1
|
Faase RA, Keeling NM, Plaut JS, Leycam C, Munares GA, Hinds MT, Baio JE, Jurney PL. Temporal Changes in the Surface Chemistry and Topography of Reactive Ion Plasma-Treated Poly(vinyl alcohol) Alter Endothelialization Potential. ACS APPLIED MATERIALS & INTERFACES 2024; 16:389-400. [PMID: 38117934 PMCID: PMC10788828 DOI: 10.1021/acsami.3c16759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Synthetic small-diameter vascular grafts (<6 mm) are used in the treatment of cardiovascular diseases, including coronary artery disease, but fail much more readily than similar grafts made from autologous vascular tissue. A promising approach to improve the patency rates of synthetic vascular grafts is to promote the adhesion of endothelial cells to the luminal surface of the graft. In this study, we characterized the surface chemical and topographic changes imparted on poly(vinyl alcohol) (PVA), an emerging hydrogel vascular graft material, after exposure to various reactive ion plasma (RIP) surface treatments, how these changes dissipate after storage in a sealed environment at standard temperature and pressure, and the effect of these changes on the adhesion of endothelial colony-forming cells (ECFCs). We showed that RIP treatments including O2, N2, or Ar at two radiofrequency powers, 50 and 100 W, improved ECFC adhesion compared to untreated PVA and to different degrees for each RIP treatment, but that the topographic and chemical changes responsible for the increased cell affinity dissipate in samples treated and allowed to age for 230 days. We characterized the effect of aging on RIP-treated PVA using an assay to quantify ECFCs on RIP-treated PVA 48 h after seeding, atomic force microscopy to probe surface topography, scanning electron microscopy to visualize surface modifications, and X-ray photoelectron spectroscopy to investigate surface chemistry. Our results show that after treatment at higher RF powers, the surface exhibits increased roughness and greater levels of charged nitrogen species across all precursor gases and that these surface modifications are beneficial for the attachment of ECFCs. This study is important for our understanding of the stability of surface modifications used to promote the adhesion of vascular cells such as ECFCs.
Collapse
Affiliation(s)
- Ryan A. Faase
- School
of Chemical, Biological, and Environmental Engineering, Oregon State University, 103 Gleeson Hall, Corvallis, Oregon 97331, United States
| | - Novella M. Keeling
- Biomedical
Engineering Program, University of Colorado
Boulder, 1111 Engineering Drive 521 UCB, Boulder, Colorado 80309-0521, United States
- Department
of Biomedical Engineering, Oregon Health
and Science University, 3303 SW Bond Ave, Portland, Oregon 97239, United States
| | - Justin S. Plaut
- Cancer
Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, 3303 SW Bond Ave, Portland, Oregon 97239, United States
| | - Christian Leycam
- Department
of Biomedical Engineering, San José
State University, One Washington Square, San Jose, California 95112-3613, United States
| | - Gabriela Acevedo Munares
- Department
of Biomedical Engineering, San José
State University, One Washington Square, San Jose, California 95112-3613, United States
| | - Monica T. Hinds
- Department
of Biomedical Engineering, Oregon Health
and Science University, 3303 SW Bond Ave, Portland, Oregon 97239, United States
| | - Joe E. Baio
- School
of Chemical, Biological, and Environmental Engineering, Oregon State University, 103 Gleeson Hall, Corvallis, Oregon 97331, United States
| | - Patrick L. Jurney
- Department
of Biomedical Engineering, San José
State University, One Washington Square, San Jose, California 95112-3613, United States
| |
Collapse
|
2
|
Thisera A, Riddle A, Boebinger M, Guiton BS. Investigation of Metal-Metal Oxide Interfaces via Real-Time in situ TEM Heating. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1616-1617. [PMID: 37613872 DOI: 10.1093/micmic/ozad067.830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Ayanthi Thisera
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Alexandra Riddle
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Matthew Boebinger
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Beth S Guiton
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
3
|
da Silva DJ, Duran A, Cabral AD, Fonseca FLA, Wang SH, Parra DF, Bueno RF, Pereyra I, Rosa DS. Bioinspired Antimicrobial PLA with Nanocones on the Surface for Rapid Deactivation of Omicron SARS-CoV-2. ACS Biomater Sci Eng 2023; 9:1891-1899. [PMID: 36881832 PMCID: PMC10005812 DOI: 10.1021/acsbiomaterials.2c01529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/25/2023] [Indexed: 03/09/2023]
Abstract
Bioinspired bactericidal surfaces are artificial surfaces that mimic the nanotopography of insect wings and are capable of inhibiting microbial growth by a physicomechanical mechanism. The scientific community has considered them an alternative method to design polymers with surfaces that inhibit bacterial biofilm formation, suitable for self-disinfectant medical devices. In this contribution, poly(lactic acid) (PLA) with nanocone patterns was successfully produced by a novel two-step procedure involving copper plasma deposition followed by argon plasma etching. According to reverse transcription-quantitative polymerase chain reaction tests, the bioinspired PLA nanostructures display antiviral performance to inactivate infectious Omicron severe acute respiratory syndrome coronavirus 2 particles, reducing the amount of the viral genome to less than 4% in just 15 min due to a possible combined effect of mechanical and oxidative stress. The bioinspired antiviral PLA can be suitable for designing personal protection equipment to prevent the transmission of contagious viral diseases, such as Coronavirus Disease 2019.
Collapse
Affiliation(s)
- Daniel J. da Silva
- Center for Engineering, Modeling, and Applied Social
Sciences, Federal University of ABC, Av. dos Estados, 5001,
Bangú, Santo André, SP, Brazil
- Department of Metallurgical and Materials Engineering,
Polytechnic School, University of São Paulo, Av. Prof.
Mello Moraes, 2643, Cidade Universitária, 05508-030, São Paulo, SP,
Brazil
| | - Adriana Duran
- Center for Engineering, Modeling, and Applied Social
Sciences, Federal University of ABC, Av. dos Estados, 5001,
Bangú, Santo André, SP, Brazil
| | - Aline D. Cabral
- Center for Engineering, Modeling, and Applied Social
Sciences, Federal University of ABC, Av. dos Estados, 5001,
Bangú, Santo André, SP, Brazil
| | - Fernando L. A. Fonseca
- Department of Clinical Analysis, Faculty of
Medicine of ABC, Av. Lauro Gomes, 2000, Santo André, SP,
Brazil
| | - Shu Hui Wang
- Department of Metallurgical and Materials Engineering,
Polytechnic School, University of São Paulo, Av. Prof.
