significantly affects the polymer activity and selectivity. The antibacterial efficacy against both of the examined bacteria, Escherichia coli and Staphylococcus aureus, increases with increasing molecular weight. The bactericidal activity of polymers is confirmed by live/dead cell viability assay. Polymers with high molecular weight display high antibacterial activity, yet are highly cytotoxic even at 1 × MIC. However, low-molecular-weight polymers are biocompatible while retaining antibacterial potency. Furthermore, no resistance acquisition is observed against the polymers in E. coli and S. aureus. A comprehensive analysis using confocal and scanning electron microscopy (SEM) techniques shows that the polymers target bacterial membranes, resulting in membrane permeabilization that leads to cell death.
Collapse
Affiliation(s)
- Anju Tyagi
- Department
of Chemistry, Indian Institute of Technology
Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Abhijit Mishra
- Department
of Materials Engineering, Indian Institute
of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
- . Tel: (+91-79) 2395 2422
| |
Collapse
|
8
|
Chee PL, Owh C, Venkatesh M, Periayah MH, Zhang Z, Michelle Yew PY, Ruan H, Lakshminarayanan R, Kai D, Loh XJ. Cationic Lignin-Based Hyperbranched Polymers to Circumvent Drug Resistance in Pseudomonas Keratitis. ACS Biomater Sci Eng 2021; 7:4659-4668. [PMID: 34414768 DOI: 10.1021/acsbiomaterials.1c00856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rise of antimicrobial-resistant bacteria strains has been a global public health concern due to their ability to cause increased patient morbidity and a greater burden on the healthcare system. As one of the potential solutions to overcome such bacterial infections, hyperbranched copolymers with cationic charges were developed. These copolymers were assessed for their antimicrobial efficacy and their bactericidal mechanisms. They were found to be potent against mobile colistin-resistant 1 strains, which was significant as colistin is known to be the last-resort antibiotic against Gram-negative bacteria. Furthermore, there was no sign of mutational resistance developed by E. Coli ATCC 25922 and MCR 1+ E. Coli against the copolymer even up to 20 passages. The ability to evade inducing resistance would provide invaluable insights for future antibiotic development. Our studies suggest that the bactericidal efficacy comes from the ability to target the outer membrane efficaciously. In vivo study using a Pseudomonas keratitis model showed that the copolymer was compatible with the eye and further supported that the copolymer treatment was effective for complete bacteria elimination.
Collapse
Affiliation(s)
- Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Mayandi Venkatesh
- Ocular Infections & Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Mercy Halleluyah Periayah
- Ocular Infections & Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Zheng Zhang
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Pek Yin Michelle Yew
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Huajun Ruan
- Zhejiang Fenix Health Science and Technology Co., Ltd, Zhejiang 176849, China
| | - Rajamani Lakshminarayanan
- Ocular Infections & Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.,Department of Pharmacy, National University of Singapore, 18 Science Drive, Singapore 117543, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| |
Collapse
|
9
|
Synthesis of N-Methylmorpholinium Derivatives Possessing a 1,3,4-Oxadiazole Core as Feasible Antibacterial Agents against Plant Bacterial Diseases. J CHEM-NY 2021. [DOI: 10.1155/2021/5415950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To develop a kind of quaternary ammonium compounds that can safely apply in agriculture for managing the plant bacterial diseases, herein, a series of N-methylmorpholinium derivatives possessing a classical 1,3,4-oxadiazole core were prepared and the antibacterial activities both in vitro and in vivo were screened. Bioassay results revealed that compounds 3l and 3i showed the strongest antibacterial activity toward pathogens Xanthomonas oryzae pv. oryzae and X. axonopodis pv. citri with the lowest EC50 values of 1.40 and 0.90 μg/mL, respectively. Phytotoxicity test trials indicated that target compounds bearing a bulky N-methylmorpholinium pendant are safe for plants. The following in vivo bioassays showed that compound 3l could control the rice bacterial blight disease, thereby affording good control efficiencies of 55.95% (curative activity) and 53.09% (protective activity) at the dose of 200 μg/mL. Preliminary antibacterial mechanism studies suggested that target compounds had strong interactions with the cell membrane of bacteria via scanning electron microscopy imaging. Additionally, this kind of framework also displayed certain antifungal activity toward Fusarium oxysporum and Phytophthora cinnamomi. Given the above privileged characteristics, this kind of 1,3,4-oxadiazole-tailored N-methylmorpholinium derivatives could stimulate the design of safe quaternary ammonium bactericides for controlling plant bacterial diseases.
Collapse
|
10
|
Unexpected Enhancement of Antimicrobial Polymer Activity against Staphylococcus aureus in the Presence of Fetal Bovine Serum. Molecules 2021; 26:molecules26154512. [PMID: 34361664 PMCID: PMC8347894 DOI: 10.3390/molecules26154512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022] Open
Abstract
Cationic and amphiphilic polymers are known to exert broad-spectrum antibacterial activity by a putative mechanism of membrane disruption. Typically, nonspecific binding to hydrophobic components of the complex biological milieu, such as globular proteins, is considered a deterrent to the successful application of such polymers. To evaluate the extent to which serum deactivates antibacterial polymethacrylates, we compared their minimum inhibitory concentrations in the presence and absence of fetal bovine serum. Surprisingly, we discovered that the addition of fetal bovine serum (FBS) to the assay media in fact enhances the antimicrobial activity of polymers against Gram-positive bacteria S. aureus, whereas the opposite is the case for Gram-negative E. coli. Here, we present these unexpected trends and develop a hypothesis to potentially explain this unusual phenomenon.
Collapse
|
11
|
Kim M, Mun W, Jung WH, Lee J, Cho G, Kwon J, Ahn DJ, Mitchell RJ, Kim BS. Antimicrobial PEGtides: A Modular Poly(ethylene glycol)-Based Peptidomimetic Approach to Combat Bacteria. ACS NANO 2021; 15:9143-9153. [PMID: 33988968 DOI: 10.1021/acsnano.1c02644] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite their high potency, the widespread implementation of natural antimicrobial peptides is still challenging due to their low scalability and high hemolytic activities. Herein, we address these issues by employing a modular approach to mimic the key amino acid residues present in antimicrobial peptides, such as lysine, leucine, and serine, but on the highly biocompatible poly(ethylene glycol) (PEG) backbone. A series of these PEG-based peptides (PEGtides) were developed using functional epoxide monomers, corresponding to each key amino acid, with several possessing highly potent bactericidal activities and controlled selectivities, with respect to their hemolytic behavior. The critical role of the composition and the structure of the PEGtides in their selectivities was further supported by coarse-grained molecular dynamic simulations. This modular approach is anticipated to provide the design principles necessary for the future development of antimicrobial polymers.
