1
|
Tuble KAQ, Omisol CJM, Abilay GY, Tomon TRB, Aguinid BJM, Dumancas GG, Malaluan RM, Lubguban AA. Synergistic effect of phytic acid and eggshell bio-fillers on the dual-phase fire-retardancy of intumescent coatings applied on cellulosic substrates. CHEMOSPHERE 2024; 358:142226. [PMID: 38704039 DOI: 10.1016/j.chemosphere.2024.142226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Cellulosic substrates, including wood and thatch, have become icons for sustainable architecture and construction, however, they suffer from high flammability because of their inherent cellulosic composition. Current control measures for such hazards include applying intumescent fire-retardant (IFR) coatings that swell and form a char layer upon ignition, protecting the underlying substrate from burning. Typically, conventional IFR coatings are opaque and are made of halogenated compounds that release toxic fumes when ignited, compromising the roofing's aesthetic value and sustainability. In this work, phytic acid, a naturally occurring phosphorus source extracted from rice bran, was used to synthesize phytic acid-based fire-retardants (PFR) via esterification under reflux, along with powdered chicken eggshells (CES) as calcium carbonate (CaCO3) bio-filler. These components were incorporated into melamine formaldehyde resin to produce the transparent IFR coating. It was revealed that the developed IFR coatings achieved the highest fire protection rating based on UL94 flammability standards compared to the control. The coatings also yielded increased LOI values, indicative of self-extinguishing properties. A 17 °C elevation of the IFR coating's melting temperature and a significant ∼172% increase in enthalpy change from the control were observed, indicating enhanced fire-retardancy. The thermal stability of the coatings was improved, denoted by reduced mass losses, and increased residual masses after thermal degradation. As validated by microscopy and spectroscopy, the abundance of phosphorus and carbon groups in the coatings' condensed phase after combustion indicates enhanced char formation. In the gas phase, TG-FTIR showed the evolution of non-flammable CO2, and fire-retardant PO and P-O-C. Mechanical property testing confirmed no reduction in the adhesion strength of the IFR coating. With these results, the developed IFR coating exhibited enhanced fire-retardancy whilst remaining optically transparent, suggestive of a dual-phase IFR protective mechanism involving the release of gaseous combustion diluents and the formation of a thermally insulating char layer.
Collapse
Affiliation(s)
- Kent Andrew Q Tuble
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines; Department of Materials & Resources Engineering and Technology, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Christine Joy M Omisol
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Gerson Y Abilay
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines; Department of Materials & Resources Engineering and Technology, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Tomas Ralph B Tomon
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Blessy Joy M Aguinid
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | | | - Roberto M Malaluan
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines; Department of Chemical Engineering and Technology, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Arnold A Lubguban
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines; Department of Chemical Engineering and Technology, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines.
| |
Collapse
|
2
|
Rezić I, Meštrović E. Challenges of Green Transition in Polymer Production: Applications in Zero Energy Innovations and Hydrogen Storage. Polymers (Basel) 2024; 16:1310. [PMID: 38794503 PMCID: PMC11124979 DOI: 10.3390/polym16101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
The green transition in the sustainable production and processing of polymers poses multifaceted challenges that demand integral comprehensive solutions. Specific problems of presences of toxic trace elements are often missed and this prevents shifting towards eco-friendly alternatives. Therefore, substantial research and the development of novel approaches is needed to discover and implement innovative, sustainable production materials and methods. This paper is focused on the most vital problems of the green transition from the aspect of establishing universally accepted criteria for the characterization and classification of eco-friendly polymers, which is essential to ensuring transparency and trust among consumers. Additionally, the recycling infrastructure needs substantial improvement to manage the end-of-life stage of polymer products effectively. Moreover, the lack of standardized regulations and certifications for sustainable polymers adds to the complexity of this problem. In this paper we propose solutions from the aspect of standardization protocols for the characterization of polymers foreseen as materials that should be used in Zero Energy Innovations in Hydrogen Storage. The role model standards originate from eco-labeling procedures for materials that come into direct or prolonged contact with human skin, and that are monitored by different methods and testing procedures. In conclusion, the challenges of transitioning to green practices in polymer production and processing demands a concerted effort from experts in the field which need to emphasize the problems of the analysis of toxic ultra trace and trace impurities in samples that will be used in hydrogen storage, as trace impurities may cause terrific obstacles due to their decreasing the safety of materials. Overcoming these obstacles requires the development and application of current state-of-the-art methodologies for monitoring the quality of polymers during their recycling, processing, and using, as well as the development of other technological innovations, financial initiatives, and a collective commitment to fostering a sustainable and environmentally responsible future for the polymer industry and innovations in the field of zero energy applications.