Mello Moraes, 2643, Cidade Universitária, 05508-030, São Paulo, SP,
Brazil
| | - Duclerc F. Parra
- Nuclear and Energy Research Institute,
National Nuclear Energy Commission/SP, Av. Prof. Lineu
Prestes, 2242 São Paulo, SP, Brazil
| | - Rodrigo F. Bueno
- Coordinator of the COVID-19 Monitoring Network in
Wastewater National Water and Basic Sanitation Agency, Ministry of Science, Technology and
Innovation and Ministry of Health, Brazil. Center for Engineering, Modeling, and Applied
Social Sciences, Federal University of ABC, Av. Dos Estados,
5001, Bangú, Santo André, SP, Brazil
| | - Inés Pereyra
- Department of Electronic Systems Engineering, Polytechnic
School, University of São Paulo, Av. Prof. Mello Moraes,
2643, Cidade Universitária, São Paulo, SP, Brazil
| | - Derval S. Rosa
- Center for Engineering, Modeling, and Applied Social
Sciences, Federal University of ABC, Av. dos Estados, 5001,
Bangú, Santo André, SP, Brazil
| |
Collapse
|
4
|
Low energy irradiation induced effects on the surface characteristics of polydimethylsiloxane polymeric films. Macromol Res 2023. [DOI: 10.1007/s13233-023-00118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
5
|
Groß R, Berkenfeld K, Schulte C, Ebert A, Sule S, Sule A, Lamprecht A. Effect of Texture and Surface Chemistry on Deagglomeration and Powder Retention in Capsule-Based Dry Powder Inhaler. AAPS PharmSciTech 2022; 23:281. [PMID: 36241775 DOI: 10.1208/s12249-022-02436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Pulmonary delivery systems should administer a high dose of the required formulation with the designated dry powder inhaler (DPI) to achieve therapeutic success. While the effects of device geometry and individual components used on powder dispersion are described in literature, potential effects of DPI surface properties on powder retention within the device and deagglomeration have not been adequately studied, but could impact inhalation therapy by modifying the available dose. For this, inner parts of a model DPI were modified by plasma treatment using various processes. Since both the hydrophilic-hydrophobic and structural properties of the surface were altered, conclusions can be drawn for future optimization of devices. The results show that surface topography has a greater influence on powder deposition and deagglomeration than hydrophilic or hydrophobic surface modification. The most important modification was observed with an increased rough surface texture in the mouth piece, resulting in lower powder deposition in this part (from 5 to 1% quantified amount of powder), without any change in powder deagglomeration compared to an untreated device. In summary, increasing the surface roughness of DPI components in the size range of a few nanometers could be an approach for future optimization of DPIs to increase the delivered dose.
Collapse
Affiliation(s)
- Roman Groß
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str 3, 53121, Bonn, Germany
| | - Kai Berkenfeld
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str 3, 53121, Bonn, Germany
| | - Christoph Schulte
- Presspart GmbH & Co. KG, Am Meilenstein 8-19, 34431, Marsberg, Germany
| | - Anselm Ebert
- Presspart GmbH & Co. KG, Am Meilenstein 8-19, 34431, Marsberg, Germany
| | - Sunita Sule
- Presspart Manufacturing Ltd., Whitebirk Industrial Estate, Blackburn, BB1 5RF, UK
| | - Ameet Sule
- Presspart Manufacturing Ltd., Whitebirk Industrial Estate, Blackburn, BB1 5RF, UK
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str 3, 53121, Bonn, Germany.
| |
Collapse
|
6
|
Shi Y, Wang Z, Wen L, Pei S, Chen K, Li H, Cheng H, Li F. Ultrastable Interfacial Contacts Enabling Unimpeded Charge Transfer and Ion Diffusion in Flexible Lithium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105419. [PMID: 35106952 PMCID: PMC8981437 DOI: 10.1002/advs.202105419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Indexed: 05/24/2023]
Abstract
Deteriorating interfacial contact under mechanical deformation induces large cracks and high charge transfer resistance, resulting in a severe capacity fading of flexible lithium-ion batteries (LIBs). Herein, an oxygen plasma treatment on a polymer separator combined with high-speed centrifugal spraying to construct ultrastable interfacial contacts is reported. With the treatment, abundant hydrophilic oxygen-containing functional groups are produced and ensure strong chemical adhesion between the separator and the active materials. With single walled carbon nanotubes (SWCNTs) sprayed onto the active materials, a dense thin film is formed as the current collector. Meanwhile, the centrifugal force caused by high-speed rotation together with van der Waals forces under fast evaporation produces a much closer interface between the current collector and the active materials. As a result of this ultrastable interfacial interaction, the integrated electrode shows no structural failure after 5000 bending cycles with the charge-transfer resistance as low as 35.8% and a Li-ion diffusion coefficient nearly 19 times of the untreated electrode. Flexible LIBs assembled with these integrated electrodes show excellent structural and electrochemical stability, and can work steadily under various deformed states and repeated bending. This work provides a new technique toward rational design of electrode configuration for flexible LIBs.
