1
|
Li Z, Zhang Y, Balle T, Eser BE, Fang Y, Guo Z. Preparation of Cello-Oligosaccharides by Precise-Controlled Enzymatic Depolymerization and Its Amphiphilic Functionalization for High-Oil Load Emulsification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39757467 DOI: 10.1021/acs.jafc.4c08886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Cello-oligosaccharides (COS) are gaining great attention for their prebiotic-like properties, e.g., boosting gut health by promoting beneficial bacteria and improving digestion. This study produced COS, consisting predominantly of 4-10 glucose units (>80% of total COS) through enzymatic selective hydrolysis of cellulose using Ultimase BWL 40 (endoglucanase and xylanase) and Celluclast 1.5 L (cellobiohydrolases and endoglucanase). Celluclast 1.5 L mediated hydrolysis of cellulose for 7 h, yielding 22% COS, and Ultimase BWL 40 for 24 h afforded 32% COS to a large extent governed by the patterns of composed hydrolytes associated with the components and specificity of the enzyme recipe. Moreover, a novel kind of amphiphilic COS product was developed through (2-dodecen-1-yl succinyl) alkylsuccinylation of COS, confirmed by Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (1HNMR) spectroscopy; thereby, COS was endowed with the amphiphilic property. Not surprisingly, alkylsuccinylated COS (SAC12) stabilized cosurfactant-free emulsions of high oil-load, e.g., 70 wt % fish oil-in-water emulsions, achieving remarkably homogeneous nano-/microdroplets (500-540 nm), extremely narrow polydispersity index (PDI < 0.1), and strongly negative zeta potential (-45 to -48 mV), thus demonstrating exceptional stability. Overall, alkylsuccinylated COS (SAC12) offers superior emulsifying capabilities without a cosurfactant while maintaining prebiotic benefits, thus providing a versatile sustainable solution for various nutraceutical/pharmaceutical applications.
Collapse
Affiliation(s)
- Ziqian Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
- Department of Biological and Chemical Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10C, 8000Aarhus,Denmark
| | - Yan Zhang
- Department of Biological and Chemical Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10C, 8000Aarhus,Denmark
| | - Thomas Balle
- Novozymes A/S (Part of Novonesis Group), Biologiens Vej 2 , 2800 Kgs.Lyngby, Denmark
| | - Bekir Engin Eser
- Department of Biological and Chemical Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10C, 8000Aarhus,Denmark
| | - Yong Fang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10C, 8000Aarhus,Denmark
| |
Collapse
|
2
|
Hu J, Zhao M, Li C, Sun Z, Gong Z, Ma D. Deep dewatering of oily sludge: Mechanism, characterization, and pretreatment technology. ENVIRONMENTAL RESEARCH 2024; 266:120473. [PMID: 39608431 DOI: 10.1016/j.envres.2024.120473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/11/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Oily sludge, characterized by its high organic pollution, poses significant challenges for treatment and disposal due to its high proportion of bound water and elevated viscosity from petroleum hydrocarbons. This study focuses on the deep dewatering of oily sludge, examining the role of internal bound water and the pretreatment mechanisms involved. The deep dewatering process is categorized into two main areas: liberation of bound water and modification of physicochemical properties. (1) Bound water is primarily found in two major categories: water bound within proteins, EPS, and cells through hydrophilic interactions, and water within an oil-water emulsion structure facilitated by inorganic particles. (2) Physicochemical properties: The formation of flocs in oily sludge is crucial for effective dewatering, while creating dewatering channels in later stages enhances efficiency. Advanced oxidation and emerging demulsification technologies are also discussed, summarizing the latest research. The significant potential of electric fields in the deep dewatering of oily sludge is emphasized, offering valuable insights for future advancements.
Collapse
Affiliation(s)
- Junjie Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Miaomiao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Chen Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Zeying Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Zhiyang Gong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Degang Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
3
|
da Silva AF, Moreira AF, Miguel SP, Coutinho P. Recent advances in microalgae encapsulation techniques for biomedical applications. Adv Colloid Interface Sci 2024; 333:103297. [PMID: 39226799 DOI: 10.1016/j.cis.2024.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Microalgae are microorganisms that are rich in bioactive compounds, including pigments, proteins, lipids, and polysaccharides. These compounds can be utilized for a number of biomedical purposes, including drug delivery, wound healing, and tissue engineering. Nevertheless, encapsulating microalgae cells and microalgae bioactive metabolites is vital to protect them and prevent premature degradation. This also enables the development of intelligent controlled release strategies for the bioactive compounds. This review outlines the most employed encapsulation techniques for microalgae, with a particular focus on their biomedical applications. These include ionic gelation, oil-in-water emulsions, and spray drying. Such techniques have been widely explored, due to their ability to protect sensitive compounds from degradation, enhance their stability, extend their shelf life, mask undesirable tastes or odours, control the release of bioactive compounds, and enable targeted delivery to specific sites within the body or environment. Moreover, a patent landscape analysis is also provided, allowing an overview of the microalgae encapsulation technology development applied to a variety of fields, including pharmaceuticals, cosmetics, food, and agriculture.
Collapse
Affiliation(s)
- Ana Freire da Silva
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal
| | - André F Moreira
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal
| | - Sónia P Miguel
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal
| | - Paula Coutinho
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal.
| |
Collapse
|
4
|
Ricardo F, Reyes LH, Cruz JC, Wiedman GR, Alvarez Solano OA, Pradilla D. In Silico Evaluation and Experimental Validation of Interfacial Properties in 3-5 Residue Peptides. J Phys Chem B 2024; 128:10272-10285. [PMID: 39378314 DOI: 10.1021/acs.jpcb.4c04036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Predicting the interfacial properties of peptides is important for replacing oil-derived surfactants in cosmetics, oil, and agricultural applications. This work validated experimentally the estimations of surface tension at the critical micelle concentration (STCMC) of six peptides performed through a random forest (RF) model in a previous contribution. In silico interfacial tensions of the peptides were obtained in the system decane-water, and dilational experiments were applied to elucidate the foaming potential. The RF model accurately classified the peptides into high and low potential to reduce the STCMC. The simulations at the decane-water interface correctly identified peptides with high, intermediate, and low interfacial properties, and the dilational rheology allowed the estimation of the possible potential of three peptides to produce foams. This study sets the basis for identifying surface-active peptides, but future work is necessary to improve the estimations and the correlation between dilational properties and foam stabilization.