Collapse
Affiliation(s)
- Iva Rezić
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia
| | - Ernest Meštrović
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Ma C, Su M, Zhu Z. Composite Flame Retardants Based on Conjugated Microporous Polymer Hollow Nanospheres with Excellent Flame Retardancy. ACS OMEGA 2024; 9:10478-10487. [PMID: 38463341 PMCID: PMC10918670 DOI: 10.1021/acsomega.3c08597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 03/12/2024]
Abstract
The development of polymer materials with excellent flame retardancy has been paid increasing attention for their valuable applications in saving energy in modern architecture. Herein, conjugated microporous polymers hollow nanospheres (CMPs-HNS) were prepared by Sonogashira-Hagihara cross-coupling reaction with 1,3,5-triacetylenebenzene, 3-amino-2,6-dibromopyridine, and 2,4,6-tribromoaniline as building blocks using SiO2 nanoparticles as hard templates. To enhance the flame-retardant performance of the CMPs-HNS, antimony pentoxide solution (Sb2O5) and bisphenol A-bis (diphenyl phosphate) (BDP) were coated onto the as-prepared CMP-HNS (CMPs-HNS-BSb) by a simple immersion method. The peak heat release (pHRR) from microscale combustion colorimeter (MCC) of CMPs-HNS-BSb was 76.5 and 73.05 W g-1, respectively. By introducing CMPs-HNS-BSb into the epoxy resin (EP) matrix, the CMP2-HNS-BSb/EP (0.5) composites show that the pHRR values were 809.3 and 645.2 kW m-2, reduced by 21% as measured by conical calorimetry (CC), and total heat release (THR) reduced by 29.7%, going from 101 to 70.8 MJ/m2 when compared to the pure sample. Besides, total smoke production (TSP) reduced about 23.7%. The hollow structure can enhance the thermal insulation performance. As measured, the thermal conductivity of CMP1-HNS-BSb and CMP2-HNS-BSb is 0.044 and 0.048 W m-1 K-1. Based on the advantages of simple manufacture, superior thermal insulation, and flame retardancy, our CMPs-HNS-BSb/EP composites may find useful applications in various aspects such as building energy saving in future development.
Collapse
Affiliation(s)
- Chonghua Ma
- College of Petrochemical
Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Min Su
- College of Petrochemical
Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Zhaoqi Zhu
- College of Petrochemical
Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| |
Collapse
|
4
|
Controllable Construction of Amino-Functionalized Dynamic Covalent Porous Polymers for High-Efficiency CO 2 Capture from Flue Gas. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185853. [PMID: 36144589 PMCID: PMC9502662 DOI: 10.3390/molecules27185853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
The design of high-efficiency CO2 adsorbents with low cost, high capacity, and easy desorption is of high significance for reducing carbon emissions, which yet remains a great challenge. This work proposes a facile construction strategy of amino-functional dynamic covalent materials for effective CO2 capture from flue gas. Upon the dynamic imine assembly of N-site rich motif and aldehyde-based spacers, nanospheres and hollow nanotubes with spongy pores were constructed spontaneously at room temperature. A commercial amino-functional molecule tetraethylenepentamine could be facilely introduced into the dynamic covalent materials by virtue of the dynamic nature of imine assembly, thus inducing a high CO2 capacity (1.27 mmol·g-1) from simulated flue gas at 75 °C. This dynamic imine assembly strategy endowed the dynamic covalent materials with facile preparation, low cost, excellent CO2 capacity, and outstanding cyclic stability, providing a mild and controllable approach for the development of competitive CO2 adsorbents.
Collapse
|
5
|
CO 2 Adsorption on the N- and P-Modified Mesoporous Silicas. NANOMATERIALS 2022; 12:nano12071224. [PMID: 35407342 PMCID: PMC9000677 DOI: 10.3390/nano12071224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023]
Abstract
SBA-15 and MCM-48 mesoporous silicas were modified with functionalized (3-aminopropyl)triethoxysilane (APTES) by using the post-synthesis method, thus introducing N- and P-containing groups to the pore surface. The structure of the newly synthesized modifiers (aldimine and aminophosphonate derivatives of (3-aminopropyl)triethoxysilane and their grafting onto the porous matrix were proved by applying multinuclear NMR and FTIR spectroscopies. The content of the grafted functional groups was determined via thermogravimetric analysis. The physicochemical properties of the adsorbent samples were studied by nitrogen physisorption and UV–Vis spectroscopy. The adsorption capacity of CO2 was measured in a dynamic CO2 adsorption regime. The modified silicas displayed an enhanced adsorption capacity compared to the initial material. The 13C NMR spectra with high-power proton decoupling proved the presence of physically captured CO2. A value of 4.60 mmol/g was achieved for the MCM-48 material grafted with the Schiff base residues. The total CO2 desorption was achieved at 40 °C. A slight decrease of about 5% in CO2 adsorption capacities was registered for the modified silicas in three adsorption/desorption cycles, indicating their performance stability.