Collapse
Affiliation(s)
- Ying Shi
- School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyang110016China
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
| | - Zhenxing Wang
- Ji Hua LaboratoryFoshanGuangdong528000China
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
| | - Lei Wen
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
| | - Songfeng Pei
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
| | - Ke Chen
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
- School of Physical Science and TechnologyShanghai Tech UniversityShanghai201210China
| | - Hucheng Li
- School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyang110016China
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
| | - Hui‐Ming Cheng
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
- Institute of Technology for Carbon NeutralityShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Feng Li
- School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyang110016China
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
| |
Collapse
|
7
|
Lee SH, Kim S, Yang JY, Mun C, Lee S, Kim SH, Park SG. Hydrogel-Assisted 3D Volumetric Hotspot for Sensitive Detection by Surface-Enhanced Raman Spectroscopy. Int J Mol Sci 2022; 23:ijms23021004. [PMID: 35055189 PMCID: PMC8779965 DOI: 10.3390/ijms23021004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
Effective hotspot engineering with facile and cost-effective fabrication procedures is critical for the practical application of surface-enhanced Raman spectroscopy (SERS). We propose a SERS substrate composed of a metal film over polyimide nanopillars (MFPNs) with three-dimensional (3D) volumetric hotspots for this purpose. The 3D MFPNs were fabricated through a two-step process of maskless plasma etching and hydrogel encapsulation. The probe molecules dispersed in solution were highly concentrated in the 3D hydrogel networks, which provided a further enhancement of the SERS signals. SERS performance parameters such as the SERS enhancement factor, limit-of-detection, and signal reproducibility were investigated with Cyanine5 (Cy5) acid Raman dye solutions and were compared with those of hydrogel-free MFPNs with two-dimensional hotspots. The hydrogel-coated MFPNs enabled the reliable detection of Cy5 acid, even when the Cy5 concentration was as low as 100 pM. We believe that the 3D volumetric hotspots created by introducing a hydrogel layer onto plasmonic nanostructures demonstrate excellent potential for the sensitive and reproducible detection of toxic and hazardous molecules.
Collapse
Affiliation(s)
- Soo Hyun Lee
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Korea; (S.H.L.); (J.-Y.Y.); (C.M.); (S.L.)
| | - Sunho Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| | - Jun-Yeong Yang
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Korea; (S.H.L.); (J.-Y.Y.); (C.M.); (S.L.)
| | - ChaeWon Mun
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Korea; (S.H.L.); (J.-Y.Y.); (C.M.); (S.L.)
| | - Seunghun Lee
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Korea; (S.H.L.); (J.-Y.Y.); (C.M.); (S.L.)
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
- Correspondence: (S.-H.K.); (S.-G.P.)
| | - Sung-Gyu Park
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Korea; (S.H.L.); (J.-Y.Y.); (C.M.); (S.L.)
- Correspondence: (S.-H.K.); (S.-G.P.)
| |
Collapse
|
8
|
Mouritz AP, Galos J, Linklater DP, Ladani RB, Kandare E, Crawford RJ, Ivanova EP. Towards antiviral polymer composites to combat COVID-19 transmission. NANO SELECT 2021; 2:2061-2071. [PMID: 34485980 PMCID: PMC8242795 DOI: 10.1002/nano.202100078] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/03/2021] [Indexed: 12/23/2022] Open
Abstract
Polymer matrix composite materials have the capacity to aid the indirect transmission of viral diseases. Published research shows that respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or COVID-19), can attach to polymer substrata as a result of being contacted by airborne droplets resulting from infected people sneezing or coughing in close proximity. Polymer matrix composites are used to produce a wide range of products that are "high-touch" surfaces, such as sporting goods, laptop computers and household fittings, and these surfaces can be readily contaminated by pathogens. This article reviews published research on the retention of SARS-CoV-2 and other virus types on plastics. The factors controlling the viral retention time on plastic surfaces are examined and the implications for viral retention on polymer composite materials are discussed. Potential strategies that can be used to impart antiviral properties to polymer composite surfaces are evaluated. These strategies include modification of the surface composition with biocidal agents (e.g., antiviral polymers and nanoparticles) and surface nanotexturing. The potential application of these surface modification strategies in the creation of antiviral polymer composite surfaces is discussed, which opens up an exciting new field of research for composite materials.
Collapse
Affiliation(s)
- Adrian P. Mouritz
- School of EngineeringRMIT UniversityGPO Box 2476MelbourneVictoria3001Australia
| | - Joel Galos
- School of EngineeringRMIT UniversityGPO Box 2476MelbourneVictoria3001Australia
| | | | - Raj B. Ladani
- School of EngineeringRMIT UniversityGPO Box 2476MelbourneVictoria3001Australia
| | - Everson Kandare
- School of EngineeringRMIT UniversityGPO Box 2476MelbourneVictoria3001Australia
| | | | - Elena P. Ivanova
- School of ScienceRMIT UniversityGPO Box 2476MelbourneVictoria3001Australia
| |
Collapse
|
9
|
Recek N, Holc M, Vesel A, Zaplotnik R, Gselman P, Mozetič M, Primc G. Germination of Phaseolus vulgaris L. Seeds after a Short Treatment with a Powerful RF Plasma. Int J Mol Sci 2021; 22:ijms22136672. [PMID: 34206400 PMCID: PMC8268350 DOI: 10.3390/ijms22136672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/04/2022] Open
Abstract
Seeds of common bean (Phaseolus vulgaris L.), of the Etna variety, were treated with low-pressure oxygen plasma sustained by an inductively coupled radiofrequency discharge in the H-mode for a few seconds. The high-intensity treatment improved seed health in regard to fungal contamination. Additionally, it increased the wettability of the bean seeds by altering surface chemistry, as established by X-ray photoelectron spectroscopy, and increasing surface roughness, as seen with a scanning electron microscope. The water contact angle at the seed surface dropped to immeasurably low values after a second of plasma treatment. Hydrophobic recovery within a month returned those values to no more than half of the original water contact angle, even for beans treated for the shortest time (0.5 s). Increased wettability resulted in accelerated water uptake. The treatment increased the bean radicle length, which is useful for seedling establishment in the field. These findings confirm that even a brief plasma treatment is a useful technique for the disinfection and stimulation of radicle growth. The technique is scalable to large systems due to the short treatment times.
Collapse
Affiliation(s)
- Nina Recek
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (M.M.); (G.P.)
