1
|
Soubam T, Gupta A, Jamari SS. Eco-friendly bio-based adhesive for plywood from natural rubber latex (NRL)-blended isocyanate cross-linked starch. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124610-124618. [PMID: 35610450 DOI: 10.1007/s11356-022-20788-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Synthetic adhesives used in the production of plywood are a matter of concern because of the emission of carcinogenic gas formaldehyde, increased environmental pollution, and the depletion of fossil fuels. In this study, a bioadhesive composed of natural rubber latex (NRL) and rice starch was developed. However, rice starch has low moisture resistance, resulting in low adhesion. Thus, to enhance the effectiveness of NRL-blended rice starch-based bioadhesive, rice starch was cross-linked with polymeric 4,4″-diphenylmethane diisocyanate (pMDI) resin, which is an environment-friendly, formaldehyde free, and moisture resistant that is highly compatible with starch. The chemical interaction, viscosity, solid content, and gel time of the developed NRL-isocyanate cross-linked rice starch-based bioadhesive was investigated. The efficacy of the formulated bioadhesive was demonstrated by the fabrication of plywood. The presence of isocyanate and urethane capabilities in the bioadhesive formulations was confirmed by Fourier transform infrared spectroscopy (FTIR). The bioadhesive type Iso-A was discovered to have the highest viscosity of 8270 mPa.s, whereas Iso-B has the shortest gel time of 3.46 min and the highest solid content of 44%; the higher solid content accelerates the gel time. In terms of physical and mechanical properties of plywood, Iso-B has the lowest thickness swelling (TS) value of 13%, lowest water absorption (WA) value of 52% and shear strength value of 1.92 MPa, which corresponds to the ISO 12466-2-2007 standard requirements. Based on the results, NRL-blended isocyanate starch-based bioadhesive could be a good potential raw material for eco-friendly plywood industries with adequate accuracy.
Collapse
Affiliation(s)
- Triveni Soubam
- Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia
| | - Arun Gupta
- Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia.
| | - Saidatul Shima Jamari
- Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia
| |
Collapse
|
2
|
Jarensungnen C, Jetsrisuparb K, Phanthanawiboon S, Theerakulpisut S, Hiziroglu S, Knijnenburg JTN, Okhawilai M, Kasemsiri P. Development of eco-friendly antifungal and antibacterial adhesive derived from modified cassava starch waste/polyvinyl alcohol containing green synthesized nano-silver. Sci Rep 2023; 13:13355. [PMID: 37587152 PMCID: PMC10432455 DOI: 10.1038/s41598-023-40305-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
Environmentally friendly biopolymer-based wood adhesives are an inevitable trend of wood product development to replace the use of harmful formaldehyde-based adhesives. In this research, a new eco-friendly modified cassava starch waste-based adhesive via carboxymethylation (CMS), and blending with polyvinyl alcohol (PVA), tannic acid (TA) and green synthesized silver nanoparticles (AgNPs) was prepared. The effects of TA content on green synthesis of AgNPs (Ag-TA) and bio-adhesive nanocomposite properties were investigated. The use of 5 wt% TA for AgNPs synthesis (Ag-TA-5) resulted in a uniform particle size distribution. The plywood prepared with Ag-TA-5 provided the highest dry and wet shear strength at 1.95 ± 0.11 MPa and 1.38 ± 0.3 MPa, respectively. The water absorption and thickness swelling of this plywood remarkably decreased up to 10.99% and 6.79%, respectively. More importantly, the presence of Ag-TA in CMS/PVA adhesive successfully inhibited the invasion of mold and bacteria. Based on the cyclic delamination test, the adhesive bond durability of bio-adhesive containing Ag-TA-5 could meet the requirement of the AITC Test T110-2007 and was comparable to commercial adhesives. The added advantage of the prepared bio-adhesive was its synthesis from agro-waste products and possible economically viable production at industrial level.