Collapse
Affiliation(s)
- Fabián Ricardo
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Luis H Reyes
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Juan C Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Gregory R Wiedman
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, United States
| | | | - Diego Pradilla
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
5
|
Siquenique S, Ackerman S, Schroeder A, Sarmento B. Bioengineering lipid-based synthetic cells for therapeutic protein delivery. Trends Biotechnol 2024:S0167-7799(24)00216-6. [PMID: 39209601 DOI: 10.1016/j.tibtech.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Synthetic cells (SCs) offer a promising approach for therapeutic protein delivery, combining principles from synthetic biology and drug delivery. Engineered to mimic natural cells, SCs provide biocompatibility and versatility, with precise control over their architecture and composition. Protein production is essential in living cells, and SCs aim to replicate this process using compartmentalized cell-free protein synthesis systems within lipid bilayers. Lipid bilayers serve as favored membranes in SC design due to their similarity to the biological cell membrane. Moreover, engineering lipidic membranes enable tissue-specific targeting and immune evasion, while stimulus-responsive SCs allow for triggered protein production and release. This Review explores lipid-based SCs as platforms for therapeutic protein delivery, discussing their design principles, functional attributes, and translational challenges and potential.
Collapse
Affiliation(s)
- Sónia Siquenique
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Shanny Ackerman
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| |
Collapse
|
6
|
Painuly R, Anand V. Examining the Interplay of Hydrolysed Polyacrylamide and Sodium Dodecyl Sulfate on Emulsion Stability: Insights from Turbiscan and Electrocoalescence Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17710-17721. [PMID: 39119715 DOI: 10.1021/acs.langmuir.4c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Enhanced oil recovery (EOR) is utilized in the oil and gas production industry to extract additional oil from underground reservoirs. In chemically enhanced oil recovery, surfactant and polymeric water are injected separately or in a mixture. Injected fluids can form stable emulsions during oil production. This surfactant, polymer-loaded water-in-oil emulsion, must be separated to treat crude oil and avoid any corrosion or deactivation of catalysts in the refinery. An electrocoalecer technique is utilized to separate the water from the emulsion under the application of an electric field. To improve the efficiency of the EOR and electrocoalescers, it is essential to investigate the impact of surfactants, polymers, and their mixture interaction. In this study, the effects of surfactant (sodium dodecyl sulfate (SDS)), polymer (hydrolyzed polyacrylamide (HPAM)), and their mixture with a wide range of concentrations were analyzed using turbiscan, bottle electrocoalecer, interfacial tension (IFT), and conductivity. Our study shows that when SDS was used independently, the viscosity of the dispersed phase did not change. Surprisingly, when SDS was combined with HPAM, the overall viscosity of the dispersed phase mixture decreased. HPAM and SDS contribute to an increase in the conductivity of the dispersed phase. Conductivity, IFT, and viscosity are critical factors in studying electrocoalescence. Our detailed study found that SDS is the primary factor in stabilizing the emulsion compared to HPAM using turbiscan. The electrocoalecer study shows that in the case of a deionized water-based emulsion, the separation efficiency is 98% in 10 min. In contrast, a mixture of HPAM polymer with a concentration of 2000 ppm and SDS with a concentration of 5000 ppm stabilized emulsion shows 84% separation in 10 min. The outcome of this study helps design the electrocoalescer for separating complex water-in-oil emulsion.
Collapse
Affiliation(s)
- Rahul Painuly
- Department of Chemical Engineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur 342030, India
| | - Vikky Anand
- Department of Chemical Engineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur 342030, India
- Rishabh Centre for Research and Innovation in Clean Energy, Indian Institute of Technology Jodhpur, Karwar, Jodhpur 342030, India
| |
Collapse
|
7
|
Tian Y, He C, He L, Xu Z, Sui H, Li X. Doping heteroatoms to form multiple hydrogen bond sites for enhanced interfacial reconstruction and separations. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134477. [PMID: 38703682 DOI: 10.1016/j.jhazmat.2024.134477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Interfacial challenges in unconventional oil extraction include heavy oil-water-solid multiphase separation and corrosion inhibition. Herein, a novel strategy based on interfacial hydrogen bonding reconstruction is proposed for constructing multifunctional interfacially active materials (MIAMs) to address multi-interfacial separation needs. A simple one-pot method is applied to successfully synthesize four different MIAM varieties, integrating site groups (-NH2, OSO, -COOH, and Si-O-Si) with multiple hydrogen bonds (HBs) into allyl polyether chains. The results indicate that all synthesized MIAMs excel in demulsification, detergency, and corrosion inhibition simultaneously, even at 25 °C. Their dehydration efficiency for different water-in-oil emulsions (even heavy oil emulsion) surpasses 99.9 % even at 16 °C, showing their excellent energy-saving potential for field applications. Furthermore, they demonstrate effective, nondestructive static cleaning (up to 86 %) of adhered oil from solid surfaces at 25 °C and provide corrosion inhibition effects (up to 92.09 %) on mild steel immersed in saturated brine. Mechanistic tests reveal that incorporating multiple HB sites in MIAMs dramatically enhances their effectiveness in interfacial separations. Based on these findings, an HB-dominated noncovalent interaction reconstruction strategy is tentatively proposed to develop advanced materials for low-carbon, efficient interfacial separations.