- Correspondence:
| | - Matej Holc
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (M.M.); (G.P.)
| | - Alenka Vesel
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (M.M.); (G.P.)
| | - Rok Zaplotnik
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (M.M.); (G.P.)
| | - Peter Gselman
- Interkorn Ltd., Gančani 94, 9231 Beltinci, Slovenia;
| | - Miran Mozetič
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (M.M.); (G.P.)
| | - Gregor Primc
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (M.M.); (G.P.)
| |
Collapse
|
10
|
Gimenez AV, Kho KW, Keyes TE. Nano-substructured plasmonic pore arrays: a robust, low cost route to reproducible hierarchical structures extended across macroscopic dimensions. NANOSCALE ADVANCES 2020; 2:4740-4756. [PMID: 36132883 PMCID: PMC9417107 DOI: 10.1039/d0na00527d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/11/2020] [Indexed: 05/17/2023]
Abstract
Plasmonic nanostructures are important across diverse applications from sensing to renewable energy. Periodic porous array structures are particularly attractive because such topography offers a means to encapsulate or capture solution phase species and combines both propagating and localised plasmonic modes offering versatile addressability. However, in analytical spectroscopic applications, periodic pore arrays have typically reported weaker plasmonic signal enhancement compared to particulate structures. This may be addressed by introducing additional nano-structuring into the array to promote plasmonic coupling that promotes electric field-enhancement, whilst retaining pore structure. Introducing nanoparticle structures into the pores is a useful means to promote such coupling. However, current approaches rely on either expensive top-down methods or on bottom-up methods that yield random particle placement and distribution. This report describes a low cost, top-down technique for preparation of nano-sub-structured plasmonic pore arrays in a highly reproducible manner that can be applied to build arrays extending over macroscopic areas of mm2 to cm2. The method exploits oxygen plasma etching, under controlled conditions, of the cavity encapsulated templating polystyrene (PS) spheres used to create the periodic array. Subsequent metal deposition leads to reproducible nano-structuring within the wells of the pore array, coined in-cavity nanoparticles (icNPs). This approach was demonstrated across periodic arrays with pore/sphere diameters ranging from 500 nm to 3 μm and reliably improved the plasmonic properties of the substrate across all array dimensions compared to analogous periodic arrays without the nano-structuring. The enhancement factors achieved for metal enhanced emission and surface enhanced Raman spectroscopy depended on the substrate dimensions, with the best performance achieved for nanostructured 2 μm diameter pore arrays, where a more than 104 improvement over Surface Enhanced Raman Spectroscopy (SERS) and 200-fold improvement over Metal Enhanced Fluorescence (MEF) were observed for these substrates compared with analogous unmodified pore arrays. The experiments were supported by Finite-Difference Time-Domain (FDTD) calculations used to simulate the electric field distribution as a function of pore nano-structuring.
Collapse
Affiliation(s)
- Aurélien V Gimenez
- School of Chemical Sciences & National Centre for Sensor Research, Dublin City University Dublin 9 Ireland
| | - Kiang W Kho
- School of Chemical Sciences & National Centre for Sensor Research, Dublin City University Dublin 9 Ireland
| | - Tia E Keyes
- School of Chemical Sciences & National Centre for Sensor Research, Dublin City University Dublin 9 Ireland
| |
Collapse
|
11
|
Xu J, Moon H, Xu J, Lim J, Fischer T, McNally HA, Sintim HO, Lee H. One-Step Large-Scale Nanotexturing of Nonplanar PTFE Surfaces to Induce Bactericidal and Anti-inflammatory Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26893-26904. [PMID: 32437600 PMCID: PMC8176282 DOI: 10.1021/acsami.0c04729] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Here we demonstrate a simple and scalable nanotexturing method for both planar (films) and nonplanar (tubes) polytetrafluoroethylene (PTFE) surfaces using a commercial desktop oxygen plasma etcher. The simple process can generate semiordered nanopillar structures on both tubular and planar samples with high radial and axial uniformity. We found that the resulting surfaces exhibit good in vitro bactericidal and in vivo anti-inflammatory properties. When tested against Staphylococcus aureus, the nanotextured surfaces showed significantly decreased live bacteria coverage and increased dead bacteria coverage, demonstrating significant bactericidal functionality. Moreover, the etched planar PTFE films exhibited better healing and inflammatory responses in the subcutis of C57BL/6 mice over 7 and 21 days, evidenced by a thinner inflammatory band, lower collagen deposition, and decreased macrophage infiltration. Our results suggest the possibility of using this simple process to generate large scale biomimetic nanotextured surfaces with good antibiofouling properties to enhance the functionality of many implantable and other biomedical devices.
Collapse
Affiliation(s)
- Jian Xu
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haesoo Moon
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinjia Xu
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jongcheon Lim
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, Indiana 47907, United States
| | - Thomas Fischer
- School of Engineering Technology, Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Helen A McNally
- School of Engineering Technology, Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Herman O Sintim
- Department of Chemistry, Center for Drug Discovery, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
12
|
Plasma-Polymer-Fluorocarbon Thin Film Coated Nanostructured-Polyethylene Terephthalate Surface with Highly Durable Superhydrophobic and Antireflective Properties. Polymers (Basel) 2020; 12:polym12051026. [PMID: 32370004 PMCID: PMC7285045 DOI: 10.3390/polym12051026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 11/17/2022] Open
Abstract
Herein, an antireflection and superhydrophobic film was obtained by uniformly forming nanostructures on the surface of polyethylene terephthalate (PET) substrate using oxygen plasma without a pattern mask and coating plasma-polymer-fluorocarbon (PPFC) on the nanostructured surface by mid-range frequency sputtering. PPFC/nanostructured-PET showed a reflectance of 4.2%, which is 56% lower than that of the PET film. Haze was also improved. Nanostructured-PET exhibited a superhydrophilic surface due to plasma deformation and a superhydrophobic surface could be realized by coating PPFC on the nanostructured surface. The PPFC coating prevented the aging of polymer film nanostructures and showed excellent durability in a high-temperature and high-humidity environment. It exhibited excellent flexibility to maintain the superhydrophobic surface, even at a mechanical bending radius of 1 mm, and could retain its properties even after repeated bending for 10,000 times.
Collapse
|
13
|
Chang YL, Wei TC, Liu YL. Electrochemical activation of polymer chains mediated with radical transfer reactions. Chem Commun (Camb) 2020; 56:2626-2629. [PMID: 32016254 DOI: 10.1039/c9cc09768f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This work demonstrates a general and effective approach to activate inert polymer chains for further reactions through electrochemically driven radical generation and radical transfer reactions. The generated radical-containing polymer chains show capacity for further polymer reactions and preparation of polymer hybrids.