Collapse
Affiliation(s)
- Chaloton Jarensungnen
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kaewta Jetsrisuparb
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Supranee Phanthanawiboon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Somnuk Theerakulpisut
- Energy Management and Conservation Office, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Salim Hiziroglu
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | - Manunya Okhawilai
- Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Bangkok, 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pornnapa Kasemsiri
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
3
|
Jiang K, Wu Q, Chen Y, Fan D, Chu F. A high-performance bio-based adhesive comprising soybean meal, silk fibroin, and tannic acid inspired by marine organisms. Int J Biol Macromol 2023:125095. [PMID: 37245746 DOI: 10.1016/j.ijbiomac.2023.125095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
The sustainable development of high-performance bio-based adhesives is both important and challenging for the wood industry. Herein, inspired by the hydrophobic property of barnacle cement protein and the adhesive property of mussel adhesion protein, a water-resistant bio-based adhesive was developed from silk fibroin (SF) rich in hydrophobic β-sheet structures and tannic acid (TA) rich in catechol groups as reinforcing components and soybean meal molecules rich in reactive groups as substrates. SF and soybean meal molecules formed a water-resistant tough structure through a multiple cross-linking network including covalent bonds, hydrogen bonds, and dynamic borate ester bonds constructed by TA and borax. The wet bond strength for the developed adhesive achieved 1.20 MPa, exhibiting its excellent application capabilities in humid environments. The storage period of the developed adhesive (72 h) was 3 times that of pure soybean meal adhesive owing to the enhanced mold resistance of the adhesive by TA. Furthermore, the developed adhesive demonstrated excellent biodegradability (45.45 % weight loss in 30 days) and flame retardancy (limiting oxygen index of 30.1 %). Overall, this environmental and efficient biomimetic strategy provides a promising and feasible route to develop high-performance bio-based adhesives.
Collapse
Affiliation(s)
- Ke Jiang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Qiao Wu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuan Chen
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Dongbin Fan
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Fuxiang Chu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
4
|
Li Y, Cai L, Chen H, Liu Z, Zhang X, Li J, Shi SQ, Li J, Gao Q. Preparation of a high bonding performance soybean protein-based adhesive with low crosslinker addition via microwave chemistry. Int J Biol Macromol 2022; 208:45-55. [PMID: 35301001 DOI: 10.1016/j.ijbiomac.2022.03.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 11/05/2022]
Abstract
Human health and environmental protection demand wood-based panel industry for innovative soy-based adhesives with high production efficiency, straightforward synthesis processes, non-toxicity, and high bonding performance. A simple and efficient microwave pretreatment process and low addition of bio-derived crosslinking agent was used in this study to prepare a non-toxic and high-bonding performance soybean protein-based adhesive. After 4 min of microwave pretreatment time, the complex quaternary structure of soybean protein molecule unfolds, the soybean protein disperses evenly and stably, and active groups of soybean protein molecules are exposed. After adding 3.85% crosslinking agent, the moisture absorption rate of the soybean protein-based adhesive decreases by 41.77%, the residual rate increases by 3.68%, and the wet shear strength of the resultant plywood increases to 1.12 MPa, which satisfies requirement of interior use plywood. Compared with previously reported soy-based adhesives, this adhesive is dependent on fewer chemical reagents, but has good bonding performance. The 204.41% of relative cell viability indicates the resultant adhesive was non-toxic. The proposed high-efficiency, high-performance, non-toxic biomass adhesive has great prospects for the industrial application.
Collapse
Affiliation(s)
- Yue Li
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Li Cai
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Hui Chen
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Zheng Liu
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Xin Zhang
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Jingchao Li
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Sheldon Q Shi
- College of Engineering Department of Mechanical and Energy Engineering, University of North Texas, 3940 North Elm street, Suite F101P, Denton, TX 76207-7102, USA
| | - Jianzhang Li
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Qiang Gao
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China..
| |
Collapse
|
5
|
Tang M, Zhu Z, Yang K, Yang P, Dong Y, Wu Y, Chen M, Zhou X. Cellulose nanocrystals concentration and oil-water ratio for solid-liquid controllable emulsion polymerization. Int J Biol Macromol 2021; 191:414-421. [PMID: 34562534 DOI: 10.1016/j.ijbiomac.2021.09.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022]
Abstract
Stabilities of cellulose Pickering emulsions are of great importance to utilize them effectively, but influenced by their complex compositions, such as, colloidal particles, oil phases and water phases. In this work, solid-liquid controllable polymerization products could obtain by adjusting cellulose nanocrystals (CNCs) concentration and vinyl acetate (VAc)-water ratio. The emulsions in zone Ӏ (w/o) and II (o/w) of the three-phase diagram were selected for researching. The polymerization emulsions in zone II illustrated the o/w ratio played a more important role than CNCs concentration in the storage stability and practicality of the polymerized emulsion; The polymer in zone Ӏ showed a large number of porous structures. This is an innovative method that different forms of target products are obtained through the guidance of three-phase diagram, which not only broadens the application field, but also applies to other Pickering emulsion systems.