Collapse
Affiliation(s)
- Ying Tian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; National Engineering Research Centre of Distillation Technology, Tianjin 300072, China
| | - Changqing He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; National Engineering Research Centre of Distillation Technology, Tianjin 300072, China
| | - Lin He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; National Engineering Research Centre of Distillation Technology, Tianjin 300072, China.
| | - Zhenghe Xu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong Sui
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; National Engineering Research Centre of Distillation Technology, Tianjin 300072, China
| | - Xingang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; National Engineering Research Centre of Distillation Technology, Tianjin 300072, China
| |
Collapse
|
8
|
Dini S, Bekhit AEDA, Roohinejad S, Vale JM, Agyei D. The Physicochemical and Functional Properties of Biosurfactants: A Review. Molecules 2024; 29:2544. [PMID: 38893420 PMCID: PMC11173842 DOI: 10.3390/molecules29112544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Surfactants, also known as surface-active agents, have emerged as an important class of compounds with a wide range of applications. However, the use of chemical-derived surfactants must be restricted due to their potential adverse impact on the ecosystem and the health of human and other living organisms. In the past few years, there has been a growing inclination towards natural-derived alternatives, particularly microbial surfactants, as substitutes for synthetic or chemical-based counterparts. Microbial biosurfactants are abundantly found in bacterial species, predominantly Bacillus spp. and Pseudomonas spp. The chemical structures of biosurfactants involve the complexation of lipids with carbohydrates (glycolipoproteins and glycolipids), peptides (lipopeptides), and phosphates (phospholipids). Lipopeptides, in particular, have been the subject of extensive research due to their versatile properties, including emulsifying, antimicrobial, anticancer, and anti-inflammatory properties. This review provides an update on research progress in the classification of surfactants. Furthermore, it explores various bacterial biosurfactants and their functionalities, along with their advantages over synthetic surfactants. Finally, the potential applications of these biosurfactants in many industries and insights into future research directions are discussed.
Collapse
Affiliation(s)
- Salome Dini
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| | - Alaa El-Din A. Bekhit
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| | - Shahin Roohinejad
- Research and Development Division, Zoom Essence Inc., 1131 Victory Place, Hebron, KY 41048, USA (J.M.V.)
| | - Jim M. Vale
- Research and Development Division, Zoom Essence Inc., 1131 Victory Place, Hebron, KY 41048, USA (J.M.V.)
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| |
Collapse
|
9
|
Wang W, Sheng F, Ou G, Zhao Y, Sun G. Adsorption of Asphaltenes at Model Oil/Brine Interface: Influence of Solvent Polarity. ACS OMEGA 2024; 9:19879-19891. [PMID: 38737055 PMCID: PMC11080033 DOI: 10.1021/acsomega.3c09091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/15/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024]
Abstract
With the exploitation of heavy oil worldwide, the influence of asphaltene aggregation in the oil phase on the stability of crude oil emulsion has been paid more and more attention. Under this background, the effects of solvent polarity on model oil/brine water interfacial properties and emulsion stability are investigated in this study. It is demonstrated that there is a critical asphaltene concentration for the formation of a stable emulsion. This critical concentration is then found to increase from 80 to 500 ppm with the mixing ratio of methylnaphthalene to n-decane changed from 2:3 to 7:3. The dynamic light scattering experiment shows that the average aggregate size increases abruptly from 132.8 to 261.1 nm at 2:3 mixing ratio of methylnaphthalene to n-decane once the asphaltenes are added to above the critical concentration. Accordingly, the diffusion coefficient of the asphaltenes decreases sharply from 4.36 × 10-12 to 5.68 × 10-13 m2/s. Similar conclusions are also found for the other mixing ratios of 1:1, 3:2, and 7:3. Besides, the aggregation degree of asphaltenes weakens, and the diffusion coefficient enlarges at the same asphaltene concentration with the enhancement of the solvent polarity. Further, the interfacial experiments manifest that the equilibrium interfacial dilation modulus decreases from 38.42 to 23.65 mN/m with the mixing ratio of methylnaphthalene to n-decane increased from 2:3 to 7:3. It can thus be inferred that the structural strength of the interfacial film decreases with the enhancement of the solvent polarity.
Collapse
Affiliation(s)
- Wei Wang
- Sinopec
Petroleum Engineering Corporation, Dongying, Shandong 257026, People’s Republic of China
| | - Fujun Sheng
- College
of Pipeline & Civil Engineering, China
University of Petroleum (East China), Qingdao, Shandong 266580, People’s Republic
of China
| | - Guifang Ou
- CNOOC
Offshore Oil Engineering (Qing Dao) Co., Ltd., Qingdao, Shandong 266520, People’s Republic
of China
| | - Yansong Zhao
- Department
of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences (HVL), 5063 Bergen, Norway
| | - Guangyu Sun
- College
of Pipeline & Civil Engineering, China
University of Petroleum (East China), Qingdao, Shandong 266580, People’s Republic
of China
| |
Collapse
|
10
|
Mohite P, Joshi A, Singh S, Prajapati B. Solubility enhancement of fexofenadine using self-nano emulsifying drug delivery system for improved biomimetic attributes. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:433-445. [PMID: 37832935 DOI: 10.1016/j.pharma.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Fexofenadine is a poorly water-soluble drug, which limit its bioavailability and ultimately therapeutic efficacy. Liquid self-nano emulsifying drug delivery system (L-SNEDDs) is an approach that can enhance the solubility of fexofenadine by increasing its surface area and reducing the particle size, which increases the rate and extent of drug dissolution. METHOD In this investigation, L-SNEDDs of fexofenadine was made up using surfactants and co-surfactant. The SNEDDS formulation was optimized using a pseudo-ternary phase diagram and characterized. RESULTS The optimized L-SNEDDS incorporated fexofenadine were thermodynamically stable and showed mean droplet size and zeta potential of 155nm and -18mV, respectively unaffected by the media pH. In addition, the viscosity, and refractive index were observed 18.4 and 1.49 cps, respectively for optimized L-SNEDDS fortified fexofenadine. The results of Fourier transform infrared spectroscopy revealed an insignificant interaction between the fexofenadine and excipients. A drug loading efficiency of 94.20% resulted with a complete in vitro drug release in 2h, compared with the pure drug, which demonstrate significant improvement in the efficacy. Moreover, these results signify that on further in vivo assessment L-SNEDDS fortified fexofenadine can indicate improvement in pharmacokinetic and clinical outcome. CONCLUSION Thus, the investigation revealed that, the L-SNEDDs incorporated fexofenadine was most effective with a mixture of surfactant and co-surfactant with improved solubility intend to relieve pain associated with inflammation with single-dose oral administration.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India.