Collapse
Affiliation(s)
- Yu-Ling Chang
- Department of Chemical Engineering, National Tsing Hua University, #101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | | | | |
Collapse
|
14
|
Single-step plasma-induced hierarchical structures for tunable water adhesion. Sci Rep 2020; 10:874. [PMID: 31964899 PMCID: PMC6972901 DOI: 10.1038/s41598-019-56787-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/12/2019] [Indexed: 11/23/2022] Open
Abstract
Smart surfaces in nature have been extensively studied to identify their hierarchical structures in micro-/nanoscale to elucidate their superhydrophobicity with varying water adhesion. However, mimicking hybrid features in multiscale requires complex, multi-step processes. Here, we proposed a one-step process for the fabrication of hierarchical structures composed in micro-/nanoscales for superhydrophobic surfaces with tunable water adhesion. Hierarchical patterns were fabricated using a plasma-based selective etching process assisted by a dual scale etching mask. As the metallic mesh is placed above the substrate, it serves the role of dual scale etching masks on the substrate: microscale masks to form the micro-wall network and nanoscale masks to form high-aspect-ratio nanostructures. The micro-walls and nanostructures can be selectively hybridized by adjusting the gap distance between the mesh and the target surface: single nanostructures on a large area for a larger gap distance and hybrid/hierarchical structures with nanostructures nested on micro-walls for a shorter gap distance. The hierarchically nanostructured surface shows superhydrophobicity with low water adhesion, while the hybrid structured surface becomes become superhydrophobic with high adhesion. These water adhesion tunable surfaces were explored for water transport and evaporation. Additionally, we demonstrated a robust superhydrophobic surface with anti-reflectance over a large area.
Collapse
|
15
|
Satapathy MK, Manga YB, Ostrikov KK, Chiang WH, Pandey A, R L, Nyambat B, Chuang EY, Chen CH. Microplasma Cross-Linked Graphene Oxide-Gelatin Hydrogel for Cartilage Reconstructive Surgery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:86-95. [PMID: 31809008 DOI: 10.1021/acsami.9b14073] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Herein, we report the cartilage tissue engineering application of nanographene oxide (NGO)-reinforced gelatin hydrogel fabricated by utilizing a microplasma-assisted cross-linking method. NGO sheets with surface functionalities were introduced to enhance the mechanical and biomedical properties of gelatin-based hydrogels. Highly energetic reactive radicals were generated from the nonthermal plasma (NTP), which is used to facilitate the cross-linking and polymerization during the polymeric hydrogel fabrication. The NTP treatment substantially reinforced a small amount (1 wt %) of NGO into the gelatin hydrogel. Systematic material characterization thus shows that the fabricated hydrogel possessed unique properties such as moderate surface roughness and adhesiveness, suitable pores sizes, temperature-dependent viscoelasticity, and controllable degradability. In vitro studies demonstrated that the as-fabricated hydrogel exhibited excellent cell-material interactions with SW 1353 cells, bone marrow-derived mesenchymal stem cells, and a rat chondrocyte cell line, thereby exhibiting appropriate cytocompatibility for cartilage tissue engineering applications. Furthermore, an in vivo study indicated that the formation of a healthy hyaline cartilage after the microfracture was enhanced by the fabricated hydrogel implant, offering a potential biocompatible platform for microfracture-based cartilage reconstructive surgery.
Collapse
Affiliation(s)
| | | | - Kostya Ken Ostrikov
- School of Physics and Chemistry , Queensland University of Technology , Brisbane , QLD 4000 , Australia
| | - Wei-Hung Chiang
- Department of Chemical Engineering , National Taiwan University of Science and Technology , Taipei 10617 , Taiwan
| | | | | | | | - Er-Yuan Chuang
- Cell Physiology and Molecular Image Research Center , Taipei Medical University-Wan Fang Hospital , 111, Sec. 3, Xinglong Road , Wenshan District, Taipei 116 , Taiwan
| | - Chih-Hwa Chen
- Department of Orthopedics , Taipei Medical University-Shuang Ho Hospital , 291 Zhongzheng Road , Zhonghe District, New Taipei City 23561 , Taiwan
| |
Collapse
|
16
|
Abstract
Nano-texturing of polymers offers the possibility to drive important surface properties such as wettability and anti-reflectivity. Interestingly, plasma can lead to the desired characteristic of nanofeatures through a one step process based onto dry plasma etching. In this work, the literature concerning such plasma nano-texturing will be reviewed for different polymers, and in particular, for applications based upon wettability control. Then the mechanism of such processes will be commented upon, with a glance to the different characteristics of the polymers. Finally, some hints onto a feasible approach to plasma nano-texturing of the different polymers will be given.
Collapse
|
17
|
Frøvik N, Greve M, Helseth L. Nanostructures and wetting properties controlled by reactive ion etching of fluorinated ethylene propylene. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Miroshnichenko S, Timofeeva V, Permykova E, Ershov S, Kiryukhantsev-Korneev P, Dvořaková E, Shtansky DV, Zajíčková L, Solovieva A, Manakhov A. Plasma-Coated Polycaprolactone Nanofibers with Covalently Bonded Platelet-Rich Plasma Enhance Adhesion and Growth of Human Fibroblasts. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E637. [PMID: 31010178 PMCID: PMC6523319 DOI: 10.3390/nano9040637] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
Biodegradable nanofibers are extensively employed in different areas of biology and medicine, particularly in tissue engineering. The electrospun polycaprolactone (PCL) nanofibers are attracting growing interest due to their good mechanical properties and a low-cost structure similar to the extracellular matrix. However, the unmodified PCL nanofibers exhibit an inert surface, hindering cell adhesion and negatively affecting their further fate. The employment of PCL nanofibrous scaffolds for wound healing requires a certain modification of the PCL surface. In this work, the morphology of PCL nanofibers is optimized by the careful tuning of electrospinning parameters. It is shown that the modification of the PCL nanofibers with the COOH plasma polymers and the subsequent binding of NH2 groups of protein molecules is a rather simple and technologically accessible procedure allowing the adhesion, early spreading, and growth of human fibroblasts to be boosted. The behavior of fibroblasts on the modified PCL surface was found to be very different when compared to the previously studied cultivation of mesenchymal stem cells on the PCL nanofibrous meshes. It is demonstrated by X-ray photoelectron spectroscopy (XPS) that the freeze-thawed platelet-rich plasma (PRP) immobilization can be performed via covalent and non-covalent bonding and that it does not affect biological activity. The covalently bound components of PRP considerably reduce the fibroblast apoptosis and increase the cell proliferation in comparison to the unmodified PCL nanofibers or the PCL nanofibers with non-covalent bonding of PRP. The reported research findings reveal the potential of PCL matrices for application in tissue engineering, while the plasma modification with COOH groups and their subsequent covalent binding with proteins expand this potential even further. The use of such matrices with covalently immobilized PRP for wound healing leads to prolonged biological activity of the immobilized molecules and protects these biomolecules from the aggressive media of the wound.