Collapse
Affiliation(s)
- Minseong Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | | | | | - Joonhee Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | | | | | | | | | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
12
|
Mikula P, Mlnaříková M, Nadres ET, Takahashi H, Babica P, Kuroda K, Bláha L, Sovadinová I. Synthetic Biomimetic Polymethacrylates: Promising Platform for the Design of Anti-Cyanobacterial and Anti-Algal Agents. Polymers (Basel) 2021; 13:polym13071025. [PMID: 33810255 PMCID: PMC8036423 DOI: 10.3390/polym13071025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 01/26/2023] Open
Abstract
Extensive, uncontrolled growth of algae and cyanobacteria is an environmental, public health, economic, and technical issue in managing natural and engineered water systems. Synthetic biomimetic polymers have been almost exclusively considered antimicrobial alternatives to conventional antibiotics to treat human bacterial infections. Very little is known about their applicability in an aquatic environment. Here, we introduce synthetic biomimetic polymethacrylates (SBPs) as a cost-effective and chemically facile, flexible platform for designing a new type of agent suitable for controlling and mitigating photosynthetic microorganisms. Since SBPs are cationic and membranolytic in heterotrophic bacteria, we hypothesized they could also interact with negatively charged cyanobacterial or algal cell walls and membranes. We demonstrated that SBPs inhibited the growth of aquatic photosynthetic organisms of concern, i.e., cyanobacteria (Microcystis aeruginosa and Synechococcus elongatus) and green algae (Chlamydomonas reinhardtii and Desmodesmus quadricauda), with 50% effective growth-inhibiting concentrations ranging between 95 nM and 6.5 μM. Additionally, SBPs exhibited algicidal effects on C. reinhardtii and cyanocidal effects on picocyanobacterium S. elongatus and microcystin-producing cyanobacterium M. aeruginosa. SBP copolymers, particularly those with moderate hydrophobic content, induced more potent cyanostatic and cyanocidal effects than homopolymers. Thus, biomimetic polymers are a promising platform for the design of anti-cyanobacterial and anti-algal agents for water treatment.
Collapse
Affiliation(s)
- Přemysl Mikula
- RECETOX, Faculty of Science, Masaryk University, Kamenice 3, CZ-62500 Brno, Czech Republic; (P.M.); (M.M.); (P.B.); (L.B.)
| | - Marie Mlnaříková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 3, CZ-62500 Brno, Czech Republic; (P.M.); (M.M.); (P.B.); (L.B.)
| | - Enrico T. Nadres
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (E.T.N.); (H.T.); (K.K.)
| | - Haruko Takahashi
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (E.T.N.); (H.T.); (K.K.)
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kamenice 3, CZ-62500 Brno, Czech Republic; (P.M.); (M.M.); (P.B.); (L.B.)
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany of the CAS, CZ-60200 Brno, Czech Republic
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (E.T.N.); (H.T.); (K.K.)
| | - Luděk Bláha
- RECETOX, Faculty of Science, Masaryk University, Kamenice 3, CZ-62500 Brno, Czech Republic; (P.M.); (M.M.); (P.B.); (L.B.)
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 3, CZ-62500 Brno, Czech Republic; (P.M.); (M.M.); (P.B.); (L.B.)
- Correspondence: ; Tel.: +420-549-494-738
| |
Collapse
|
13
|
Liu CY, Li YL, Lu JH, Qian LL, Xu K, Wang NN, Chang WQ, Lou HX. Steffimycin F, a new steffimycin-type derivative from the lichen-derived actinomycetes steptomyces sp. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Chiloeches A, Funes A, Cuervo-Rodríguez R, López-Fabal F, Fernández-García M, Echeverría C, Muñoz-Bonilla A. Biobased polymers derived from itaconic acid bearing clickable groups with potent antibacterial activity and negligible hemolytic activity. Polym Chem 2021. [DOI: 10.1039/d1py00098e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We report the synthesis of new biobased polymers derived from itaconic acid with excellent antibacterial activity against Gram-positive bacteria and very low hemotoxicity.
Collapse
Affiliation(s)
- A. Chiloeches
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC)
- 28006 Madrid
- Spain
- Universidad Nacional de Educación a Distancia (UNED)
- 28015 Madrid
| | - A. Funes
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - R. Cuervo-Rodríguez
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - F. López-Fabal
- Hospital Universitario de Móstoles C/Dr. Luis Montes
- Madrid
- Spain
- Facultad de Ciencias Experimentales
- Universidad Francisco de Vitoria
| | - M. Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC)
- 28006 Madrid
- Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC)
- Madrid
| | - C. Echeverría
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC)
- 28006 Madrid
- Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC)
- Madrid
| | - A. Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC)
- 28006 Madrid
- Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC)
- Madrid
| |
Collapse
|
15
|
Takahashi H, Caputo GA, Kuroda K. Amphiphilic polymer therapeutics: an alternative platform in the fight against antibiotic resistant bacteria. Biomater Sci 2021; 9:2758-2767. [DOI: 10.1039/d0bm01865a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amphiphilic antimicrobial polymers show promising potential as polymer therapeutics to fight drug resistant bacteria and biofilms.
Collapse
Affiliation(s)
- Haruko Takahashi
- Graduate School of Integrated Sciences for Life
- Hiroshima University
- Hiroshima 739-8526
- Japan
| | | | - Kenichi Kuroda
- Department of Biologic and Materials Sciences
- School of Dentistry
- University of Michigan
- Ann Arbor
- USA
| |
Collapse
|
16
|
Shi S, Quarta N, Zhang H, Lu Z, Hof M, Šachl R, Liu R, Hoernke M. Hidden complexity in membrane permeabilization behavior of antimicrobial polycations. Phys Chem Chem Phys 2021; 23:1475-1488. [DOI: 10.1039/d0cp05651k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There are diverse membrane permeabilization behaviors of antimicrobial polycations in zwitterionic or charged vesicles; different mechanisms may occur over time.