Collapse
|
6
|
A Process for Carbon Dioxide Capture Using Schiff Bases Containing a Trimethoprim Unit. Processes (Basel) 2021. [DOI: 10.3390/pr9040707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Environmental problems associated with the growing levels of carbon dioxide in the atmosphere due to the burning of fossil fuels to satisfy the high demand for energy are a pressing concern. Therefore, the design of new materials for carbon dioxide storage has received increasing research attention. In this work, we report the synthesis of three new Schiff bases containing a trimethoprim unit and the investigation of their application as adsorbents for carbon dioxide capture. The reaction of trimethoprim and aromatic aldehydes in acid medium gave the corresponding Schiff bases in 83%–87% yields. The Schiff bases exhibited surface areas ranging from 4.15 to 20.33 m2/g, pore volumes of 0.0036–0.0086 cm3/g, and average pore diameters of 6.64–1.4 nm. An excellent carbon dioxide uptake (27–46 wt%) was achieved at high temperature and pressure (313 K and 40 bar, respectively) using the Schiff bases. The 3-hydroxyphenyl-substituted Schiff base, which exhibited a meta-arrangement, provided the highest carbon dioxide uptake (46 wt%) due to its higher surface area, pore volume, and pore diameter compared with the other two derivatives with a para-arrangement.
Collapse
|
7
|
Omer RM, Al-Tikrity ETB, Yousif E, El-Hiti GA, Ahmed DS, Ahmed AA. Spectroscopic and Morphological Study of Irradiated PVC Films Doped with Polyphosphates Containing 4,4'-Methylenedianiline. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427220120113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Synthesis and use of new porous metal complexes containing a fusidate moiety as gas storage media. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0692-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
New Porous Silicon-Containing Organic Polymers: Synthesis and Carbon Dioxide Uptake. Processes (Basel) 2020. [DOI: 10.3390/pr8111488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The design and synthesis of new multifunctional organic porous polymers has attracted significant attention over the years due to their favorable properties, which make them suitable for carbon dioxide storage. In this study, 2-, 3-, and 4-hydroxybenzaldehyde reacted with phenyltrichlorosilane in the presence of a base, affording the corresponding organosilicons 1–3, which further reacted with benzidine in the presence of glacial acetic acid, yielding the organic polymers 4–6. The synthesized polymers exhibited microporous structures with a surface area of 8.174–18.012 m2 g−1, while their pore volume and total average pore diameter ranged from 0.015–0.035 cm3 g−1 and 1.947–1.952 nm, respectively. In addition, among the synthesized organic polymers, the one with the meta-arrangement structure 5 showed the highest carbon dioxide adsorption capacity at 323 K and 40 bar due to its relatively high surface area and pore volume.
Collapse
|
10
|
Synthesis and use of carvedilol metal complexes as carbon dioxide storage media. APPLIED PETROCHEMICAL RESEARCH 2020. [DOI: 10.1007/s13203-020-00255-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Abstract
The consequences of increased fossil fuel consumption on the environment presents a challenge. Carbon dioxide capture is a useful technique to reduce global warming. Therefore, three carvedilol metal (nickel, cobalt, and copper) complexes were synthesized as potential carbon dioxide storage media. The structural and textural properties of metal carvedilol complexes have been established using various techniques. The metal complexes have mesoporous structures in which pore size was approximately 3 nm. Particle size ranged from 51.0 to 393.9 nm with a relatively small surface area (6.126–9.073 m2/g). The carvedilol metal complexes have either type-III or IV nitrogen adsorption–desorption isotherm. The complexes showed reasonable capacity towards carbon dioxide uptake (up to 18.21 cm3/g) under the optimized condition (40 bar and 323 K).
Graphical Abstract
Collapse
|
11
|
Valsartan metal complexes as capture and reversible storage media for methane. APPLIED PETROCHEMICAL RESEARCH 2020. [DOI: 10.1007/s13203-020-00247-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AbstractThree valsartan metal (tin, nickel, and magnesium) complexes were examined as capture and storage media for methane under high temperature (323 K) and pressure (50 bar) conditions. The surface morphology of the complexes were examined using Field emission scanning electron microscopy and displayed porous structures comprising particles of different shapes and sizes. The narrow pore-size distribution of metal complexes makes them suitable materials for methane capture. The methane adsorption–desorption isotherms of the metal complexes were reversible. The tin(IV) and nickel(II) complexes exhibited type-III physisorption isotherms, while the magnesium(II) complex displayed a type-IV physisorption isotherm. Both types of isotherms are typical for mesoporous materials. The magnesium(II) complex was more efficient compared with the tin(IV) and nickel(II) complexes. It exhibited a remarkable methane uptake capacity of 71.68 cm3/g under optimized conditions.