Collapse
Affiliation(s)
- Miao Tang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Ziqi Zhu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Kai Yang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Pei Yang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Yue Dong
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Yakun Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Minzhi Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China.
| | - Xiaoyan Zhou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, China; International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China.
| |
Collapse
|
6
|
Jiang K, Lei Z, Yi M, Lv W, Jing M, Feng Q, Tan H, Chen Y, Xiao H. Improved performance of soy protein adhesive with melamine-urea-formaldehyde prepolymer. RSC Adv 2021; 11:27126-27134. [PMID: 35480695 PMCID: PMC9037677 DOI: 10.1039/d1ra00850a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
In recent years, soy protein adhesive, as an environmentally friendly bio-based adhesive, has attracted extensive attention. In this study, in order to ameliorate the bonding quality of soy protein isolate (SPI) adhesive, the melamine–urea–formaldehyde prepolymer (MUFP) was synthesized, and different amounts of it were introduced into the SPI adhesive as a cross-linking agent. Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC), thermogravimetric analyze (TGA), and scanning electron microscopy (SEM) were used to analysis the mechanism of modification. The results of plywood test indicated that the wet bonding strength of the adhesives was first increased and then decreased with an increase in the amount of MUFP additive. FT-IR, TGA, and SEM tests suggested that the introduction of MUFP could promote the establishment of a cross-linking structure in the cured adhesive layer to improve the bonding quality of adhesives, but presence of excessive MUFP could introduce hydrophilic groups and adversely affect water resistance. In recent years, soy protein adhesive, as an environmentally friendly bio-based adhesive, has attracted extensive attention.![]()
Collapse
Affiliation(s)
- Ke Jiang
- College of Forestry, Sichuan Agricultural University Chengdu 611130 Sichuan China.,Key Laboratory of Wood Industry and Furniture Engineering, Sichuan Provincial Department of Education, Sichuan Agricultural University Chengdu 611130 Sichuan China +86-028-86291456
| | - Zhenghui Lei
- College of Forestry, Sichuan Agricultural University Chengdu 611130 Sichuan China.,Key Laboratory of Wood Industry and Furniture Engineering, Sichuan Provincial Department of Education, Sichuan Agricultural University Chengdu 611130 Sichuan China +86-028-86291456
| | - Maoyu Yi
- College of Forestry, Sichuan Agricultural University Chengdu 611130 Sichuan China.,Key Laboratory of Wood Industry and Furniture Engineering, Sichuan Provincial Department of Education, Sichuan Agricultural University Chengdu 611130 Sichuan China +86-028-86291456
| | - Wenxin Lv
- College of Forestry, Sichuan Agricultural University Chengdu 611130 Sichuan China.,Key Laboratory of Wood Industry and Furniture Engineering, Sichuan Provincial Department of Education, Sichuan Agricultural University Chengdu 611130 Sichuan China +86-028-86291456
| | - Mingwei Jing
- College of Forestry, Sichuan Agricultural University Chengdu 611130 Sichuan China.,Key Laboratory of Wood Industry and Furniture Engineering, Sichuan Provincial Department of Education, Sichuan Agricultural University Chengdu 611130 Sichuan China +86-028-86291456
| | - Qiaoling Feng
- College of Forestry, Sichuan Agricultural University Chengdu 611130 Sichuan China.,Key Laboratory of Wood Industry and Furniture Engineering, Sichuan Provincial Department of Education, Sichuan Agricultural University Chengdu 611130 Sichuan China +86-028-86291456
| | - Hailu Tan
- College of Forestry, Sichuan Agricultural University Chengdu 611130 Sichuan China.,Key Laboratory of Wood Industry and Furniture Engineering, Sichuan Provincial Department of Education, Sichuan Agricultural University Chengdu 611130 Sichuan China +86-028-86291456
| | - Yuzhu Chen
- College of Forestry, Sichuan Agricultural University Chengdu 611130 Sichuan China.,Key Laboratory of Wood Industry and Furniture Engineering, Sichuan Provincial Department of Education, Sichuan Agricultural University Chengdu 611130 Sichuan China +86-028-86291456
| | - Hui Xiao
- College of Forestry, Sichuan Agricultural University Chengdu 611130 Sichuan China.,Key Laboratory of Wood Industry and Furniture Engineering, Sichuan Provincial Department of Education, Sichuan Agricultural University Chengdu 611130 Sichuan China +86-028-86291456
| |
Collapse
|
7
|
Jin S, Li K, Zhang X, Gao Q, Zeng L, Shi SQ, Li J. Phytic acid-assisted fabrication for soybean meal/nanofiber composite adhesive via bioinspired chelation reinforcement strategy. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123064. [PMID: 32512279 DOI: 10.1016/j.jhazmat.2020.123064] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/01/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Adhesives are commonly used in the wood industry, such as plywood, fiberboard, and particleboard, for making furniture, flooring, kitchen cabinets, and wall materials. However, almost all of these adhesives come from petroleum resources and release toxic substances that pollute the environment and endanger human health. Therefore, it is necessary to promote the production of eco-friendly adhesives. The development of plant-protein-based adhesives can increase the value of agricultural wastes and reduce the environmental hazards. However, their industrial application is limited by their poor mechanical strength and inferior water resistance. The main purpose of this study was to prepare a green effective reinforcer to improve the water resistance and mechanical strength of soybean meal (SM) adhesive. To achieve the above goals, a natural chelating agent phytic acid (PA)-mediated aminoclay-cellulose nanofiber (AC@CNF) nanohybrid was prepared. Then, the AC@CNF-PA nanohybrids were combined with SM to prepare a high-performance SM-based adhesive. The water resistance of the modified adhesive was remarkably improved, with 105.2 % higher than that of the unmodified SM adhesive in wet shear strength. Moreover, the modified adhesive showed good cytocompatibility, biodegradability, and flame retardancy. This work suggested a new approach in preparing green high-performance protein-based adhesives.