| | - Anjali Joshi
- MES's College of Pharmacy, Sonai, Ahmednagar, Maharashtra, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, 50200 Chiang Mai Thailand; Office of Research Administration, Chiang Mai University, 50200 Chiang Mai Thailand
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India
| |
Collapse
|
11
|
Alhudaithi SS, Abul Kalam M, Binobaid L, Ali R, Almutairi MM, Qamar W, Bin Hithlayn H, Almutairi A, Alshememry AK. Sorafenib and Piperine co-loaded PLGA nanoparticles: Development, characterization, and anti-cancer activity against hepatocellular carcinoma cell line. Saudi Pharm J 2024; 32:102064. [PMID: 38633710 PMCID: PMC11022100 DOI: 10.1016/j.jsps.2024.102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) exhibits high mortality rates in the advanced stage (>90 %). Sorafenib (SORA) is a targeted therapy approved for the treatment of advanced HCC; however, the reported response rate to such a therapeutic is suboptimal (<3%). Piperine (PIP) is an alkaloid demonstrated to exert a direct tumoricidal activity in HCC and improve the pharmacokinetic profiles of anticancer drugs including SORA. In this study, we developed a strategy to improve efficacy outcomes in HCC using PIP as an add-on treatment to support the first-line therapy SORA using biodegradable Poly (D, L-Lactide-co-glycolide, PLGA) nanoparticles (NPs). SORA and PIP (both exhibit low aqueous solubility) were co-loaded into PLGA NPs (PNPs) and stabilized with various concentrations of polyvinyl alcohol (PVA). The SORA and PIP-loaded PNPs (SP-PNPs) were characterized using Fourier Transform Infrared (FTIR) Spectroscopy, X-ray Powder Diffraction (XRD), Dynamic Light Scattering (DLS), and Scanning Electron Microscopy (SEM), Release of these drugs from SP-PNPs was investigated in vitro at both physiological and acidic pH, and kinetic models were employed to assess the mechanism of drug release. The in vitro efficacy of SP-PNPs against HCC cells (HepG2) was also evaluated. FTIR and XRD analyses revealed that the drugs encapsulated in PNPs were in an amorphous state, with no observed chemical interactions among the drugs or excipients. Assessment of drug release in vitro at pH 5 and 7.4 showed that SORA and PIP loaded in PNPs with 0.5 % PVA were released in a sustained manner, unlike pure drugs, which exhibited relatively fast release. SP-PNPs with 0.5 % PVA were spherical, had an average size of 224 nm, and had a high encapsulation efficiency (SORA ∼ 82 %, PIP ∼ 79 %), as well as superior cytotoxicity compared to SORA monotherapy in vitro. These results suggest that combining PIP with SORA using PNPs may be an effective strategy for the treatment of HCC and may set the stage for a comprehensive in vivo study to evaluate the efficacy and safety of this novel formulation using a murine HCC model.
Collapse
Affiliation(s)
- Sulaiman S. Alhudaithi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Lama Binobaid
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hessa Bin Hithlayn
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Atheer Almutairi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah K. Alshememry
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Gao Y, Liu R, Liang H. Food Hydrocolloids: Structure, Properties, and Applications. Foods 2024; 13:1077. [PMID: 38611381 PMCID: PMC11011930 DOI: 10.3390/foods13071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Hydrocolloids are extensively used in the food industry for various functions, including gelling, thickening, stabilizing foams, emulsions, and dispersions, as well as facilitating the controlled release of flavor [...].
Collapse
Affiliation(s)
- Yanlei Gao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.L.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.L.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.L.)
| |
Collapse
|
13
|
Mubarak MF, Selim H, Hawash HB, Hemdan M. Flexible, durable, and anti-fouling maghemite copper oxide nanocomposite-based membrane with ultra-high flux and efficiency for oil-in-water emulsions separation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2297-2313. [PMID: 38062214 PMCID: PMC10791961 DOI: 10.1007/s11356-023-31240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024]
Abstract
In this study, we developed a novel nanocomposite-based membrane using maghemite copper oxide (MC) to enhance the separation efficiency of poly(vinyl chloride) (PVC) membranes for oil-in-water emulsions. The MC nanocomposite was synthesized using a co-precipitation method and incorporated into a PVC matrix by casting. The resulting nanocomposite-based membrane demonstrated a high degree of crystallinity and well-dispersed nanostructure, as confirmed by TEM, SEM, XRD, and FT-IR analyses. The performance of the membrane was evaluated in terms of water flux, solute rejection, and anti-fouling properties. The pinnacle of performance was unequivocally reached with a solution dosage of 50 mL, a solution concentration of 100 mg L-1, and a pump pressure of 2 bar, ensuring that every facet of the membrane's potential was fully harnessed. The new fabricated membrane exhibited superior efficiency for oil-water separation, with a rejection rate of 98% and an ultra-high flux of 0.102 L/m2 h compared to pure PVC membranes with about 90% rejection rate and an ultra-high flux of 0.085 L/m2 h. Furthermore, meticulous contact angle measurements revealed that the PMC nanocomposite membrane exhibited markedly lower contact angles (65° with water, 50° with ethanol, and 25° with hexane) compared to PVC membranes. This substantial reduction, transitioning from 85 to 65° with water, 65 to 50° with ethanol, and 45 to 25° with hexane for pure PVC membranes, underscores the profound enhancement in hydrophilicity attributed to the heightened nanoparticle content. Importantly, the rejection efficiency remained stable over five cycles, indicating excellent anti-fouling and cycling stability. The results highlight the potential of the maghemite copper oxide nanocomposite-based PVC membrane as a promising material for effective oil-in-water emulsion separation. This development opens up new possibilities for more flexible, durable, and anti-fouling membranes, making them ideal candidates for potential applications in separation technology. The presented findings provide valuable information for the advancement of membrane technology and its utilization in various industries, addressing the pressing challenge of oil-induced water pollution and promoting environmental sustainability.