Collapse
|
12
|
Synthesis and Use of Valsartan Metal Complexes as Media for Carbon Dioxide Storage. MATERIALS 2020; 13:ma13051183. [PMID: 32155793 PMCID: PMC7085107 DOI: 10.3390/ma13051183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/23/2022]
Abstract
To address global warming through carbon dioxide storage, three valsartan metal complexes were synthesized in excellent yields (87–92%) through a reaction of the appropriate metal chloride (tin chloride, nickel chloride hexahydrate, or magnesium chloride hexahydrate) and excess valsartan (two mole equivalents) in boiling methanol for 3 h. The structures of the metal complexes were established based on the data obtained from ultraviolet-visible, Fourier transform infrared, and proton nuclear magnetic resonance spectra, as well as from elemental analysis, energy-dispersive X-ray spectra, and magnetic susceptibility. The agglomeration and shape of the particles were determined using field emission scanning electron microscopy analysis. The surface area (16.63–22.75 m2/g) of the metal complexes was measured using the Brunauer-Emmett-Teller method, whereas the Barrett-Joyner-Halenda method was used to determine the particle pore size (0.011–0.108 cm3/g), total average pore volume (6.50–12.46 nm), and pore diameter (6.50–12.47 nm), for the metal complexes. The carbon dioxide uptake of the synthesized complexes, at 323 K and 4 MPa (40 bar), ranged from 24.11 to 34.51 cm2/g, and the nickel complex was found to be the most effective sorbent for carbon dioxide storage.
Collapse
|
13
|
Influence of Polyphosphates on the Physicochemical Properties of Poly (Vinyl Chloride) after Irradiation with Ultraviolet Light. Polymers (Basel) 2020; 12:polym12010193. [PMID: 31936894 PMCID: PMC7022887 DOI: 10.3390/polym12010193] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/24/2019] [Accepted: 01/08/2020] [Indexed: 11/23/2022] Open
Abstract
Three new polyphosphates were synthesized in good yields by reacting diethylenetriamine with the appropriate phosphate ester in ethanol under acidic conditions. The polyphosphate structures were determined using FT-IR and 1H-NMR spectroscopies, and their elemental compositions were confirmed by EDX spectroscopy. Polyphosphates were added to poly(vinyl chloride) (PVC) at low concentrations to fabricate thin films. The PVC films were irradiated with ultraviolet light for long periods, and the effect of polyphosphates as the photostabilizer was investigated by determining changes in the infrared spectra (intensity of specific functional group peaks), reduction in molecular weight, weight loss, and surface morphology. Minimal changes were seen for PVC films containing polyphosphate compared to that for the blank film. In addition, optical, scanning electron, and atomic force microscopies were used to inspect the surface morphology of films. Undesirable changes due to photodegradation were negligible in PVC films containing additives compared to films containing no additives. In addition, the surfaces were smoother and more homogeneous. Polyphosphates, and in particular ones that contain an ortho-geometry, act as efficient photostabilizers to reduce the rate of photodegradation. Polyphosphates absorb ultraviolet light, chelate with polymeric chains, scavenge radical moieties, and decompose peroxide residues.
Collapse
|
14
|
Porous Aromatic Melamine Schiff Bases as Highly Efficient Media for Carbon Dioxide Storage. Processes (Basel) 2019. [DOI: 10.3390/pr8010017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High energy demand has led to excessive fuel consumption and high-concentration CO2 production. CO2 release causes serious environmental problems such as the rise in the Earth’s temperature, leading to global warming. Thus, chemical industries are under severe pressure to provide a solution to the problems associated with fuel consumption and to reduce CO2 emission at the source. To this effect, herein, four highly porous aromatic Schiff bases derived from melamine were investigated as potential media for CO2 capture. Since these Schiff bases are highly aromatic, porous, and have a high content of heteroatoms (nitrogen and oxygen), they can serve as CO2 storage media. The surface morphology of the Schiff bases was investigated through field emission scanning electron microscopy, and their physical properties were determined by gas adsorption experiments. The Schiff bases had a pore volume of 0.005–0.036 cm3/g, an average pore diameter of 1.69–3.363 nm, and a small Brunauer–Emmett–Teller surface area (5.2–11.6 m2/g). The Schiff bases showed remarkable CO2 uptake (up to 2.33 mmol/g; 10.0 wt%) at 323 K and 40 bars. The Schiff base containing the 4-nitrophenyl substituent was the most efficient medium for CO2 adsorption and, therefore, can be used as a gas sorbent.