Collapse
Affiliation(s)
- Shicun Jin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Beijing Forestry University, Beijing 100083, China; Key Laboratory of Wood Materials Science and Utilization (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
| | - Kuang Li
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaowei Zhang
- Dehua TB Decoration New Material Co., Ltd, Huzhou 313200, China
| | - Qiang Gao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Beijing Forestry University, Beijing 100083, China
| | - Ling Zeng
- Nanning SCISKY Waterborne Technologies Co., Ltd, Nanning 530105, China
| | - Sheldon Q Shi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Beijing Forestry University, Beijing 100083, China; Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76203, USA
| | - Jianzhang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Beijing Forestry University, Beijing 100083, China; Key Laboratory of Wood Materials Science and Utilization (Beijing Forestry University), Ministry of Education, Beijing, 100083, China.
| |
Collapse
|
8
|
Urea Formaldehyde Resin Resultant Plywood with Rapid Formaldehyde Release Modified by Tunnel-Structured Sepiolite. Polymers (Basel) 2019; 11:polym11081286. [PMID: 31374970 PMCID: PMC6723320 DOI: 10.3390/polym11081286] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 11/17/2022] Open
Abstract
In order to reduce the cost of plywood and save edible resources (wheat flour), a cheap and resourceful clay, sepiolite, was used to modify urea formaldehyde (UF) resin. The performances of filler-filled UF resins were characterized by measuring the thermal behavior, cross section, and functional groups. Results showed that cured UF resin with SEP (sepiolite) formed a toughened fracture surface, and the wet shear strength of the resultant plywood was maximum improved by 31.4%. The tunnel structure of SEP was beneficial to the releasing of formaldehyde, as a result, the formaldehyde emission of the plywood bonded by UF resin with SEP declined by 43.7% compared to that without SEP. This study provided a new idea to reduce the formaldehyde emission, i.e., accelerating formaldehyde release before the product is put into use.
Collapse
|
9
|
Zhang M, Zhang Y, Chen M, Gao Q, Li J. A High-Performance and Low-Cost Soy Flour Adhesive with a Hydroxymethyl Melamine Prepolymer. Polymers (Basel) 2018; 10:E909. [PMID: 30960834 PMCID: PMC6403609 DOI: 10.3390/polym10080909] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 11/24/2022] Open
Abstract
To improve the performance of a soy flour (SF)-based adhesive, a low-cost hydroxymethyl melamine prepolymer (HMP) was synthesized and then used to modify the SF-based adhesive. The HMP was characterized, and the performance of the adhesive was evaluated, including its residual rate, functions, thermal stability, and fracture section. Plywood was fabricated to measure wet shear strength. The results indicated that the HMP preferentially reacted with polysaccharose in SF and formed a cross-linking network to improve the water resistance of the adhesive. This polysaccharose-based network also combined with the HMP self-polycondensation network and soy protein to form an interpenetrating network, which further improved the water resistance of the adhesive. With the addition of 9% HMP, the wet shear strength (63 °C) of the plywood was 1.21 MPa, which was 9.3 times that of the SF adhesive. With the HMP additive increased to 15%, the shear strength (100 °C) of the plywood was 0.79 MPa, which met the plywood requirement for exterior use (≥0.7 MPa) in accordance with Chinese National Standard (GB/T 9846.3-2004). With the addition of 9% and 15% HMP, the residual rates of the adhesive improved by 5.1% and 8.5%, respectively. The dense interpenetrating network structure improved the thermal stability of the resultant adhesive and created a compact fracture to prevent moisture intrusion, which further increased the water resistance of the adhesive.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Wood Material Science and Utilization, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Ministry of Education, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Yi Zhang
- Key Laboratory of Wood Material Science and Utilization, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Ministry of Education, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Mingsong Chen
- Key Laboratory of Wood Material Science and Utilization, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Ministry of Education, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Gao
- Key Laboratory of Wood Material Science and Utilization, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Ministry of Education, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jianzhang Li