Collapse
Affiliation(s)
- Svetlana Miroshnichenko
- Scientific Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russia.
- Institute of Biochemistry ⁻ subdivision of the FRC FTM, 2 Timakova str., 630117 Novosibirsk, Russia.
| | - Valeriia Timofeeva
- Scientific Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russia.
| | - Elizaveta Permykova
- Scientific Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russia.
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology "MISiS", Leninsky pr. 4, 119049 Moscow, Russia.
| | - Sergey Ershov
- Physics and Materials Science Research Unit, Laboratory for the Physics of Advanced Materials, University of Luxembourg, 162a, avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg.
| | - Philip Kiryukhantsev-Korneev
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology "MISiS", Leninsky pr. 4, 119049 Moscow, Russia.
| | - Eva Dvořaková
- CEITEC-Central European Institute of Technology-Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Dmitry V Shtansky
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology "MISiS", Leninsky pr. 4, 119049 Moscow, Russia.
| | - Lenka Zajíčková
- CEITEC-Central European Institute of Technology-Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Anastasiya Solovieva
- Scientific Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russia.
| | - Anton Manakhov
- Scientific Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russia.
| |
Collapse
|
19
|
Park CS, Jung EY, Jang HJ, Bae GT, Shin BJ, Tae HS. Synthesis and Properties of Plasma-Polymerized Methyl Methacrylate via the Atmospheric Pressure Plasma Polymerization Technique. Polymers (Basel) 2019; 11:E396. [PMID: 30960380 PMCID: PMC6473653 DOI: 10.3390/polym11030396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/11/2019] [Accepted: 02/22/2019] [Indexed: 01/21/2023] Open
Abstract
Pinhole free layers are needed in order to prevent oxygen and water from damaging flexible electrical and bio-devices. Although polymerized methyl methacrylate (polymethyl methacrylate, PMMA) for the pinhole free layer has been studied extensively in the past, little work has been done on synthesizing films of this material using atmospheric pressure plasma-assisted electro-polymerization. Herein, we report the synthesis and properties of plasma-PMMA (pPMMA) synthesized using the atmospheric pressure plasma-assisted electro-polymerization technique at room temperature. According to the Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and time of flight-secondary ion mass spectrometry (ToF-SIMS) results, the characteristic peaks from the pPMMA polymer chain were shown to have been detected. The results indicate that the percentage of hydrophobic groups (C⁻C and C⁻H) is greater than that of hydrophilic groups (C⁻O and O⁻C=O). The field emission-scanning electron microscope (FE-SEM) and thickness measurement results show that the surface morphology is quite homogenous and amorphous in nature, and the newly proposed pPMMA film at a thickness of 1.5 µm has high transmittance (about 93%) characteristics. In addition, the results of water contact angle tests show that pPMMA thin films can improve the hydrophobicity.
Collapse
Affiliation(s)
- Choon-Sang Park
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea.
| | - Eun Young Jung
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea.
| | - Hyo Jun Jang
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea.
| | - Gyu Tae Bae
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea.
| | - Bhum Jae Shin
- Department of Electronics Engineering, Sejong University, Seoul 05006, Korea.
| | - Heung-Sik Tae
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
20
|
Lin WC, Mohd Razali NA. Temporary Wettability Tuning of PCL/PDMS Micro Pattern Using the Plasma Treatments. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E644. [PMID: 30791678 PMCID: PMC6416562 DOI: 10.3390/ma12040644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/01/2019] [Accepted: 02/16/2019] [Indexed: 11/17/2022]
Abstract
Surface wettability plays an important role in determining the function of a wound dressing. Dressings with hydrophobic surfaces are suitable for bacterial adsorption, however, a hydrophilic surface is needed to improve cell attachment for most anchorage-dependent cell types. Furthermore, the hydrophobicity/hydrophilicity of the surface can be used to direct cellular processes such as cell initial attachment, adhesion, and migration during wound healing. Thus, a surface with an ability to switch their surface wettability improves the practicality of the dressing. In this study, we propose a temporary surface wettability tuning for surface patterning utilizing plasma treatment. Polycaprolactone (PCL) and polydimethylsiloxane (PDMS) surfaces were treated with tetrafluoromethane (CF₄), sulphur hexafluoride (SF₆), and oxygen (O₂) plasma, and the effects on the surface wettability, roughness, and chemical composition were investigated. Based on the contact angle measurement, CF₄ plasma altered surface wettability of PCL and PDMS films to hydrophobic and hydrophilic, respectively. After CF₄ treatment, better attachment of primary mouse embryonic fibroblast cell (3T3) was observed on the treated PDMS surface. Embedding PCL into PDMS generated a hydrophobic-hydrophilic pattern mixture surface, which offers great potential in the tissue engineering field such as cell patterning and guidance.