Collapse
|
15
|
Synthesis of Novel Heteroatom-Doped Porous-Organic Polymers as Environmentally Efficient Media for Carbon Dioxide Storage. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning electron microscopy (FESEM) images showed that the surface morphologies of the synthesized POPs were similar to coral reefs. They had grooved networks, long range periodic macropores, amorphous surfaces, and a high surface area (SBET = 82.71–213.54 m2/g). Most importantly, they had considerable carbon dioxide storage capacity, particularly at high pressure. The carbon dioxide uptake at 323 K and 40 bar for one of the POPs was as high as 1.42 mmol/g (6.00 wt %). The high carbon dioxide uptake capacities of these materials were primarily governed by their geometries. The POP containing a meta-phosphate unit leads to the highest CO2 uptake since such geometry provides a highly distorted and extended surface area network compared to other POPs.
Collapse
|
16
|
Liu M, Ran Y, Peng X, Zhu Z, Liang J, Ai H, Li H, He Q. Sustainable modulation of anaerobic malodorous black water: The interactive effect of oxygen-loaded porous material and submerged macrophyte. WATER RESEARCH 2019; 160:70-80. [PMID: 31132564 DOI: 10.1016/j.watres.2019.05.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Depleted oxygen (O2) in the sediment and overlying water of malodorous black water poses a potential threat to aquatic ecosystems. This study presents a method for sustainable regulation of the dissolved oxygen (DO) levels towards the malodorous black water. Oxygen-loaded natural porous materials were prepared by vacuum degassing to remove air from the pores and fill them with pure O2. Capping anaerobic sediment with the prepared 6 oxygen-loaded porous materials was effective in prompting the DO concentration of the malodorous black water. Although granules activated carbon (GAC) displayed the highest oxygen-loading capability, oxygen-loaded volcanic stone additive was more efficient for long-lasting combating of the anaerobic condition because the DO level at sediment-water interface (SWI) and the DO penetration depth showed approximately 5.38- and 3.75-fold increase, respectively, compared with the untreated systems. The improvement in DO was substantially enhanced in the presence of submerged macrophyte (Vallisneria natans), during which the release of O2 from oxygen-loaded volcanic stone facilitated the plant growth. With the joint efforts of the O2 released from volcanic stone and photosynthesis by the macrophytes, the DO levels were maintained at approximately 6.80 mg/L after a 41-day incubation, which exceeded (P < 0.05) the value in only oxygen-loaded volcanic stone or macrophytes added treatments. In addition to the elevated DO level, the combined employment of oxygen-loaded volcanic stone and macrophytes triggered a negative ammonia (NH4+-N) flux across the SWI and an 85.82% reduction of methane (CH4) production compared with those without treatment, accompanied by a decrease in total inorganic carbon and a 2.55- fold increasing of submerged macrophyte biomass, which is presumably attributed to nitrification, remineralization, and assimilation. The results obtained here shed a degree of light on the sustainable modulation of the anaerobic condition in malodorous black water.
Collapse
Affiliation(s)
- Ming Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Yan Ran
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xinxin Peng
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Zhiqiang Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jialiang Liang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hainan Ai
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
17
|
Evaluation of the use of polyphosphates as photostabilizers and in the formation of ball-like polystyrene materials. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1829-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Hadi AG, Jawad K, Yousif E, El-Hiti GA, Alotaibi MH, Ahmed DS. Synthesis of Telmisartan Organotin(IV) Complexes and their use as Carbon Dioxide Capture Media. Molecules 2019; 24:E1631. [PMID: 31027205 PMCID: PMC6514663 DOI: 10.3390/molecules24081631] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 11/21/2022] Open
Abstract
Novel, porous, highly aromatic organotin(IV) frameworks were successfully synthesized by the condensation of telmisartan and an appropriate tin(IV) chloride. The structures of the synthesized organotin(IV) complexes were elucidated by elemental analysis, 1H-, 13C-, and 119Sn-NMR, and FTIR spectroscopy. The surface morphologies of the complexes were inspected by field emission scanning electron microscopy. The synthesized mesoporous organotin(IV) complexes have a Brunauer-Emmett-Teller (BET) surface area of 32.3-130.4 m2·g-1, pore volume of 0.046-0.162 cm3·g-1, and pore size of around 2.4 nm. The tin complexes containing a butyl substituent were more efficient as carbon dioxide storage media than the complexes containing a phenyl substituent. The dibutyltin(IV) complex had the highest BET surface area (SBET = 130.357 m2·g-1), the largest volume (0.162 cm3·g-1), and was the most efficient for carbon dioxide storage (7.1 wt%) at a controlled temperature (323 K) and pressure (50 bars).
Collapse
Affiliation(s)
- Angham G Hadi
- Department of Chemistry, College of Science, Babylon University, Babil 51002, Iraq.
| | - Khudheyer Jawad
- Department of Chemistry, College of Science, Babylon University, Babil 51002, Iraq.