Collapse
Affiliation(s)
- Mahmoud F Mubarak
- Department of Petroleum Application, Core Lab Analysis Center, Egyptian Petroleum Research Institute, P.B. 11727, Nasr City, Cairo, Egypt
| | - Hanaa Selim
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt.
| | - Hamada B Hawash
- Environmental Division, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| |
Collapse
|
14
|
Park SY, Jung JH, Kim DS, Lee JK, Song BG, Shin HE, Jung JW, Baek SW, You S, Han I, Han DK. Therapeutic potential of luteolin-loaded poly(lactic-co-glycolic acid)/modified magnesium hydroxide microsphere in functional thermosensitive hydrogel for treating neuropathic pain. J Tissue Eng 2024; 15:20417314231226105. [PMID: 38333057 PMCID: PMC10851718 DOI: 10.1177/20417314231226105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/27/2023] [Indexed: 02/10/2024] Open
Abstract
Neuropathic pain (NP) is a debilitating condition stemming from damage to the somatosensory system frequently caused by nerve injuries or lesions. While existing treatments are widely employed, they often lead to side effects and lack specificity. This study aimed to alleviate NP by developing an innovative sustained-release thermosensitive hydrogel system. The system incorporates hyaluronic acid (HA)/Pluronic F127 injectable hydrogel and bupivacaine (Bup, B) in combination with poly(lactic-co-glycolic acid; PLGA)/modified magnesium hydroxide (MH)/luteolin (Lut; PML) microspheres (PML@B/Gel). The PML@B/Gel was designed for localized and prolonged co-delivery of Bup and Lut as an anesthetic and anti-inflammatory agent, respectively. Our studies demonstrated that PML@B/Gel had exceptional biocompatibility, anti-inflammatory, and antioxidant properties. In addition, it exhibited efficient pain relief in in vitro cellular assays. Moreover, this functional hydrogel showed substantial sustained drug release while diminishing microglial activation. Consequently, it effectively mitigated mechanical allodynia and thermal hyperalgesia in in vivo rat models of chronic constriction injury (CCI). Based on our research findings, PML@B/Gel emerges as a promising therapeutic approach for the protracted treatment of NP.
Collapse
Affiliation(s)
- So-Yeon Park
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Korea
| | - Joon Hyuk Jung
- Department of Life Science, CHA University School of Medicine, Seongnam-si, Gyeonggi-do, Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA, USA
| | - Jun-Kyu Lee
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Byeong Gwan Song
- Department of Life Science, CHA University School of Medicine, Seongnam-si, Gyeonggi-do, Korea
| | - Hae Eun Shin
- Department of Life Science, CHA University School of Medicine, Seongnam-si, Gyeonggi-do, Korea
| | - Ji-Won Jung
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Seungkwon You
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| |
Collapse
|
15
|
Almashwali A, Idress M, Lal B, Salem A, Jin QC. Kinetic and Thermodynamic Influence of NaCl on Methane Hydrate in an Oil-Dominated System. ACS OMEGA 2023; 8:44796-44803. [PMID: 38046291 PMCID: PMC10687932 DOI: 10.1021/acsomega.3c05866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 12/05/2023]
Abstract
This experimental study reports the kinetic and thermodynamic inhibition influence of sodium chloride (NaCl) on methane (CH4) hydrate in an oil-dominated system. To thoroughly examine the inhibition effect of NaCl on CH4 hydrate formation, kinetically by the induction time and relative inhibition performance and thermodynamically by the hydrate liquid-vapor equilibrium (HLwVE) curve, enthalpy (ΔHdiss) and suppression temperature are used to measure the NaCl inhibition performance through this experimental study. All kinetic experiments are performed at a concentration of 1 wt % under a pressure and temperature of 8 MPa and 274.15K, respectively, whereby for the thermodynamic study, the concentration was 3 wt % by using the isochoric T-cycle technique at the selected range of pressures and temperatures of 4.0-9.0 MPa and 276.5-286.0K, respectively; both studies were conducted using a high-pressure reactor cell. Results show that kinetically, NaCl offers slightly to no inhibition in both systems with/without oil; however, the presence of drilling oil contributes positively by increasing the induction time; thermodynamically, NaCl contributes significantly in shifting the equilibrium curve to higher pressures and lower temperatures in both systems. In the oil system, the contribution of the THI to the equilibrium curve increases the pressure with a range of 0.04-0.15 MPa and reduces the temperature with a range of 1-3 K, which is due to the NaCl presence in the systems that reduces the activity of water molecules by increasing the ionic strength of the solution. At a high pressure of 9 MPa, the NaCl inhibition performance was greater than that at lower pressures <5.5 MPa because, at the high pressure, NaCl increases the activity of water, which means that more water molecules are available to form hydrate cages around gas molecules.