Collapse
Affiliation(s)
- Shuai Shi
- Chemistry and Pharmacy
- Albert-Ludwigs-Universität
- 79104 Freiburg i.Br
- Germany
| | - Ndjali Quarta
- Chemistry and Pharmacy
- Albert-Ludwigs-Universität
- 79104 Freiburg i.Br
- Germany
- Department of Chemistry, Biochemistry
| | - Haodong Zhang
- State Key Laboratory of Bioreactor Engineering
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Ziyi Lu
- State Key Laboratory of Bioreactor Engineering
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences
- 182 23 Prague
- Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences
- 182 23 Prague
- Czech Republic
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Maria Hoernke
- Chemistry and Pharmacy
- Albert-Ludwigs-Universität
- 79104 Freiburg i.Br
- Germany
| |
Collapse
|
17
|
Zhong W, Chang Y, Lin Y, Zhang A. Synthesis and antifungal activities of hydrophilic cationic polymers against Rhizoctonia solani. Fungal Biol 2020; 124:735-741. [DOI: 10.1016/j.funbio.2020.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/30/2022]
|
18
|
Himmelsbach A, Schneider‐Chaabane A, Lienkamp K. Asymmetrically Substituted Poly(diitaconates) Obtained by Reversible Addition‐Fragmentation Chain Transfer (RAFT) Polymerization: Synthesis, Copolymerization Parameters, and Antimicrobial Activity. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andreas Himmelsbach
- Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of Freiburg Georges‐Köhler‐Allee 105 79110 Freiburg Germany
| | - Alexandra Schneider‐Chaabane
- Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of Freiburg Georges‐Köhler‐Allee 105 79110 Freiburg Germany
| | - Karen Lienkamp
- Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of Freiburg Georges‐Köhler‐Allee 105 79110 Freiburg Germany
| |
Collapse
|
19
|
Liang J, Li J, Zhou C, Jia W, Song H, Zhang L, Zhao F, Lee BP, Liu B. In situ synthesis of biocompatible imidazolium salt hydrogels with antimicrobial activity. Acta Biomater 2019; 99:133-140. [PMID: 31539654 DOI: 10.1016/j.actbio.2019.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 11/25/2022]
Abstract
Infection with antibiotic-resistant bacteria is becoming a significant public health risk. In this study, we synthesized a series of imidazolium salt (IMS)-containing polymers and hydrogels and tested their antimicrobial properties against both gram-positive (Staphylococcus aureus and MRSA) and gram-negative (Escherichia coli and PA01) bacteria. IMSs were either grafted as side chains or functionalized in the main chain of linear polymers, which demonstrated antimicrobial properties with minimum inhibitory concentrations as low as 2 μg/mL. Similarly, the optimized IMS-containing hydrogel effectively killed MRSA with a 96.1% killing efficiency and inhibited the growth of PA01. These hydrogels also demonstrated high performance in terms of mechanical property (compressive strength >2 MPa) and were noncytotoxic toward human dermal fibroblasts. STATEMENT OF SIGNIFICANCE: A series of polyimidazolium hydrogels were fabricated with acrylamide monomer and poly(ethylene glycol) dimethacrylate by thermal-initiated polymerization. These hydrogels completely killed methicillin-resistant Staphylococcus aureus and inhibited the growth of Pseudomonas aeruginosa. More importantly, these hydrogels demonstrated adequate mechanical property and biocompatibility. These antimicrobial hydrogels have the potential as biomaterials for preventing infections associated with multidrug-resistant bacteria.
Collapse
|
20
|
Widyaya VT, Müller C, Al-Ahmad A, Lienkamp K. Three-Dimensional, Bifunctional Microstructured Polymer Hydrogels Made from Polyzwitterions and Antimicrobial Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1211-1226. [PMID: 30563333 PMCID: PMC7611509 DOI: 10.1021/acs.langmuir.8b03410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biofilm-associated infections of medical devices are a global problem. For the prevention of such infections, biomaterial surfaces are chemically or topographically modified to slow down the initial stages of biofilm formation. In the bifunctional material here presented, chemical and topographical cues are combined, so that protein and bacterial adhesion as well as bacterial proliferation are effectively inhibited. Upon changes in the surface topography parameters and investigation of the effect of these changes on bioactivity, structure-property relationships are obtained. The target material is obtained by microcontact printing (μCP), a soft lithography method. The antimicrobial component, poly(oxanorbornene)-based synthetic mimics of an antimicrobial peptide (SMAMP), was printed onto a protein-repellent polysulfobetaine hydrogel, so that bifunctional 3D structured polymer surfaces with 1, 2, and 8.5 μm spacing are obtained. These surfaces are characterized with fluorescence microscopy, surface plasmon resonance spectroscopy, atomic force microscopy, and contact angle measurements. Biological studies show that the bifunctional surfaces with 1 and 2 μm spacing are 100% antimicrobially active against Escherichia coli and Staphylococcus aureus, 100% fibrinogen-repellent, and nontoxic to human gingival mucosal keratinocytes. At 8.5 μm spacing, the broad-band antimicrobial activity and the protein repellency are compromised, which indicates that this spacing is above the upper limit for effective simultaneous antimicrobial activity and protein repellency of polyzwitterionic-polycationic materials.
Collapse
Affiliation(s)
- Vania Tanda Widyaya
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Claas Müller
- Laboratory for Process Technology, Department of Microsystem Engineering (IMTEK), Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine of the Albert-Ludwigs-Universität, Freiburg, Hugstetter Str. 55, 79106 Germany
| | - Karen Lienkamp
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
21
|
Liow SS, Chee PL, Owh C, Zhang K, Zhou Y, Gao F, Lakshminarayanan R, Loh XJ. Cationic Poly([R]-3-hydroxybutyrate) Copolymers as Antimicrobial Agents. Macromol Biosci 2019; 19:e1800466. [PMID: 30694604 DOI: 10.1002/mabi.201800466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/29/2018] [Indexed: 12/14/2022]
Abstract
Poly([R]-3-hydroxybutyrate) (PHB), a natural biodegradable polyester, has attracted much attention as a new biomaterial because of its sustainability and good biocompatibility. In this study, it is discovered that PHB can be conveniently functionalized to obtain a number of platform chain architectures that may provide a wide range of functional copolymers. In a transesterification reaction, linear (di-hydroxylated) and star shaped (tri- and tetra-hydroxylated) PHB oligomers are synthesized, followed by copolymerization with 2-(dimethylamino)ethyl methacrylate and quaternization with benzyl bromide to afford antimicrobial properties. The antimicrobial activities of the quaternary salts against clinically relevant pathogens on the interactions with outer and cytoplasmic membranes, lethal mechanisms, multipassage resistance, and synergy effect with antibiotics are investigated. Cationic PHB copolymers show effectiveness as antimicrobial agents, with minimum inhibitory concentration values 0.24-0.65 µm (or µmol dm-3 ) (or 32-128 µg mL-1 ) against Gram-positive and Gram-negative bacteria. Modifying the copolymer architectures into star shapes results in enhanced effectiveness to disrupt the membrane integrity. Synergistic effects are attained for all the quaternized PHB derivatives when they are used together with tobramycin. Multipassage resistance does not occur in both the linear and star derivatives against Gram-negative bacteria after 20 passages.