Collapse
Affiliation(s)
- Wei-Chih Lin
- Department of Mechanical and Electro-mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Nur Adila Mohd Razali
- Department of Mechanical and Electro-mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
21
|
González-Henríquez CM, Veliz-Silva DF, Sarabia-Vallejos MA, Del Campo-García A, Rodríguez-Hernández J. Micrometric Wrinkled Patterns Spontaneously Formed on Hydrogel Thin Films via Argon Plasma Exposure. Molecules 2019; 24:E751. [PMID: 30791473 PMCID: PMC6412580 DOI: 10.3390/molecules24040751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 11/16/2022] Open
Abstract
The generation of microstructured patterns on the surface of a specific polymeric material could radically improve their performance in a particular application. Most of the interactions with the environment occur at the material interface; therefore, increasing the exposed active surface considerably improves their range of application. In this article, a simple and reliable protocol to form spontaneous wrinkled patterns using a hydrogel layer is reported. For this purpose, we took advantage of the doctor blade technique in order to generate homogenous films over solid substrates with controlled thickness and large coverage. The hydrogel wrinkle formation involves a prepolymerization step which produces oligomers leading to a solution with increased viscosity, enough for doctor blade deposition. Subsequently, the material was exposed to vacuum and plasma to trigger wrinkled pattern formation. Finally, a UV-polymerization treatment was applied to fix the undulations on top. Interestingly, the experimental parameters allowed us to finely tune the wrinkle characteristics (period, amplitude, and orientation). For this study, two main aspects were explored. The first one is related to the role of the substrate functionalization on the wrinkle formation. The second study correlates the deswelling time and its relationship with the dimensions and distribution of the wrinkle pattern. In the first batch, four different 3-(trimethoxysilyl)propyl methacrylate (TSM) concentrations were used to functionalize the substrate in order to enhance the adhesion between hydrogel film and the substrate. The wrinkles formed were characterized in terms of wrinkle amplitude, wavelength, pattern roughness, and surface Young modulus, by using AFM in imaging and force spectroscopy modes. Moreover, the chemical composition of the hydrogel film cross-section and the effect of the plasma treatment were analyzed with confocal Raman spectroscopy. These results demonstrated that an oxidized layer was formed on top of the hydrogel films due to the exposure to an argon plasma.
Collapse
Affiliation(s)
- Carmen M González-Henríquez
- Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Departamento de Química, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Santiago 7800003, Chile.
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, Santiago 8940577, Chile.
| | - Diego F Veliz-Silva
- Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Departamento de Química, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Santiago 7800003, Chile.
| | - Mauricio A Sarabia-Vallejos
- Escuela de Ingeniería, Departamento de Ingeniería Estructural y Geotecnia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile.
- Escuela de Ingeniería, Instituto de Ingeniería Biológica y Médica, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile.
| | - Adolfo Del Campo-García
- Ceramics for Smart Systems Group, Departamento de Electrocerámicos, Instituto de Cerámica y Vidrio- Consejo Superior de Investigaciones Científicas (ICV-CSIC), Kelsen 5, Madrid 28049, Spain.
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group. Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Departamento de Química Macromolecular Aplicada, Juan de la Cierva 3, Madrid 28006, Spain.
| |
Collapse
|
22
|
Jurney PL, Anderson DEJ, Pohan G, Yim EKF, Hinds MT. Reactive Ion Plasma Modification of Poly(Vinyl-Alcohol) Increases Primary Endothelial Cell Affinity and Reduces Thrombogenicity. Macromol Biosci 2018; 18:e1800132. [PMID: 30256533 PMCID: PMC6644031 DOI: 10.1002/mabi.201800132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 11/12/2022]
Abstract
Bulk material properties and luminal surface interaction with blood determine the clinical viability of vascular grafts, and reducing intimal hyperplasia is necessary to improve their long-term patency. Here, the authors report that the surface of a biocompatible hydrogel material, poly(vinyl alcohol) (PVA) can be altered by exposing it to reactive ion plasma (RIP) in order to increase primary endothelial cell attachment. The power and the carrier gas of the RIP treatment are varied and the resultant surface nitrogen, water contact angle, as well as the ability of the RIP-treated surfaces to support primary endothelial colony forming cells is characterized. Additionally, in a clinically relevant shunt model, the amounts of platelet and fibrin attachment to the surface were quantified during exposure to non-anticoagulated blood. Treatments with all carrier gases resulted in an increase in the surface nitrogen. Treating PVA with O2 , N2 , and Ar RIP increased affinity to primary endothelial colony forming cells. The RIP treatments did not increase the thrombogenicity compared to untreated PVA and had significantly less platelet and fibrin attachment compared to the current clinical standard of expanded polytetrafluoroethylene (ePTFE). These findings indicate that RIP-treatment of PVA could lead to increased patency in synthetic vascular grafts.
Collapse
Affiliation(s)
- Patrick L Jurney
- Dr. P. L. Jurney, Dr. D. E. J. Anderson, Prof. M. T. Hinds, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Deirdre E J Anderson
- Dr. P. L. Jurney, Dr. D. E. J. Anderson, Prof. M. T. Hinds, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Grace Pohan
- G. Pohan, Prof. E. K. F. Yim, Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Evelyn K F Yim
- G. Pohan, Prof. E. K. F. Yim, Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Monica T Hinds
- Dr. P. L. Jurney, Dr. D. E. J. Anderson, Prof. M. T. Hinds, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
23
|
Kan CW, Man WS. Surface Characterisation of Atmospheric Pressure Plasma Treated Cotton Fabric-Effect of Operation Parameters. Polymers (Basel) 2018; 10:E250. [PMID: 30966285 PMCID: PMC6414910 DOI: 10.3390/polym10030250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 11/16/2022] Open
Abstract
The surface of cotton fibre was modified by atmospheric pressure plasma treatment (APPT), using gas as the carrier. Effects of variations in four operational parameters, discharge power, oxygen flow rate, jet-to-substrate distance and speed of the jet movement were examined. Morphology of surface of cotton fabrics was examined by generating Scanning Electron Microscopy (SEM) images. Elementary composition of the surface of the fabric was examined by X-ray Photoelectron Spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy-Attenuated. Total Internal Reflectance (FTIR-ATR) was used for examining functionality of the surface. In this study, we revealed that the operational parameters would physical and chemically after the surface characteristics of the cotton fibre. Physically, cracks and grooves were noted in the cotton fibre surface after APPT. Chemically, the oxygen content in the cotton fibre surface was increased after APPT. When the O/C ratio is taken into consideration, the surface oxidation was a steady effect in applying APPT for treating cotton fibre in this study.