Collapse
Affiliation(s)
- Abdulrab
Abdulwahab Almashwali
- Chemical
Engineering Department, Universiti Teknologi
PETRONAS, Bandar
Seri Iskandar, Perak 32610, Malaysia
- CO2
Research Centre (CO2RES), Universiti Teknologi
PETRONAS, Bandar
Seri Iskandar, Perak 32610, Malaysia
| | - Mazlin Idress
- Petroleum
Engineering Department, Universiti Teknologi
PETRONAS, Bandar
Seri Iskandar, Perak 32610, Malaysia
| | - Bhajan Lal
- Chemical
Engineering Department, Universiti Teknologi
PETRONAS, Bandar
Seri Iskandar, Perak 32610, Malaysia
- CO2
Research Centre (CO2RES), Universiti Teknologi
PETRONAS, Bandar
Seri Iskandar, Perak 32610, Malaysia
| | - Akram Salem
- Weatherford
International Ltd., Edmonton, Alberta 76085, Canada
| | - Quah Chong Jin
- Numit
Enterprise, Seri Kembangan 32610Selangor ,Malaysia
| |
Collapse
|
16
|
Mir S, Kooshki S. Innovative Method for Water-in-Oil Emulsion Treatment Using Atmospheric Nonthermal-Plasma Technology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14459-14473. [PMID: 37734063 DOI: 10.1021/acs.langmuir.3c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The field of plasma-liquid interactions is rapidly growing, with increasing publications across applications. While plasma's interactions with water and oil have been researched, there is a notable gap in the study of plasma-emulsion interactions and their practical applications. Investigating plasma-emulsion interactions offers a dual advantage, as demonstrated in this study, as it is applicable to both water/oil separation and emulsion stabilization processes. This study introduces a groundbreaking approach utilizing the fountain dielectric barrier discharge (FDBD) plasma reactor. The reactor exposes a model emulsion to different plasma gases, such as air, nitrogen, argon, and ammonia, along with varying parameters of plasma input voltage and treatment time. Consequently, due to demulsification, the emulsion segregates into distinct water and oil phases. Remarkably, the results demonstrate that short-term plasma treatment leads to the separation of over 99% of emulsified water. However, prolonged exposure to plasma for around 7 min reveals a decrease in the volume of free-separated water, implying the occurrence of stable emulsion formation instead of further demulsification. To optimize experimental conditions for compliance with regulatory requirements, the study employs the response surface methodology (RSM). Adapting pH and separation contours in three-dimensional (3D) RSM plots shows that achieving higher separation is likely associated with higher pH levels in air, nitrogen, and argon plasmas. Notably, the plasma treatment involving ammonia gas elevates the pH level and yields the highest degree of separation compared with air, nitrogen, or argon plasmas.
Collapse
Affiliation(s)
- Sonia Mir
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 15875-4413, Iran
| | - Saeed Kooshki
- Division of Environmental Physics, Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynská dolina F2, Bratislava 842 48, Slovakia
| |
Collapse
|
17
|
Furmidge R, Jackson CE, Velázquez de la Paz MF, Workman VL, Green NH, Reilly GC, Hearnden V, Claeyssens F. Surfactant-free gelatin-stabilised biodegradable polymerised high internal phase emulsions with macroporous structures. Front Chem 2023; 11:1236944. [PMID: 37681209 PMCID: PMC10481965 DOI: 10.3389/fchem.2023.1236944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
High internal phase emulsion (HIPE) templating is a well-established method for the generation of polymeric materials with high porosity (>74%) and degree of interconnectivity. The porosity and pore size can be altered by adjusting parameters during emulsification, which affects the properties of the resulting porous structure. However, there remain challenges for the fabrication of polyHIPEs, including typically small pore sizes (∼20-50 μm) and the use of surfactants, which can limit their use in biological applications. Here, we present the use of gelatin, a natural polymer, during the formation of polyHIPE structures, through the use of two biodegradable polymers, polycaprolactone-methacrylate (PCL-M) and polyglycerol sebacate-methacrylate (PGS-M). When gelatin is used as the internal phase, it is capable of stabilising emulsions without the need for an additional surfactant. Furthermore, by changing the concentration of gelatin within the internal phase, the pore size of the resulting polyHIPE can be tuned. 5% gelatin solution resulted in the largest mean pore size, increasing from 53 μm to 80 μm and 28 μm to 94 µm for PCL-M and PGS-M respectively. In addition, the inclusion of gelatin further increased the mechanical properties of the polyHIPEs and increased the period an emulsion could be stored before polymerisation. Our results demonstrate the potential to use gelatin for the fabrication of surfactant-free polyHIPEs with macroporous structures, with potential applications in tissue engineering, environmental and agricultural industries.
Collapse
Affiliation(s)
- Rachel Furmidge
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Caitlin E. Jackson
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - María Fernanda Velázquez de la Paz
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Victoria L. Workman
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Nicola H. Green
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Gwendolen C. Reilly
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Vanessa Hearnden
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
18
|
Kulczyk E, Drozłowska-Sobieraj E, Bartkowiak A. Novel Milk Substitute Based on Pea, Bean and Sunflower Seeds with Natural Bioactive Stabilisers. PLANTS (BASEL, SWITZERLAND) 2023; 12:2303. [PMID: 37375928 DOI: 10.3390/plants12122303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
The aim of this research was to create a plant-based beverage based on seeds of sunflower (Helianthus annuus), pea (Pisum sativum) and runner bean (Phaseolus multiflorus). The selection of the ingredients was based on the main objective to obtain the nutritional value and sensory characteristics of a formed product similar to cow's milk. The ingredient proportions were created by comparing the protein, fat and carbohydrate content of seeds versus cow's milk. Due to the observed low long-term stability of plant-seed-based drinks, a water binding guar gum, a thickener in the form of locust bean gum and gelling citrus amidated pectin containing dextrose were added and evaluated as functional stabilisers. All of the designed and created systems were subjected to selected methods of characterisation of the most important final product properties, such as rheology, colour, emulsion and turbidimetric stability. Rheological analysis confirmed the highest stability of the variant supplemented with 0.5% guar gum. Both stability and colour measurements indicated the positive characteristics of the system supplemented with 0.4% pectin. Finally, the product with 0.5% guar gum was identified as the most distinctive and similar vegetable drink to cow's milk.