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq.
| | - Gamal A El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia.
| | - Mohammad Hayal Alotaibi
- National Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia.
| | - Dina S Ahmed
- Department of Medical Instrumentation Engineering, Al-Mansour University College, Baghdad 64021, Iraq.
| |
Collapse
|
19
|
Cousins K, Zhang R. Highly Porous Organic Polymers for Hydrogen Fuel Storage. Polymers (Basel) 2019; 11:E690. [PMID: 30995735 PMCID: PMC6523522 DOI: 10.3390/polym11040690] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/24/2019] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
Hydrogen (H2) is one of the best candidates to replace current petroleum energy resources due to its rich abundance and clean combustion. However, the storage of H2 presents a major challenge. There are two methods for storing H2 fuel, chemical and physical, both of which have some advantages and disadvantages. In physical storage, highly porous organic polymers are of particular interest, since they are low cost, easy to scale up, metal-free, and environmentally friendly. In this review, highly porous polymers for H2 fuel storage are examined from five perspectives: (a) brief comparison of H2 storage in highly porous polymers and other storage media; (b) theoretical considerations of the physical storage of H2 molecules in porous polymers; (c) H2 storage in different classes of highly porous organic polymers; (d) characterization of microporosity in these polymers; and (e) future developments for highly porous organic polymers for H2 fuel storage. These topics will provide an introductory overview of highly porous organic polymers in H2 fuel storage.
Collapse
Affiliation(s)
- Kimberley Cousins
- Department of Chemistry and Biochemistry, California State University, San Bernardino, CA 5500, USA.
| | - Renwu Zhang
- Department of Chemistry and Biochemistry, California State University, San Bernardino, CA 5500, USA.
| |
Collapse
|
20
|
El-Hiti GA, Alotaibi MH, Ahmed AA, Hamad BA, Ahmed DS, Ahmed A, Hashim H, Yousif E. The Morphology and Performance of Poly(Vinyl Chloride) Containing Melamine Schiff Bases against Ultraviolet Light. Molecules 2019; 24:E803. [PMID: 30813367 PMCID: PMC6413115 DOI: 10.3390/molecules24040803] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 11/17/2022] Open
Abstract
Five Schiff bases derived from melamine have been used as efficient additives to reduce the process of photodegradation of poly(vinyl chloride) films. The performance of Schiff bases has been investigated using various techniques. Poly(vinyl chloride) films containing Schiff bases were irradiated with ultraviolet light and any changes in their infrared spectra, weight, and the viscosity of their average molecular weight were investigated. In addition, the surface morphology of the films was inspected using a light microscope, atomic force microscopy, and a scanning electron micrograph. The additives enhanced the films resistance against irradiation and the polymeric surface was much smoother in the presence of the Schiff bases compared with the blank film. Schiff bases containing an ortho-hydroxyl group on the aryl rings showed the greatest photostabilization effect, which may possibly have been due to the direct absorption of ultraviolet light. This phenomenon seems to involve the transfer of a proton as well as several intersystem crossing processes.
Collapse
Affiliation(s)
- Gamal A El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia.
| | - Mohammad Hayal Alotaibi
- National Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia.
| | - Ahmed A Ahmed
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq.
| | - Basheer A Hamad
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq.
| | - Dina S Ahmed
- Department of Medical Instrumentation Engineering, Al-Mansour University College, Baghdad 64021, Iraq.
| | - Ahmed Ahmed
- Polymer Research Unit, College of Science, Al-Mustansiriyah University, Baghdad 10052, Iraq.
| | - Hassan Hashim
- Department of Physics, College of Science, Al-Nahrain University, Baghdad 64021, Iraq.
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq.
| |
Collapse
|
21
|
Alotaibi MH, El-Hiti GA, Hashim H, Hameed AS, Ahmed DS, Yousif E. SEM analysis of the tunable honeycomb structure of irradiated poly(vinyl chloride) films doped with polyphosphate. Heliyon 2018; 4:e01013. [PMID: 30619957 PMCID: PMC6313840 DOI: 10.1016/j.heliyon.2018.e01013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/08/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022] Open
Abstract
The fabrication of tunable poly(vinyl chloride) porous films containing polyphosphate as an additive was successful. Irradiation of poly(vinyl chloride) films containing polyphosphate at a low concentration (0.5% by weight) with an ultraviolet light (λmax = 313 nm) for 300 h leads to the formation of a honeycomb like structure. The scanning electron microscopy images, at different magnification power, confirmed the production of the PVC honeycomb-like structure. The morphological images of the polymeric film showed a rough surface and a large number of regularly distributed hexagonal pores. The number of pores increased upon irradiation time and it was maximum after 300 h. The honeycomb structure formation could be due to the regular aggregation of polyphosphate among the polymeric chains, the increase in solution intrinsic viscosity and evaluation of hydrogen chloride gas through dehydrochlorination process.