Collapse
Affiliation(s)
- Sing Shy Liow
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634
| | - Pei Lin Chee
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634
| | - Cally Owh
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634
| | - Kangyi Zhang
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634
| | - Yubin Zhou
- School of Materials Science and Engineering, College of Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798.,Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456
| | - Feng Gao
- School of Materials Science and Engineering, College of Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798.,Key laboratory of Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | | | - Xian Jun Loh
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634
| |
Collapse
|
22
|
Lin Y, Zhong W, Dong C, Zhang C, Feng X, Zhang A. Synthesis and Antifungal Activities of Amphiphilic PDMS-b-QPDMAEMA Copolymers on Rhizoctonia solani. ACS APPLIED BIO MATERIALS 2018; 1:2062-2072. [DOI: 10.1021/acsabm.8b00545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yaling Lin
- College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642 Guangdong, China
| | - Weiqiang Zhong
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641 Guangdong, China
| | - Chenyun Dong
- College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642 Guangdong, China
| | - Chang Zhang
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641 Guangdong, China
| | - Xixiang Feng
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641 Guangdong, China
| | - Anqiang Zhang
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641 Guangdong, China
| |
Collapse
|
23
|
Yadav S, Mahato M, Jha D, Ahmadi Z, Gautam H, Sharma A. Enhanced antibacterial activity of tetramethylguanidinium-conjugated linear polyethylenimine polymers. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1393679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S. Yadav
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - M. Mahato
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - D. Jha
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, India
| | - Z. Ahmadi
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - H.K. Gautam
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, India
| | - A.K. Sharma
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| |
Collapse
|
24
|
Qian Y, Cui H, Shi R, Guo J, Wang B, Xu Y, Ding Y, Mao H, Yan F. Antimicrobial anionic polymers: the effect of cations. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.07.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Mikula P, Mlnarikova M, Takahashi H, Babica P, Kuroda K, Blaha L, Sovadinova I. Branched Poly(ethylene imine)s as Anti-algal and Anti-cyanobacterial Agents with Selective Flocculation Behavior to Cyanobacteria over Algae. Macromol Biosci 2018; 18:e1800187. [PMID: 30156762 DOI: 10.1002/mabi.201800187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/17/2018] [Indexed: 11/07/2022]
Abstract
Poly(ethylene imine)s (PEIs) have been widely studied for biomedical applications, including antimicrobial agents against potential human pathogens. The interactions of branched PEIs (B-PEIs) with environmentally relevant microorganisms whose uncontrolled growth in natural or engineered environments causes health, economic, and technical issues in many sectors of water management are studied. B-PEIs are shown to be potent antimicrobials effective in controlling the growth of environmentally relevant algae and cyanobacteria with dual-functionality and selectivity. Not only did they effectively inhibit growth of both algae and cyanobacteria, mostly without causing cell death (static activity), but they also selectively flocculated cyanobacteria over algae. Thus, unmodified B-PEIs provide a cost-effective and chemically facile framework for the further development of effective and selective antimicrobial agents useful for control of growth and separation of algae and cyanobacteria in natural or engineered environments.
Collapse
Affiliation(s)
- Premysl Mikula
- Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Marie Mlnarikova
- Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Haruko Takahashi
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 North University Avenue, Ann Arbor, MI, 48109, USA
| | - Pavel Babica
- Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 North University Avenue, Ann Arbor, MI, 48109, USA
| | - Ludek Blaha
- Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Iva Sovadinova
- Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| |
Collapse
|
26
|
Aggregation of Cationic Amphiphilic Block and Random Copoly(vinyl ether)s with Antimicrobial Activity. Polymers (Basel) 2018; 10:polym10010093. [PMID: 30966128 PMCID: PMC6414987 DOI: 10.3390/polym10010093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
In this study, we investigated the aggregation behaviors of amphiphilic poly(vinyl ether)s with antimicrobial activity. We synthesized a di-block poly(vinyl ether), B3826, composed of cationic primary amine and hydrophobic isobutyl (iBu) side chains, which previously showed antimicrobial activity against Escherichia coli. B3826 showed similar uptake behaviors as those for a hydrophobic fluorescent dye, 1,6-diphenyl-1,3,5-hexatriene, to counterpart polymers including homopolymer H44 and random copolymer R4025, indicating that the iBu block does not form strong hydrophobic domains. The cryo-TEM observations also indicated that the polymer aggregate of B3826 appears to have low-density polymer chains without any defined microscopic structures. We speculate that B3826 formed large aggregates by liquid-liquid separation due to the weak association of polymer chains. The fluorescence microscopy images showed that B3826 bonds to E. coli cell surfaces, and these bacterial cells were stained by propidium iodide, indicating that the cell membranes were significantly damaged. The results suggest that block copolymers may provide a new platform to design and develop antimicrobial materials that can utilize assembled structures and properties.
Collapse
|
27
|
Ergene C, Palermo EF. Self-immolative polymers with potent and selective antibacterial activity by hydrophilic side chain grafting. J Mater Chem B 2018; 6:7217-7229. [DOI: 10.1039/c8tb01632a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Self-immolative polymers, which exert potent antibacterial activity with low hemolytic toxicity to red blood cells, are triggered to unzip into small molecules by a chemical stimulus.
Collapse
Affiliation(s)
- Cansu Ergene
- Department of Materials Science and Engineering
- Rensselaer Polytechnic Institute
- Troy
- USA
| | - Edmund F. Palermo
- Department of Materials Science and Engineering
- Rensselaer Polytechnic Institute
- Troy
- USA
| |
Collapse
|
28
|
Baul U, Vemparala S. Influence of lipid composition of model membranes on methacrylate antimicrobial polymer-membrane interactions. SOFT MATTER 2017; 13:7665-7676. [PMID: 28991313 DOI: 10.1039/c7sm01211j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Using atomistic molecular dynamics simulations, the role of lipid composition in the interactions of multiple methacrylate antimicrobial polymer agents with model membranes, and the consequent response of the membranes is studied. In our earlier study, methacrylate polymers were observed to induce phase demixing and associated thickness mismatch in a POPE-POPG model microbial membrane. In this work, we probe (1) the role of varying the degree of saturation in lipid acyl chains in the membrane interactions of methacrylate polymers, and (2) whether electrostatics (addition of anionic lipids) can influence the interactions of the polymers with model mammalian membranes. Lipid composition is observed to significantly modify membrane-polymer interactions, leading to differences in both the mode of partitioning and the conformations adopted by the polymers, in addition to impacting membrane properties differently. The results strongly suggest that the oft-cited electrostatic interactions between the antimicrobial agents and the microbial membranes do not fully account for the recognition and subsequent partitioning of the antimicrobial agents. The ability of the methacrylate polymers to sense interfacial lipid packing defects, determined by the PE/PC head groups of lipids, is also found to be influential in their membrane partitioning. Deliberate inclusion of charged anionic lipids into a model mammalian membrane, leading to additional favorable electrostatics, does not reproduce a similar polymer partitioning mechanism to that in its microbial counterpart. The differences observed in the interactions of methacrylate polymers with the various model membranes can be instrumental in extending our understanding of underlying modes of membrane disruption by general antimicrobial agents as well.
Collapse
Affiliation(s)
- Upayan Baul
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St., A5300, Austin, TX 78712-1224, USA.