Collapse
Affiliation(s)
- Ewa Kulczyk
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, Janickiego 35, 71-270 Szczecin, Poland
| | - Emilia Drozłowska-Sobieraj
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, Janickiego 35, 71-270 Szczecin, Poland
| | - Artur Bartkowiak
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, Janickiego 35, 71-270 Szczecin, Poland
| |
Collapse
|
19
|
Li B, Qi B, Guo Z, Wang D, Jiao T. Recent developments in the application of membrane separation technology and its challenges in oil-water separation: A review. CHEMOSPHERE 2023; 327:138528. [PMID: 36990363 DOI: 10.1016/j.chemosphere.2023.138528] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/15/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
In the development and production process of domestic and foreign oil fields, large amounts of oil-bearing wastewater with complex compositions containing toxic and harmful pollutants are generated. These oil-bearing wastewaters will cause serious environmental pollution if they are not effectively treated before discharge. Among these wastewaters, the oily sewage produced in the process of oilfield exploitation has the largest content of oil-water emulsion. In order to solve the problem of oil-water separation of oily sewage, the paper summarizes the research of many scholars in many aspects, such as the use of physical and chemical methods such as air flotation and flocculation, or the use of mechanical methods such as centrifuges and oil booms for sewage treatment. Comprehensive analysis shows that among these oil-water separation methods, membrane separation technology has higher separation efficiency in the separation of general oil-water emulsions than other methods and also exhibits a better separation effect for stable emulsions, which has a broader application prospect for future developments. To present the characteristics of different types of membranes more intuitively, this paper describes the applicable conditions and characteristics of various types of membranes in detail, summarizes the shortcomings of existing membrane separation technologies, and offers prospects for future research directions.
Collapse
Affiliation(s)
- Bingfan Li
- School of Vehicles and Energy, Yanshan University, Qinhuangdao, 066004, China
| | - Bo Qi
- School of Vehicles and Energy, Yanshan University, Qinhuangdao, 066004, China
| | - Ziyuan Guo
- School of Vehicles and Energy, Yanshan University, Qinhuangdao, 066004, China
| | - Dongxu Wang
- China Suntien Green Energy Co., Ltd., Shijiazhuang, 050000, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
20
|
Lv H, Wang Z, An J, Li Z, Shi L, Shan Y. Preparation and Emulsifying Properties of Carbon-Based Pickering Emulsifier. Processes (Basel) 2023. [DOI: 10.3390/pr11041070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Water is increasingly being used as a solvent in place of organic solvent in order to meet the demand for green chemical synthesis. Nevertheless, many of the reaction substrates are organic matter, which have low water solubility, resulting in a low reaction interface and limiting the development of organic-water biphasic systems. A surfactant is typically added to the two-phase system to form an emulsion to increase the contact area between the organic phase and the water. Compared to ordinary emulsion stabilized with the surfactant, Pickering emulsion offers better adhesion resistance, biocompatibility, and environmental friendliness. It possesses unrivaled benefits as an emulsifier and catalyst in a two-phase interfacial catalysis system (PIC). In this study, the amine group (NNDB) was employed to alter the surface of graphene oxide (GO). A stable Pickering emulsion was created by adsorbing GO-NNDB on the toluene–water interface. It was determined that the emulsion system had good stability by analyzing digital photographs and microscope images of droplets at various temperatures, and fluorescence microscopy images of emulsion droplets created by both newly added and recovered emulsifiers. This work provided the groundwork for future applications of Pickering emulsion in interfacial catalysis.
Collapse
Affiliation(s)
- Huihui Lv
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- College of Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zebo Wang
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jialong An
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhanfeng Li
- College of Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lei Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanyuan Shan
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
21
|
Review of Artificial Nacre for Oil–Water Separation. SEPARATIONS 2023. [DOI: 10.3390/separations10030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Due to their extraordinary prospective uses, particularly in the areas of oil–water separation, underwater superoleophobic materials have gained increasing attention. Thus, artificial nacre has become an attractive candidate for oil–water separation due to its superhydrophilicity and underwater superoleophobicity properties. Synthesized artificial nacre has successfully achieved a high mechanical strength that is close to or even surpasses the mechanical strength of natural nacre. This can be attributed to suitable synthesis methods, the selection of inorganic fillers and polymer matrices, and the enhancement of the mechanical properties through cross-linking, covalent group modification, or mineralization. The utilization of nacre-inspired composite membranes for emerging applications, i.e., is oily wastewater treatment, is highlighted in this review. The membranes show that full separation of oil and water can be achieved, which enables their applications in seawater environments. The self-cleaning mechanism’s basic functioning and antifouling tips are also concluded in this review.
Collapse
|
22
|
Mosa MA, Youssef K, Hamed SF, Hashim AF. Antifungal activity of eco-safe nanoemulsions based on Nigella sativa oil against Penicillium verrucosum infecting maize seeds: Biochemical and physiological traits. Front Microbiol 2023; 13:1108733. [PMID: 36741894 PMCID: PMC9889564 DOI: 10.3389/fmicb.2022.1108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
The main goals of the present investigation were to develop O/W nanoemulsion fungicides based on cold-pressed Nigella sativa (black seed) oil to prevent Penicillium verrucosum infection of maize seeds and to test their antifungal activity against this fungus. Additionally, the effect of these nanoemulsions on plant physiological parameters was also investigated. Two nonionic surfactants namely Tween 20 and Tween 80 were used as emulsifying agents in these formulations. The effect of sonication time and surfactant type on the mean droplet size, polydispersity index (PDI), and zeta potential of the nanoemulsions were determined by dynamic light scattering (DLS). Results indicated that both sonication time and emulsifier type had pronounced effects on the stability of O/W nanoemulsions with a small particle size range (168.6-345.3 nm), acceptable PDI (0.181-0.353), and high zeta potential (-27.24 to -48.82 mV). Tween 20 showed superior stability compared to Tween 80 nanoemulsions. The in vitro results showed that complete inhibition of P. verrucosum-growth was obtained by 10_T80 and 10_T20 nanoemulsions at 100% concentration. All nanoemulsions had increment effects on maize seed germination by 101% in the case of 10_T20 and 10_T80 compared to untreated seeds or the chemical fungicide treatment. Nanoemulsions (10_T20 and 10_T80) were able to stimulate root and shoot length as compared to the fungicide treatment. Seed treatment with 10_T80 nanoemulsion showed the highest AI and protease activity by 75 and 70%, respectively, as compared to the infected control. The produced nanoemulsions might provide an effective protectant coating layer for the stored maize seeds.