Collapse
Affiliation(s)
- Mohammad Hayal Alotaibi
- National Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, 11442, Saudi Arabia
| | - Gamal A. El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Hassan Hashim
- Department of Physics, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Ayad S. Hameed
- Department of Chemistry, College of Science, Tikrit University, Tikrit, 34001, Iraq
| | - Dina S. Ahmed
- Department of Chemistry, College of Science, Tikrit University, Tikrit, 34001, Iraq
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, 64021, Iraq
| |
Collapse
|
22
|
Yousif E, Ahmed DS, El-Hiti GA, Alotaibi MH, Hashim H, Hameed AS, Ahmed A. Fabrication of Novel Ball-Like Polystyrene Films Containing Schiff Base Microspheres as Photostabilizers. Polymers (Basel) 2018; 10:E1185. [PMID: 30961110 PMCID: PMC6290623 DOI: 10.3390/polym10111185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/04/2022] Open
Abstract
Polystyrene films containing a low concentration of three highly aromatic Schiff bases were prepared using the casting method. The polystyrene films were irradiated with ultraviolet light (300 h). The polystyrene infrared spectra, weight loss, molecular weight reduction and the surface morphology were examined upon irradiation. The Schiff bases acted as photostabilizers and reduced the photodegradation of polystyrene films to a significant level in comparison to the blank film. The images recorded of the surface of the miscible polystyrene/Schiff base blends showed novel ball-like microspheres with a diameter of 3.4⁻4.3 µm. The Schiff bases were able to endow excellent protection to polystyrene against ultraviolet irradiation.
Collapse
Affiliation(s)
- Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq.
| | - Dina S Ahmed
- Department of Chemistry, College of Science, Tikrit University, Tikrit 34001, Iraq.
| | - Gamal A El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia.
| | - Mohammad Hayal Alotaibi
- National Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia.
| | - Hassan Hashim
- Department of Physics, College of Science, Al-Nahrain University, Baghdad 64021, Iraq.
| | - Ayad S Hameed
- Department of Chemistry, College of Science, Tikrit University, Tikrit 34001, Iraq.
| | - Ahmed Ahmed
- Polymer Research Unit, College of Science, Al-Mustansiriyah University, Baghdad 10052, Iraq.
| |
Collapse
|
23
|
Shaalan N, Laftah N, El-Hiti GA, Alotaibi MH, Muslih R, Ahmed DS, Yousif E. Poly(vinyl Chloride) Photostabilization in the Presence of Schiff Bases Containing a Thiadiazole Moiety. Molecules 2018; 23:E913. [PMID: 29662039 PMCID: PMC6017410 DOI: 10.3390/molecules23040913] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 11/18/2022] Open
Abstract
Five Schiff bases containing a thiadiazole moiety have been used as poly(vinyl chloride) photostabilizers at low concentrations. The efficiency of Schiff bases as photostabilizers was investigated using various techniques, for example, the changes in poly(vinyl chloride) infrared spectra, molecular weight, chain scission quantum yield, and surface morphology were monitored upon irradiation with an ultraviolet light. Evidently, all the additives used inhibited poly(vinyl chloride) photodegradation at a significant level. The most efficient Schiff base exhibited a high level of aromaticity and contained a hydroxyl group. It seems possible that such photostabilization could be due to the direct absorption of ultraviolet radiation by the additives. In addition, Schiff bases could act as radical scavengers and proton transfer facilitators to stabilize the polymeric materials.
Collapse
Affiliation(s)
- Naser Shaalan
- Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad 10071, Iraq.
| | - Nawres Laftah
- Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad 10071, Iraq.
| | - Gamal A El-Hiti
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia.
| | - Mohammad Hayal Alotaibi
- Center of Excellence in Integrated Nano-Systems, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia.
| | - Raad Muslih
- Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad 10071, Iraq.
| | - Dina S Ahmed
- Department of Chemistry, College of Science, Tikrit University, Tikrit 34001, Iraq.
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq.