| | | |
Collapse
|
29
|
Ji W, Koepsel RR, Murata H, Zadan S, Campbell AS, Russell AJ. Bactericidal Specificity and Resistance Profile of Poly(Quaternary Ammonium) Polymers and Protein–Poly(Quaternary Ammonium) Conjugates. Biomacromolecules 2017; 18:2583-2593. [DOI: 10.1021/acs.biomac.7b00705] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weihang Ji
- Center
for Polymer-Based Protein Engineering, ‡Department of Chemical Engineering, §Department of Biomedical
Engineering, and ∥Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Richard R. Koepsel
- Center
for Polymer-Based Protein Engineering, ‡Department of Chemical Engineering, §Department of Biomedical
Engineering, and ∥Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Center
for Polymer-Based Protein Engineering, ‡Department of Chemical Engineering, §Department of Biomedical
Engineering, and ∥Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Sawyer Zadan
- Center
for Polymer-Based Protein Engineering, ‡Department of Chemical Engineering, §Department of Biomedical
Engineering, and ∥Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Alan S. Campbell
- Center
for Polymer-Based Protein Engineering, ‡Department of Chemical Engineering, §Department of Biomedical
Engineering, and ∥Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J. Russell
- Center
for Polymer-Based Protein Engineering, ‡Department of Chemical Engineering, §Department of Biomedical
Engineering, and ∥Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
30
|
Nair SS, Zolotarskaya OY, Beckwith MJ, Ohman DE, Wynne KJ. A Polycation Antimicrobial Peptide Mimic without Resistance Buildup against Propionibacterium Acnes. Macromol Biosci 2017; 17. [PMID: 28605136 DOI: 10.1002/mabi.201700090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/08/2017] [Indexed: 11/09/2022]
Abstract
A preliminary study is reported for a polycation antimicrobial peptide (AMP) mimic against Propionibacterium acnes, which is associated with acne vulgaris, a common skin condition. Antibiotics are commonly used against P. acnes but buildup of resistance is well-known. Worse, antibiotic regimens build up resistance for more sensitive bacteria such as Staphylococcus epidermidis. The polycation AMP mimic C12-50, 1, is chosen for the present study as it has been previously shown to have high antimicrobial effectiveness. This study reports that C12-50 is active against P. acnes (strain ATCC 6919) with a minimum inhibitory concentration (MIC) of 6.3 µg mL-1 . To monitor resistance build-up ten passages are conducted with C12-50 against P. acnes. The MIC remains constant with no resistance buildup. Parallel studies with erythromycin confirm previously reported resistance buildup. The results point to a promising pathway to applications for polycation AMP mimics against P. acnes.
Collapse
Affiliation(s)
- Sithara S Nair
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Olga Y Zolotarskaya
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Matthew J Beckwith
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Dennis E Ohman
- Department of Microbiology and Immunology, VCU School of Medicine, 1101 East Marshall Street, Richmond, VA, 23298, USA.,McGuire Veterans Affairs Medical Center, Richmond, VA, 23249, USA
| | - Kenneth J Wynne
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23219, USA
| |
Collapse
|
31
|
Takahashi H, Caputo GA, Vemparala S, Kuroda K. Synthetic Random Copolymers as a Molecular Platform To Mimic Host-Defense Antimicrobial Peptides. Bioconjug Chem 2017; 28:1340-1350. [PMID: 28379682 DOI: 10.1021/acs.bioconjchem.7b00114] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic polymers have been used as a molecular platform to develop host-defense antimicrobial peptide (AMP) mimetics which are effective in killing drug-resistant bacteria. In this topical review, we will discuss the AMP-mimetic design and chemical optimization strategies as well as the biological and biophysical implications of AMP mimicry by synthetic polymers. Traditionally, synthetic polymers have been used as a chemical means to replicate the chemical functionalities and physicochemical properties of AMPs (e.g., cationic charge, hydrophobicity) to recapitulate their mode of action. However, we propose a new perception that AMP-mimetic polymers are an inherently bioactive platform as whole molecules, which mimic more than the side chain functionalities of AMPs. The tunable nature and chemical simplicity of synthetic random polymers facilitate the development of potent, cost-effective, broad-spectrum antimicrobials. The polymer-based approach offers the potential for many antimicrobial applications to be used directly in solution or attached to surfaces to fight against drug-resistant bacteria.
Collapse
Affiliation(s)
- Haruko Takahashi
- Center for International Research on Integrative Biomedical Systems, Institute of Industrial Science, The University of Tokyo , Tokyo, 153-8505, Japan
| | | | - Satyavani Vemparala
- The Institute of Mathematical Sciences , C.I.T. Campus, Taramani, Chennai, 600113, India
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
32
|
Deshayes S, Xian W, Schmidt NW, Kordbacheh S, Lieng J, Wang J, Zarmer S, Germain SS, Voyen L, Thulin J, Wong GCL, Kasko AM. Designing Hybrid Antibiotic Peptide Conjugates To Cross Bacterial Membranes. Bioconjug Chem 2017; 28:793-804. [DOI: 10.1021/acs.bioconjchem.6b00725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Nathan W. Schmidt
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, 555 Mission Bay Boulevard South, San Francisco, California 94158, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hong S, Takahashi H, Nadres ET, Mortazavian H, Caputo GA, Younger JG, Kuroda K. A Cationic Amphiphilic Random Copolymer with pH-Responsive Activity against Methicillin-Resistant Staphylococcus aureus. PLoS One 2017; 12:e0169262. [PMID: 28060853 PMCID: PMC5217864 DOI: 10.1371/journal.pone.0169262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/14/2016] [Indexed: 11/25/2022] Open
Abstract
In this report, we demonstrate the pH-dependent, in vitro antimicrobial activity of a cationic, amphiphilic random copolymer against clinical isolates of drug-resistant Staphylococcus aureus. The polymer was developed toward a long-term goal of potential utility in the treatment of skin infections. The proposed mechanism of action of the polymer is through selectively binding to bacterial membranes and subsequent disruption of the membrane structure/integrity, ultimately resulting in bacterial cell death. The polymer showed bactericidal activity against clinical isolates of methicillin-resistant or vancomycin-intermediate S. aureus. The polymer was effective in killing S. aureus at neutral pH, but inactive under acidic conditions (pH 5.5). The polymer did not exhibit any significant hemolytic activity against human red blood cells or display cytotoxicity to human dermal fibroblasts over a range of pH values (5.5–7.4). These results indicate that the polymer activity was selective against bacteria over human cells. Using this polymer, we propose a new potential strategy for treatment of skin infections using the pH-sensitive antimicrobial polymer agent that would selectively target infections at pH-neutral wound sites, but not the acidic, healthy skin.
Collapse
Affiliation(s)
- Sungyoup Hong
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail: (SH); (KK)
| | - Haruko Takahashi
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - Enrico T. Nadres
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - Hamid Mortazavian
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - Gregory A. Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey, United States of America
| | - John G. Younger
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
- * E-mail: (SH); (KK)
| |
Collapse
|
34
|
Punia K, Punia A, Chatterjee K, Mukherjee S, Fata J, Banerjee P, Raja K, Yang NL. Rapid bactericidal activity of an amphiphilic polyacrylate terpolymer system comprised of same-centered comonomers with 2-carbon and 6-carbon spacer arms and an uncharged repeat unit. RSC Adv 2017. [DOI: 10.1039/c7ra00047b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cationic amphiphilic polyacrylate terpolymers with rapid bactericidal activity against E. coli and S. aureus.