- Key Laboratory of Wood Material Science and Utilization, Beijing Forestry University, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Ministry of Education, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
He Z, Cheng HN, Klasson KT, Olanya OM, Uknalis J. Effects of Particle Size on the Morphology and Water- and Thermo-Resistance of Washed Cottonseed Meal-Based Wood Adhesives. Polymers (Basel) 2017; 9:E675. [PMID: 30965975 PMCID: PMC6418997 DOI: 10.3390/polym9120675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 11/17/2022] Open
Abstract
Water washing of cottonseed meal is more cost-efficient and environmentally friendly than protein isolation by means of alkaline extraction and acidic precipitation. Thus, water-washed cottonseed meal (WCSM) is more promising as biobased wood adhesives. In this work, we examined the effects of the particle size on the morphology and adhesive performance of WCSM. Pilot-scale produced and dried WCSM was treated by three grinding methods: (1) ground by a hammer mill and passed through a 0.5-mm screen, (2) further ground by a cyclone mill and passed through a 0.5-mm screen, or (3) further ground by a ball mill and passed through a 0.18-mm screen. Micro-morphological examination revealed two types of particles. The filament-like particles were mainly fibrous materials from residual linters. Chunk-like particles were more like aggregates or accumulations of small particles, with proteins as the major component. Further grinding of the 0.5-mm Hammer product with the Cyclone and Ball mill led to more fine (smaller) particles in the WCSM products. The impact of further grinding on the dry and soaked adhesive strengths was minimal. However, the decrease of the hot and wet strengths of WCSM products by the additional grinding was significant (p ≤ 0.05). Data presented in this work is useful in developing the industrial standards of WCSM products used in wood bonding.
Collapse
Affiliation(s)
- Zhongqi He
- Southern Regional Research Center, USDA-ARS, 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA.
| | - Huai N Cheng
- Southern Regional Research Center, USDA-ARS, 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA.
| | - K Thomas Klasson
- Southern Regional Research Center, USDA-ARS, 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA.
| | - O Modesto Olanya
- Eastern Regional Research Center, USDA-ARS, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Joseph Uknalis
- Eastern Regional Research Center, USDA-ARS, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| |
Collapse
|
11
|
Liu W, Fei ME, Ban Y, Jia A, Qiu R. Preparation and Evaluation of Green Composites from Microcrystalline Cellulose and a Soybean-Oil Derivative. Polymers (Basel) 2017; 9:E541. [PMID: 30965845 PMCID: PMC6418966 DOI: 10.3390/polym9100541] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 11/01/2022] Open
Abstract
The present work aimed at developing fully green composites from renewable materials, i.e., acrylated epoxidized soybean oil (AESO) and microcrystalline cellulose (MCC) by a solution casting method. The reinforcing effect of MCC on AESO resins was optimized by adjusting MCC loading from 20 to 40 wt % in terms of physical, mechanical, and thermal properties as well as water absorption of the resulting MCC/AESO composites. The interaction between MCC and AESO was characterized by Fourier transform infrared (FTIR) analysis, which revealed possible hydrogen bonds between the ⁻OH groups of MCC along with the polar components of AESO including C=O, ⁻OH, and epoxy groups. This was further evidenced by a benign interfacial adhesion between MCC and AESO resins as revealed by scanning electron microscope (SEM) analysis. The incorporation of MCC into AESO resins significantly increased the density, hardness, flexural strength, and flexural modulus of the MCC/AESO composites, indicative of a significant reinforcing effect of MCC on AESO resins. The composite with 30 wt % MCC obtained the highest physical and mechanical properties due to the good dispersion and interfacial interaction between MCC and AESO matrix; the density, hardness, flexural strength, and flexural modulus of the composite were 15.7%, 25.0%, 57.2%, and 129.7% higher than those of pure AESO resin, respectively. However, the water resistance at room temperature and 100 °C of the composites were dramatically decreased due to the inherent hydrophilicity of MCC.
Collapse
Affiliation(s)
- Wendi Liu
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China.
| | - Ming-En Fei
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China.
| | - Yang Ban
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China.
| | - Anming Jia
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China.
| | - Renhui Qiu
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China.
| |
Collapse
|