Collapse
Affiliation(s)
- Chi-Wai Kan
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Wai-Shan Man
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
24
|
Solovieva A, Miroshnichenko S, Kovalskii A, Permyakova E, Popov Z, Dvořáková E, Kiryukhantsev-Korneev P, Obrosov A, Polčak J, Zajíčková L, Shtansky DV, Manakhov A. Immobilization of Platelet-Rich Plasma onto COOH Plasma-Coated PCL Nanofibers Boost Viability and Proliferation of Human Mesenchymal Stem Cells. Polymers (Basel) 2017; 9:E736. [PMID: 30966035 PMCID: PMC6418517 DOI: 10.3390/polym9120736] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022] Open
Abstract
The scaffolds made of polycaprolactone (PCL) are actively employed in different areas of biology and medicine, especially in tissue engineering. However, the usage of unmodified PCL is significantly restricted by the hydrophobicity of its surface, due to the fact that its inert surface hinders the adhesion of cells and the cell interactions on PCL surface. In this work, the surface of PCL nanofibers is modified by Ar/CO₂/C₂H₄ plasma depositing active COOH groups in the amount of 0.57 at % that were later used for the immobilization of platelet-rich plasma (PRP). The modification of PCL nanofibers significantly enhances the viability and proliferation (by hundred times) of human mesenchymal stem cells, and decreases apoptotic cell death to a normal level. According to X-ray photoelectron spectroscopy (XPS), after immobilization of PRP, up to 10.7 at % of nitrogen was incorporated into the nanofibers surface confirming the grafting of proteins. Active proliferation and sustaining the cell viability on nanofibers with immobilized PRP led to an average number of cells of 258 ± 12.9 and 364 ± 34.5 for nanofibers with ionic and covalent bonding of PRP, respectively. Hence, our new method for the modification of PCL nanofibers with PRP opens new possibilities for its application in tissue engineering.
Collapse
Affiliation(s)
- Anastasiya Solovieva
- Scientific Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russia; (A.S.); (S.M.)
- National University of Science and Technology “MISiS”, Leninsky pr. 4, 119049 Moscow, Russia; (A.K.); (E.P.); (Z.P.); (P.K.-K.), (D.V.S.)
| | - Svetlana Miroshnichenko
- Scientific Institute of Clinical and Experimental Lymphology-Branch of the ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russia; (A.S.); (S.M.)
- Research Institute of Biochemistry, 2 Timakova str., 630117 Novosibirsk, Russia
| | - Andrey Kovalskii
- National University of Science and Technology “MISiS”, Leninsky pr. 4, 119049 Moscow, Russia; (A.K.); (E.P.); (Z.P.); (P.K.-K.), (D.V.S.)
| | - Elizaveta Permyakova
- National University of Science and Technology “MISiS”, Leninsky pr. 4, 119049 Moscow, Russia; (A.K.); (E.P.); (Z.P.); (P.K.-K.), (D.V.S.)
| | - Zakhar Popov
- National University of Science and Technology “MISiS”, Leninsky pr. 4, 119049 Moscow, Russia; (A.K.); (E.P.); (Z.P.); (P.K.-K.), (D.V.S.)
| | - Eva Dvořáková
- RG Plasma Technologies, CEITEC–Central European Institute of Technology, Masaryk University, Purkyňova 123, 61200 Brno, Czech Republic; (E.D.); (L.Z.)
| | - Philip Kiryukhantsev-Korneev
- National University of Science and Technology “MISiS”, Leninsky pr. 4, 119049 Moscow, Russia; (A.K.); (E.P.); (Z.P.); (P.K.-K.), (D.V.S.)
| | - Aleksei Obrosov
- Chair of Physical Metallurgy and Materials Technology, Brandenburg Technical University, 03046 Cottbus, Germany;
| | - Josef Polčak
- CEITEC-Central European Institute of Technology, Brno University of Technology, Technická 3058/10, 61600 Brno, Czech Republic;
- Institute of Physical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| | - Lenka Zajíčková
- RG Plasma Technologies, CEITEC–Central European Institute of Technology, Masaryk University, Purkyňova 123, 61200 Brno, Czech Republic; (E.D.); (L.Z.)
| | - Dmitry V. Shtansky
- National University of Science and Technology “MISiS”, Leninsky pr. 4, 119049 Moscow, Russia; (A.K.); (E.P.); (Z.P.); (P.K.-K.), (D.V.S.)
| | - Anton Manakhov
- National University of Science and Technology “MISiS”, Leninsky pr. 4, 119049 Moscow, Russia; (A.K.); (E.P.); (Z.P.); (P.K.-K.), (D.V.S.)
| |
Collapse
|
25
|
Park CS, Jung EY, Kim DH, Kim DY, Lee HK, Shin BJ, Lee DH, Tae HS. Atmospheric Pressure Plasma Polymerization Synthesis and Characterization of Polyaniline Films Doped with and without Iodine. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1272. [PMID: 29113129 PMCID: PMC5706219 DOI: 10.3390/ma10111272] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 11/16/2022]
Abstract
Although polymerized aniline (polyaniline, PANI) with and without iodine (I₂) doping has already been extensively studied, little work has been done on the synthesis of PANI films using atmospheric pressure plasma (APP) deposition. Therefore, this study characterized pure and I₂-doped PANI films synthesized using an advanced APP polymerization system. The I₂ doping was conducted ex-situ and using an I₂ chamber method following the APP deposition. The pure and I₂-doped PANI films were structurally analyzed using field emission scanning electron microscope (FE-SEM), atomic force microscope (AFM), X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and time of flight secondary ion mass spectrometry (ToF-SIMS) studies. When increasing the I₂ doping time, the plane and cross-sectional SEM images showed a decrease in the width and thickness of the PANI nanofibers, while the AFM results showed an increase in the roughness and grain size of the PANI films. Moreover, the FT-IR, XPS, and ToF-SIMS results showed an increase in the content of oxygen-containing functional groups and C=C double bonds, yet decrease in the C-N and C-H bonds when increasing the I₂ doping time due to the reduction of hydrogen in the PANI films via the I₂. To check the suitability of the conductive layer for polymer display applications, the resistance variations of the PANI films grown on the interdigitated electrode substrates were also examined according to the I₂ doping time.
Collapse
Affiliation(s)
- Choon-Sang Park
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea.
| | - Eun Young Jung
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea.
| | - Dong Ha Kim
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea.
| | - Do Yeob Kim
- ICT Materials and Components Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Korea.
| | - Hyung-Kun Lee
- ICT Materials and Components Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Korea.
| | - Bhum Jae Shin
- Department of Electronics Engineering, Sejong University, Seoul 05006, Korea.
| | - Dong Ho Lee
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea.
| | - Heung-Sik Tae
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|