| |
Collapse
|
24
|
Ahmed DS, El-Hiti GA, Yousif E, Ali AA, Hameed AS. Design and synthesis of porous polymeric materials and their applications in gas capture and storage: a review. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1474-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Ghazi D, El-Hiti GA, Yousif E, Ahmed DS, Alotaibi MH. The Effect of Ultraviolet Irradiation on the Physicochemical Properties of Poly(vinyl Chloride) Films Containing Organotin(IV) Complexes as Photostabilizers. Molecules 2018; 23:E254. [PMID: 29382088 PMCID: PMC6017697 DOI: 10.3390/molecules23020254] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/17/2018] [Accepted: 01/25/2018] [Indexed: 11/16/2022] Open
Abstract
Three organotin(IV) complexes containing ciprofloxacin as a ligand (Ph₃SnL, Me₂SnL₂ and Bu₂SnL₂; 0.5% by weight) were used as additives to inhibit the photodegradation of polyvinyl chloride films (40 µm thickness) upon irradiation with ultraviolet light (λmax = 313 at a light intensity = 7.75 × 10-7 ein dm-3 S-1) at room temperature. The efficiency of organotin(IV) complexes as photostabilizers was determined by monitoring the changes in the weight, growth of specific functional groups (hydroxyl, carbonyl and carbene), viscosity, average molecular weight, chain scission and degree of deterioration of the polymeric films upon irradiation. The results obtained indicated that organotin(IV) complexes stabilized poly(vinyl chloride) and the dimethyltin(IV) complex was the most efficient additive. The surface morphologies of poly(vinyl chloride) films containing organotin(IV) complexes were examined using an atomic force microscope and scanning electron microscopy. These showed that the surface of polymeric films containing organotin(IV) complexes were smoother and less rough, compared to the surface of the blank films. Some mechanisms that explained the role of organotin(IV) complexes in poly(vinyl chloride) photostabilization process were proposed.
Collapse
Affiliation(s)
- Duaa Ghazi
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq.
| | - Gamal A El-Hiti
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia.
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq.
| | - Dina S Ahmed
- Department of Chemistry, College of Science, Tikrit University, Tikrit 34001, Iraq.
| | - Mohammad Hayal Alotaibi
- Center of Excellence in Integrated Nano-Systems, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia.
| |
Collapse
|
26
|
Ahmed DS, El-Hiti GA, Yousif E, Hameed AS. Polyphosphates as Inhibitors for Poly(vinyl Chloride) Photodegradation. Molecules 2017; 22:E1849. [PMID: 29143792 PMCID: PMC6150225 DOI: 10.3390/molecules22111849] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 11/18/2022] Open
Abstract
Three polyphosphates were used as inhibitors for poly(vinyl chloride) (PVC) photodegradation. The polyphosphates were added to PVC at a concentration of 0.5% by weight. The PVC films (40 µm thickness) were irradiated at room temperature with ultraviolet (UV) light for up to 300 h. The changes in PVC films after irradiation were monitored by Fourier transform infrared spectroscopy, weight loss, viscosity-average molecular weight determination, and atomic force microscopy. These changes were very noticeable in the blank PVC films compared to the ones obtained when additives were used. The polyphosphates can inhibit the PVC photodegradation through direct absorption of UV light, interactions with PVC chains, and acting as radical scavengers.
Collapse
Affiliation(s)
- Dina S Ahmed
- Department of Chemistry, College of Science, Tikrit University, Tikrit 34001, Iraq.
| | - Gamal A El-Hiti
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia.
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq.
| | - Ayad S Hameed
- Department of Chemistry, College of Science, Tikrit University, Tikrit 34001, Iraq.
| |
Collapse
|
27
|
Ahmed DS, El-Hiti GA, Hameed AS, Yousif E, Ahmed A. New Tetra-Schiff Bases as Efficient Photostabilizers for Poly(vinyl chloride). Molecules 2017; 22:E1506. [PMID: 28891944 PMCID: PMC6151724 DOI: 10.3390/molecules22091506] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 11/16/2022] Open
Abstract
Three new tetra-Schiff bases were synthesized and characterized to be used as photostabilizers for poly(vinyl chloride) (PVC) films. The photostability of PVC films (40 μm thickness) in the presence of Schiff bases (0.5 wt %) upon irradiation (300 h) with a UV light (λmax = 365 nm and light intensity = 6.43 × 10-9 ein∙dm-3∙s-1) was examined using various spectroscopic measurements and surface morphology analysis. The changes in various functional groups' indices, weight and viscosity average molecular weight of PVC films were monitored against irradiation time. The additives used showed photostability for PVC films, with Schiff base 1 being the most effective additive upon irradiation, followed by 2 and 3. The atomic force microscopy (AFM) images for the PVC surface containing Schiff base 1 after irradiation were found to be smooth, with a roughness factor (Rq) of 36.8, compared to 132.2 for the PVC (blank). Several possible mechanisms that explain PVC photostabilization upon irradiation in the presence of tetra-Schiff bases were proposed.
Collapse
Affiliation(s)
- Dina S Ahmed
- Department of Chemistry, College of Science, Tikrit University, Tikrit 34001, Iraq.
| | - Gamal A El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia.
| | - Ayad S Hameed
- Department of Chemistry, College of Science, Tikrit University, Tikrit 34001, Iraq.
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq.
| | - Ahmed Ahmed
- Polymer Research Unit, College of Science, Al-Mustansiriyah University, Baghdad 10052, Iraq.
| |
Collapse
|