Collapse
Affiliation(s)
- Kamia Punia
- Ph.D. Program in Chemistry at the Graduate Center of the City University of New York
- New York
- USA
| | - Ashish Punia
- Ph.D. Program in Chemistry at the Graduate Center of the City University of New York
- New York
- USA
| | - Kaushiki Chatterjee
- Ph.D. Program in Biology at the Graduate Center of the City University of New York
- New York
- USA
| | - Sumit Mukherjee
- Ph.D. Program in Biochemistry at the Graduate Center of the City University of New York
- New York
- USA
| | - Jimmie Fata
- Ph.D. Program in Biology at the Graduate Center of the City University of New York
- New York
- USA
| | - Probal Banerjee
- Ph.D. Program in Biochemistry at the Graduate Center of the City University of New York
- New York
- USA
| | - Krishnaswami Raja
- Ph.D. Program in Chemistry at the Graduate Center of the City University of New York
- New York
- USA
| | - Nan-Loh Yang
- Ph.D. Program in Chemistry at the Graduate Center of the City University of New York
- New York
- USA
| |
Collapse
|
35
|
Nadres ET, Takahashi H, Kuroda K. Radical-medicated end-group transformation of amphiphilic methacrylate random copolymers for modulation of antimicrobial and hemolytic activities. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Enrico T. Nadres
- Department of Biologic and Materials Sciences, School of Dentistry; University of Michigan; Ann Arbor Michigan 48109
| | - Haruko Takahashi
- Department of Biologic and Materials Sciences, School of Dentistry; University of Michigan; Ann Arbor Michigan 48109
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences, School of Dentistry; University of Michigan; Ann Arbor Michigan 48109
| |
Collapse
|
36
|
|
37
|
Dorner F, Malek-Luz A, Saar JS, Bonaus S, Al-Ahmad A, Lienkamp K. Synthetic Mimics of Antimicrobial Peptides (SMAMPs) in Layer-by-Layer Architectures: Possibilities and Limitations. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Franziska Dorner
- Bioactive Polymer Synthesis and Surface Engineering Group; Department of Microsystems Engineering (IMTEK) and Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT); Georges-Köhler-Allee 103 79110 Freiburg Germany
| | - Alicia Malek-Luz
- Bioactive Polymer Synthesis and Surface Engineering Group; Department of Microsystems Engineering (IMTEK) and Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT); Georges-Köhler-Allee 103 79110 Freiburg Germany
| | - Julia S. Saar
- Bioactive Polymer Synthesis and Surface Engineering Group; Department of Microsystems Engineering (IMTEK) and Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT); Georges-Köhler-Allee 103 79110 Freiburg Germany
| | - Sebastian Bonaus
- Bioactive Polymer Synthesis and Surface Engineering Group; Department of Microsystems Engineering (IMTEK) and Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT); Georges-Köhler-Allee 103 79110 Freiburg Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology; Center for Dental Medicine of the Albert-Ludwigs-Universität; Hugstetter Str. 55 79106 Freiburg Germany
| | - Karen Lienkamp
- Bioactive Polymer Synthesis and Surface Engineering Group; Department of Microsystems Engineering (IMTEK) and Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT); Georges-Köhler-Allee 103 79110 Freiburg Germany
| |
Collapse
|
38
|
Mohy Eldin MS, Elazzazy AM, Saleh TS, Mekky AEM, Al-Bogami AS. Development of Novel Amphiphilic Pyrazole-g
-PolyGlycidyl methacrylate-Based Polymers with Potential Antimicrobial Activity. ADVANCES IN POLYMER TECHNOLOGY 2016. [DOI: 10.1002/adv.21712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohamed Samir Mohy Eldin
- Chemistry Department; Faculty of Science; University of Jeddah; Asfan P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Polymer Materials Research Department; Advanced Technology and New Materials Research Institute; SRTAC; New Borg El-Arab City 21934 Alexandria Egypt
| | - Ahmed Mohamed Elazzazy
- Biological Science Department; Faculty of Science; University of Jeddah; Asfan P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Department of Chemistry of Natural and Microbial Products; Division of Pharmaceutical and Drug Industries; National Research Centre; Dokki 12622 Giza Egypt
| | - Tamer Saied Saleh
- Chemistry Department; Faculty of Science; University of Jeddah; Asfan P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Green Chemistry Department; National Research Centre; Dokki Cairo 12622 Egypt
| | - Ahmed Eltaher Mahmoud Mekky
- Chemistry Department; Faculty of Science; University of Jeddah; Asfan P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department; Faculty of Science; Cairo University; Giza Egypt
| | - Abdullah Saad Al-Bogami
- Chemistry Department; Faculty of Science; University of Jeddah; Asfan P. O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
39
|
Wang C, Zolotarskaya OY, Nair SS, Ehrhardt CJ, Ohman DE, Wynne KJ, Yadavalli VK. Real-Time Observation of Antimicrobial Polycation Effects on Escherichia coli: Adapting the Carpet Model for Membrane Disruption to Quaternary Copolyoxetanes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2975-2984. [PMID: 26948099 DOI: 10.1021/acs.langmuir.5b04247] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Real-time atomic force microscopy (AFM) was used for analyzing effects of the antimicrobial polycation copolyoxetane P[(C12)-(ME2Ox)-50/50], C12-50 on the membrane of a model bacterium, Escherichia coli (ATCC# 35218). AFM imaging showed cell membrane changes with increasing C12-50 concentration and time including nanopore formation and bulges associated with outer bacterial membrane disruption. A macroscale bactericidal concentration study for C12-50 showed a 4 log kill at 15 μg/mL with conditions paralleling imaging (1 h, 1x PBS, physiological pH, 25 °C). The dramatic changes from the control image to 1 h after introducing 15 μg/mL C12-50 are therefore reasonably attributed to cell death. At the highest concentration (60 μg/mL) further cell membrane disruption results in leakage of cytoplasm driven by detergent-like action. The sequence of processes for initial membrane disruption by the synthetic polycation C12-50 follows the carpet model posited for antimicrobial peptides (AMPs). However, the nanoscale details are distinctly different as C12-50 is a synthetic, water-soluble copolycation that is best modeled as a random coil. In a complementary AFM study, chemical force microscopy shows that incubating cells with C12-50 decreased the hydrophobicity across the entire cell surface at an early stage. This finding provides additional evidence indicating that C12-50 polycations initially bind with the cell membrane in a carpet-like fashion. Taken together, real time AFM imaging elucidates the mechanism of antimicrobial action for copolyoxetane C12-50 at the single cell level. In future work this approach will provide important insights into structure-property relationships and improved antimicrobial effectiveness for synthetic amphiphilic polycations.