Collapse
Affiliation(s)
- Mohamed A. Mosa
- Nanotechnology and Advanced Nano-Materials Laboratory (NANML), Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Khamis Youssef
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt,Agricultural and Food Research Council, Academy of Scientific Research and Technology, Cairo, Egypt,*Correspondence: Khamis Youssef, ✉
| | - Said F. Hamed
- Department of Fats and Oils, Food Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| | - Ayat F. Hashim
- Department of Fats and Oils, Food Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
23
|
Preparation of Hydrophobic Monolithic Supermacroporous Cryogel Particles for the Separation of Stabilized Oil-in-Water Emulsion. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Here, we prepared hydrophobic cryogel particles with monolithic supermacropores based on poly-trimethylolpropane trimethacrylate (pTrim) by combining the inverse Leidenfrost effect and cryo-polymerization technique. The hydrophobic cryogel particles prepared by adopting this method demonstrated the separation of the stabilized O/W emulsion with surfactant. The prepared cryogel particles were characterized in terms of macroscopic shape and porous structure. It was found that the cryogel particles had a narrow size distribution and a monolithic supermacroporous structure. The hydrophobicity of the cryogel particles was confirmed by placing aqueous and organic droplets on the particles. Where the organic droplet was immediately adsorbed into the particles, the aqueous droplet remained on the surface of the particle due to repelling force. In addition, after it adsorbed the organic droplet the particle was observed, and the organic solvent was diffused into the entire particle. It was indicated that monolithic pores were distributed from the surface to the interior. Regarding the application of the hydrophobic cryogel particles, we demonstrated the separation of a stabilized oil-in-water emulsion, resulting in the successful removal of the organic solvent from the emulsion.
Collapse
|
24
|
Xia X, Ma J, Geng S, Liu F, Yao M. A Review of Oil-Solid Separation and Oil-Water Separation in Unconventional Heavy Oil Production Process. Int J Mol Sci 2022; 24:74. [PMID: 36613516 PMCID: PMC9820792 DOI: 10.3390/ijms24010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Unconventional heavy oil ores (UHO) have been considered an important part of petroleum resources and an alternative source of chemicals and energy supply. Due to the participation of water and extractants, oil-solid separation (OSS) and oil-water separation (OWS) processes are inevitable in the industrial separation processes of UHO. Therefore, this critical review systematically reviews the basic theories of OSS and OWS, including solid wettability, contact angle, oil-solid interactions, structural characteristics of natural surfactants and interface characteristics of interfacially active asphaltene film. With the basic theories in mind, the corresponding OSS and OWS mechanisms are discussed. Finally, the present challenges and future research considerations are touched on to provide insights and theoretical fundamentals for OSS and OWS. Additionally, this critical review might even be useful for the provision of a framework of research prospects to guide future research directions in laboratories and industries that focus on the OSS and OWS processes in this important heavy oil production field.
Collapse
Affiliation(s)
- Xiao Xia
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Jun Ma
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Shuo Geng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Fei Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Mengqin Yao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| |
Collapse
|
25
|
de Carvalho-Guimarães FB, Correa KL, de Souza TP, Rodríguez Amado JR, Ribeiro-Costa RM, Silva-Júnior JOC. A Review of Pickering Emulsions: Perspectives and Applications. Pharmaceuticals (Basel) 2022; 15:1413. [PMID: 36422543 PMCID: PMC9698490 DOI: 10.3390/ph15111413] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 09/10/2023] Open
Abstract
Pickering emulsions are systems composed of two immiscible fluids stabilized by organic or inorganic solid particles. These solid particles of certain dimensions (micro- or nano-particles), and desired wettability, have been shown to be an alternative to conventional emulsifiers. The use of biodegradable and biocompatible stabilizers of natural origin, such as clay minerals, presents a promising future for the development of Pickering emulsions and, with this, they deliver some advantages, especially in the area of biomedicine. In this review, the effects and characteristics of microparticles in the preparation and properties of Pickering emulsions are presented. The objective of this review is to provide a theoretical basis for a broader type of emulsion, in addition to reviewing the main aspects related to the mechanisms and applications to promote its stability. Through this review, we highlight the use of this type of emulsion and its excellent properties as permeability promoters of solid particles, providing ideal results for local drug delivery and use in Pickering emulsions.
Collapse
Affiliation(s)
| | - Kamila Leal Correa
- Laboratory of Pharmaceutical and Cosmetic R&D, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
| | - Tatiane Pereira de Souza
- Laboratory of Innovation and Development in Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus 69077-000, Brazil
| | - Jesus Rafael Rodríguez Amado
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Food and Nutrition, Federal University of Mato-Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Roseane Maria Ribeiro-Costa
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
| | | |
Collapse
|
26
|
Almutairi M. Evaluate the effectiveness technology for the treatment of oily wastewater. JOURNAL OF WATER AND HEALTH 2022; 20:1171-1187. [PMID: 36044187 DOI: 10.2166/wh.2022.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This work deals with the treatment of oily wastewater produced from the washing of oil-contaminated soil. Untreated oily wastewater contains toxic compounds that might be mutagenic or carcinogenic as total petroleum hydrocarbon (TPH) and heavy metals. Based on the water quality analysis, the tested samples contained a high concentration of TPH, chemical oxygen demand (COD) and turbidity with an average value of 67,500 mg/l, 48,240 mg/l and 176 (nephelometric turbidity unit, NTU), respectively. Several technologies were used, such as centrifuging, powdered activated carbon (PAC) and sawdust. The mean values of COD values for sawdust, centrifuging and PAC were 41,067, 25,600 and 13,133 mg/l, respectively. The present study indicated that the coagulation/flocculation processes were more efficient by using aluminium sulphate alum, while the preliminary conclusion derived was that the secondary treatment using an aeration system is capable of lowering the COD values as well as increasing the flocculent mass floc well equal to 4,784 mg/l and 0.69 g, respectively. The microbial seed was able to degrade the biosurfactant, which allows the stability of oil emulsion to be broken down and released easily.
Collapse
Affiliation(s)
- Meshari Almutairi
- Civil Engineering Department, Australian University AU: Kuwait, KW, West Mishref Mubarak Al-Abdullah Al-Jaber Area Block 5 - Al Aqsa Mosque Street Gate 1, P.O. Box 1411, Safat 13015, Kuwait E-mail:
| |
Collapse
|