Collapse
Affiliation(s)
- Congzhou Wang
- Department of Chemical and Life Science Engineering and ‡Department of Forensic Science, Virginia Commonwealth University , Richmond, Virginia 23284, United States
- Department of Microbiology and Immunology and ∥McGuire Veterans Affairs Medical Center, VCU School of Medicine , Richmond, Virginia 23249, United States
| | - Olga Y Zolotarskaya
- Department of Chemical and Life Science Engineering and ‡Department of Forensic Science, Virginia Commonwealth University , Richmond, Virginia 23284, United States
- Department of Microbiology and Immunology and ∥McGuire Veterans Affairs Medical Center, VCU School of Medicine , Richmond, Virginia 23249, United States
| | - Sithara S Nair
- Department of Chemical and Life Science Engineering and ‡Department of Forensic Science, Virginia Commonwealth University , Richmond, Virginia 23284, United States
- Department of Microbiology and Immunology and ∥McGuire Veterans Affairs Medical Center, VCU School of Medicine , Richmond, Virginia 23249, United States
| | - Christopher J Ehrhardt
- Department of Chemical and Life Science Engineering and ‡Department of Forensic Science, Virginia Commonwealth University , Richmond, Virginia 23284, United States
- Department of Microbiology and Immunology and ∥McGuire Veterans Affairs Medical Center, VCU School of Medicine , Richmond, Virginia 23249, United States
| | - Dennis E Ohman
- Department of Chemical and Life Science Engineering and ‡Department of Forensic Science, Virginia Commonwealth University , Richmond, Virginia 23284, United States
- Department of Microbiology and Immunology and ∥McGuire Veterans Affairs Medical Center, VCU School of Medicine , Richmond, Virginia 23249, United States
| | - Kenneth J Wynne
- Department of Chemical and Life Science Engineering and ‡Department of Forensic Science, Virginia Commonwealth University , Richmond, Virginia 23284, United States
- Department of Microbiology and Immunology and ∥McGuire Veterans Affairs Medical Center, VCU School of Medicine , Richmond, Virginia 23249, United States
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering and ‡Department of Forensic Science, Virginia Commonwealth University , Richmond, Virginia 23284, United States
- Department of Microbiology and Immunology and ∥McGuire Veterans Affairs Medical Center, VCU School of Medicine , Richmond, Virginia 23249, United States
| |
Collapse
|
40
|
Süer NC, Demir C, Ünübol NA, Yalçın Ö, Kocagöz T, Eren T. Antimicrobial activities of phosphonium containing polynorbornenes. RSC Adv 2016. [DOI: 10.1039/c6ra15545f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, amphiphilic polyoxanorbornene with different alkyl and aromatic phosphonium side chains was synthesized and investigated their biocidal properties.
Collapse
Affiliation(s)
- N. Ceren Süer
- Department of Chemistry
- Yildiz Technical University
- Esenler
- Turkey
| | - Ceren Demir
- Department of Chemistry
- Yildiz Technical University
- Esenler
- Turkey
| | - Nihan A. Ünübol
- Department of Medical Microbiology
- Acibadem University
- Atasehir
- Turkey
| | - Özlem Yalçın
- School of Medicine
- Koc University
- 34450 Sariyer
- Turkey
| | - Tanıl Kocagöz
- Department of Medical Microbiology
- Acibadem University
- Atasehir
- Turkey
| | - Tarik Eren
- Department of Chemistry
- Yildiz Technical University
- Esenler
- Turkey
| |
Collapse
|
41
|
Baul U, Kuroda K, Vemparala S. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes. J Chem Phys 2015; 141:084902. [PMID: 25173040 DOI: 10.1063/1.4893440] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.
Collapse
Affiliation(s)
- Upayan Baul
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, USA
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| |
Collapse
|
42
|
Punia A, Lee K, He E, Mukherjee S, Mancuso A, Banerjee P, Yang NL. Effect of Relative Arrangement of Cationic and Lipophilic Moieties on Hemolytic and Antibacterial Activities of PEGylated Polyacrylates. Int J Mol Sci 2015; 16:23867-80. [PMID: 26473831 PMCID: PMC4632729 DOI: 10.3390/ijms161023867] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/16/2022] Open
Abstract
Synthetic amphiphilic polymers have been established as potentially efficient agents to combat widespread deadly infections involving antibiotic resistant superbugs. Incorporation of poly(ethylene glycol) (PEG) side chains into amphiphilic copolymers can reduce their hemolytic activity while maintaining high antibacterial activity. Our study found that the incorporation of PEG has substantially different effects on the hemolytic and antibacterial activities of copolymers depending on structural variations in the positions of cationic centers relative to hydrophobic groups. The PEG side chains dramatically reduced the hemolytic activities in copolymers with hydrophobic hexyl and cationic groups on the same repeating unit. However, in case of terpolymers with cationic and lipophilic groups placed on separate repeating units, the presence of PEG has significantly lower effect on hemolytic activities of these copolymers. PEGylated terpolymers displayed substantially lower activity against Staphylococcus aureus (S. aureus) than Escherichia coli (E. coli) suggesting the deterring effect of S. aureus' peptidoglycan cell wall against the penetration of PEGylated polymers. Time-kill studies confirmed the bactericidal activity of these copolymers and a 5 log reduction in E. coli colony forming units was observed within 2 h of polymer treatment.
Collapse
Affiliation(s)
- Ashish Punia
- Department of Chemistry and Center for Engineered Polymeric Materials, College of Staten Island, Staten Island, New York, NY 10016, USA.
- Ph. D. Program in Chemistry at the Graduate Center of the City University of New York, New York, NY 10016, USA.
| | - Kevin Lee
- Department of Chemistry, Macaulay Honors College, New York, NY 10016, USA.
| | - Edward He
- Department of Chemistry, Macaulay Honors College, New York, NY 10016, USA.
| | - Sumit Mukherjee
- Ph.D. Program in Biochemistry at the Graduate Center of the City University of New York, New York, NY 10016, USA.
| | - Andrew Mancuso
- Ph.D. Program in Biochemistry at the Graduate Center of the City University of New York, New York, NY 10016, USA.
| | - Probal Banerjee
- Department of Chemistry and Center for Developmental Neuroscience, College of Staten Island, Staten Island, New York, NY 10016, USA.
| | - Nan-Loh Yang
- Department of Chemistry and Center for Engineered Polymeric Materials, College of Staten Island, Staten Island, New York, NY 10016, USA.
- Ph. D. Program in Chemistry at the Graduate Center of the City University of New York, New York, NY 10016, USA.
| |
Collapse
|
43
|
Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections. Acta Biomater 2015; 22:131-40. [PMID: 25917843 DOI: 10.1016/j.actbio.2015.04.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/01/2015] [Accepted: 04/19/2015] [Indexed: 12/25/2022]
Abstract
Microbial biofilms are known to support a number of human infections, including those related to medical devices. This work is focused on the development of novel dual-function amphiphilic random copolymers to be employed as coatings for medical devices. Particularly, copolymers were obtained by polymerization of an antimicrobial cationic monomer (bearing tertiary amine) and an antioxidant and antimicrobial hydrophobic monomer (containing hydroxytyrosol, HTy). To obtain copolymers with various amphiphilic balance, different molar ratios of the two monomers were used. (1)H NMR and DSC analyses evidenced that HTy aromatic rings are able to interact with each other leading to a supra-macromolecular re-arrangement and decrease the copolymer size in water. All copolymers showed good antioxidant activity and Fe(2+) chelating ability. Cytotoxicity and hemolytic tests evidenced that the amphiphilic balance, cationic charge density and polymer size in solution are key determinants for polymer biocompatibility. As for the antimicrobial properties, the lowest minimal inhibitory concentration (MIC = 40 μg/mL) against Staphylococcus epidermidis was shown by the water-soluble copolymer having the highest HTy molar content (0.3). This copolymer layered onto catheter surfaces was also able to prevent staphylococcal adhesion. This approach permits not only prevention of biofilm infections but also reduction of the risk of emergence of drug-resistant bacteria. Indeed, the combination of two active compounds in the same polymer can provide a synergistic action against biofilms and suppress reactive species oxygen (ROS), known to promote the occurrence of antibiotic resistance.
Collapse
|
44
|
Sarwar A, Katas H, Samsudin SN, Zin NM. Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles. PLoS One 2015; 10:e0123084. [PMID: 25928293 PMCID: PMC4415788 DOI: 10.1371/journal.pone.0123084] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/27/2015] [Indexed: 12/19/2022] Open
Abstract
Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future medical applications. Chitosan derivatives with triazole functionality, synthesized by Huisgen 1,3-dipolar cycloaddition, and their nanoparticles showed significant enhancement in antibacterial and antifungal activities in comparison to those associated with native, non-altered chitosan.
Collapse
Affiliation(s)
- Atif Sarwar
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Siti Noradila Samsudin
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Noraziah Mohamad Zin
- Novel Antibiotic Research Group, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Punia A, Mancuso A, Banerjee P, Yang NL. Nonhemolytic and Antibacterial Acrylic Copolymers with Hexamethyleneamine and Poly(ethylene glycol) Side Chains. ACS Macro Lett 2015; 4:426-430. [PMID: 35596307 DOI: 10.1021/acsmacrolett.5b00102] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amphiphilic acrylic copolymers with hexamethyleneamine and poly(ethylene glycol) side chains can show >100-fold selectivity toward Escherichia coli over red blood cells. Homopolymer with cationic pendant amine groups is highly hemolytic and antibacterial. Incorporation of approximately 33 mol % of poly(ethylene glycol) methyl ether methacrylate (PEGMA) led to 1300 times reduction in hemolytic activity, while maintaining high levels of antibacterial activity. The hemolytic activity of these PEGylated copolymers depends on the overall content and spatial distribution of the PEGMA units. Higher activity against Escherichia coli than Staphylococcus aureus was observed for this polymer system, likely due to hydrogen bonding ability of the PEG side chains with polysaccharide cell wall of the bacteria. Field emission scanning electron microscopy analysis confirmed the bacterial membrane rupture activity exerted by these copolymers, whereas time-kill studies revealed significantly different bactericidal kinetics toward the Gram-negative Escherichia coli and the Gram-positive Staphylococcus aureus.
Collapse
Affiliation(s)
- Ashish Punia
- Department
of Chemistry and Center for Engineered Polymeric Materials, ‡Department of Chemistry
and Center for Development Neuroscience, and §Department of Biology, College of
Staten Island and the Graduate Center, The City University of New York, New
York, New York 10314, United States
| | - Andrew Mancuso
- Department
of Chemistry and Center for Engineered Polymeric Materials, ‡Department of Chemistry
and Center for Development Neuroscience, and §Department of Biology, College of
Staten Island and the Graduate Center, The City University of New York, New
York, New York 10314, United States
| | - Probal Banerjee
- Department
of Chemistry and Center for Engineered Polymeric Materials, ‡Department of Chemistry
and Center for Development Neuroscience, and §Department of Biology, College of
Staten Island and the Graduate Center, The City University of New York, New
York, New York 10314, United States
| | - Nan-Loh Yang
- Department
of Chemistry and Center for Engineered Polymeric Materials, ‡Department of Chemistry
and Center for Development Neuroscience, and §Department of Biology, College of
Staten Island and the Graduate Center, The City University of New York, New
York, New York 10314, United States
| |
Collapse
|
46
|
|
47
|
Kinetic study of all-or-none hemolysis induced by cationic amphiphilic polymethacrylates with antimicrobial activity. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Chu DSH, Bocek MJ, Shi J, Ta A, Ngambenjawong C, Rostomily RC, Pun SH. Multivalent display of pendant pro-apoptotic peptides increases cytotoxic activity. J Control Release 2015; 205:155-61. [PMID: 25596326 DOI: 10.1016/j.jconrel.2015.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/11/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
Several cationic antimicrobial peptides have been investigated as potential anti-cancer drugs due to their demonstrated selective toxicity towards cancer cells relative to normal cells. For example, intracellular delivery of KLA, a pro-apoptotic peptide, results in toxicity against a variety of cancer cell lines; however, the relatively low activity and small size lead to rapid renal excretion when applied in vivo, limiting its therapeutic potential. In this work, apoptotic peptide-polymer hybrid materials were developed to increase apoptotic peptide activity via multivalent display. Multivalent peptide materials were prepared with comb-like structure by RAFT copolymerization of peptide macromonomers with N-(2-hydroxypropyl) methacrylamide (HPMA). Polymers displayed a GKRK peptide sequence for targeting p32, a protein often overexpressed on the surface of cancer cells, either fused with or as a comonomer to a KLA macromonomer. In three tested cancer cell lines, apoptotic polymers were significantly more cytotoxic than free peptides as evidenced by an order of magnitude decrease in IC50 values for the polymers compared to free peptide. The uptake efficiency and intracellular trafficking of one polymer construct was determined by radiolabeling and subcellular fractionation. Despite their more potent cytotoxic profile, polymeric KLA constructs have poor cellular uptake efficiency (<1%). A significant fraction (20%) of internalized constructs localize with intact mitochondrial fractions. In an effort to increase cellular uptake, polymer amines were converted to guanidines by reaction with O-methylisourea. Guanidinylated polymers disrupted function of isolated mitochondria more than their lysine-based analogs, but overall toxicity was decreased, likely due to inefficient mitochondrial trafficking. Thus, while multivalent KLA polymers are more potent than KLA peptides, these materials can be substantially improved by designing next generation materials with improved cellular internalization and mitochondrial targeting efficiency.
Collapse
Affiliation(s)
- David S H Chu
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Michael J Bocek
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Julie Shi
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Anh Ta
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Chayanon Ngambenjawong
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Robert C Rostomily
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
49
|
Timofeeva LM, Kleshcheva NA, Shleeva MO, Filatova MP, Simonova YA, Ermakov YA, Kaprelyants AS. Nonquaternary poly(diallylammonium) polymers with different amine structure and their biocidal effect on Mycobacterium tuberculosis and Mycobacterium smegmatis. Appl Microbiol Biotechnol 2015; 99:2557-71. [DOI: 10.1007/s00253-014-6331-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/12/2014] [Accepted: 12/14/2014] [Indexed: 01/12/2023]
|
50
|
Punia A, Yang NL. Structure-activity investigations on amphiphilic cationic copolymers of vinyl N,N-dimethylethylglycinate with vinyl alkanoate esters as highly effective antibacterial agents. RSC Adv 2015. [DOI: 10.1039/c5ra16006e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amphiphilic poly(vinyl esters) with structural control function as antibacterial agents.
Collapse
Affiliation(s)
- Ashish Punia
- Center for Engineered Polymeric Materials
- Department of Chemistry
- College of Staten Island of the City University of New York
- Staten Island
- USA
| | - Nan-Loh Yang
- Center for Engineered Polymeric Materials
- Department of Chemistry
- College of Staten Island of the City University of New York
- Staten Island
- USA
| |
Collapse
|