1
|
Kim JE, Wang JA, Li Y, Czimczik CI, Randerson JT. Wildfire-induced increases in photosynthesis in boreal forest ecosystems of North America. GLOBAL CHANGE BIOLOGY 2024; 30:e17151. [PMID: 38273511 DOI: 10.1111/gcb.17151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024]
Abstract
Observations of the annual cycle of atmospheric CO2 in high northern latitudes provide evidence for an increase in terrestrial metabolism in Arctic tundra and boreal forest ecosystems. However, the mechanisms driving these changes are not yet fully understood. One proposed hypothesis is that ecological change from disturbance, such as wildfire, could increase the magnitude and change the phase of net ecosystem exchange through shifts in plant community composition. Yet, little quantitative work has evaluated this potential mechanism at a regional scale. Here we investigate how fire disturbance influences landscape-level patterns of photosynthesis across western boreal North America. We use Alaska and Canadian large fire databases to identify the perimeters of wildfires, a Landsat-derived land cover time series to characterize plant functional types (PFTs), and solar-induced fluorescence (SIF) from the Orbiting Carbon Observatory-2 (OCO-2) as a proxy for photosynthesis. We analyze these datasets to characterize post-fire changes in plant succession and photosynthetic activity using a space-for-time approach. We find that increases in herbaceous and sparse vegetation, shrub, and deciduous broadleaf forest PFTs during mid-succession yield enhancements in SIF by 8-40% during June and July for 2- to 59-year stands relative to pre-fire controls. From the analysis of post-fire land cover changes within individual ecoregions and modeling, we identify two mechanisms by which fires contribute to long-term trends in SIF. First, increases in annual burning are shifting the stand age distribution, leading to increases in the abundance of shrubs and deciduous broadleaf forests that have considerably higher SIF during early- and mid-summer. Second, fire appears to facilitate a long-term shift from evergreen conifer to broadleaf deciduous forest in the Boreal Plain ecoregion. These findings suggest that increasing fire can contribute substantially to positive trends in seasonal CO2 exchange without a close coupling to long-term increases in carbon storage.
Collapse
Affiliation(s)
- Jinhyuk E Kim
- Department of Earth System Science, University of California, Irvine, California, USA
| | - Jonathan A Wang
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Yue Li
- Department of Geography, University of California, Los Angeles, California, USA
| | - Claudia I Czimczik
- Department of Earth System Science, University of California, Irvine, California, USA
| | - James T Randerson
- Department of Earth System Science, University of California, Irvine, California, USA
| |
Collapse
|
2
|
Sun Y, Gu L, Wen J, van der Tol C, Porcar-Castell A, Joiner J, Chang CY, Magney T, Wang L, Hu L, Rascher U, Zarco-Tejada P, Barrett CB, Lai J, Han J, Luo Z. From remotely sensed solar-induced chlorophyll fluorescence to ecosystem structure, function, and service: Part I-Harnessing theory. GLOBAL CHANGE BIOLOGY 2023; 29:2926-2952. [PMID: 36799496 DOI: 10.1111/gcb.16634] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/08/2022] [Indexed: 05/03/2023]
Abstract
Solar-induced chlorophyll fluorescence (SIF) is a remotely sensed optical signal emitted during the light reactions of photosynthesis. The past two decades have witnessed an explosion in availability of SIF data at increasingly higher spatial and temporal resolutions, sparking applications in diverse research sectors (e.g., ecology, agriculture, hydrology, climate, and socioeconomics). These applications must deal with complexities caused by tremendous variations in scale and the impacts of interacting and superimposing plant physiology and three-dimensional vegetation structure on the emission and scattering of SIF. At present, these complexities have not been overcome. To advance future research, the two companion reviews aim to (1) develop an analytical framework for inferring terrestrial vegetation structures and function that are tied to SIF emission, (2) synthesize progress and identify challenges in SIF research via the lens of multi-sector applications, and (3) map out actionable solutions to tackle these challenges and offer our vision for research priorities over the next 5-10 years based on the proposed analytical framework. This paper is the first of the two companion reviews, and theory oriented. It introduces a theoretically rigorous yet practically applicable analytical framework. Guided by this framework, we offer theoretical perspectives on three overarching questions: (1) The forward (mechanism) question-How are the dynamics of SIF affected by terrestrial ecosystem structure and function? (2) The inference question: What aspects of terrestrial ecosystem structure, function, and service can be reliably inferred from remotely sensed SIF and how? (3) The innovation question: What innovations are needed to realize the full potential of SIF remote sensing for real-world applications under climate change? The analytical framework elucidates that process complexity must be appreciated in inferring ecosystem structure and function from the observed SIF; this framework can serve as a diagnosis and inference tool for versatile applications across diverse spatial and temporal scales.
Collapse
Affiliation(s)
- Ying Sun
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jiaming Wen
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Christiaan van der Tol
- Affiliation Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, The Netherlands
| | - Albert Porcar-Castell
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS), University of Helsinki, Helsinki, Finland
| | - Joanna Joiner
- National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
| | - Christine Y Chang
- US Department of Agriculture, Agricultural Research Service, Adaptive Cropping Systems Laboratory, Beltsville, Maryland, USA
| | - Troy Magney
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Lixin Wang
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, USA
| | - Leiqiu Hu
- Department of Atmospheric and Earth Science, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Uwe Rascher
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Pablo Zarco-Tejada
- School of Agriculture and Food (SAF-FVAS) and Faculty of Engineering and Information Technology (IE-FEIT), University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher B Barrett
- Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, New York, USA
| | - Jiameng Lai
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Jimei Han
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Zhenqi Luo
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Sun Y, Wen J, Gu L, Joiner J, Chang CY, van der Tol C, Porcar-Castell A, Magney T, Wang L, Hu L, Rascher U, Zarco-Tejada P, Barrett CB, Lai J, Han J, Luo Z. From remotely-sensed solar-induced chlorophyll fluorescence to ecosystem structure, function, and service: Part II-Harnessing data. GLOBAL CHANGE BIOLOGY 2023; 29:2893-2925. [PMID: 36802124 DOI: 10.1111/gcb.16646] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 05/03/2023]
Abstract
Although our observing capabilities of solar-induced chlorophyll fluorescence (SIF) have been growing rapidly, the quality and consistency of SIF datasets are still in an active stage of research and development. As a result, there are considerable inconsistencies among diverse SIF datasets at all scales and the widespread applications of them have led to contradictory findings. The present review is the second of the two companion reviews, and data oriented. It aims to (1) synthesize the variety, scale, and uncertainty of existing SIF datasets, (2) synthesize the diverse applications in the sector of ecology, agriculture, hydrology, climate, and socioeconomics, and (3) clarify how such data inconsistency superimposed with the theoretical complexities laid out in (Sun et al., 2023) may impact process interpretation of various applications and contribute to inconsistent findings. We emphasize that accurate interpretation of the functional relationships between SIF and other ecological indicators is contingent upon complete understanding of SIF data quality and uncertainty. Biases and uncertainties in SIF observations can significantly confound interpretation of their relationships and how such relationships respond to environmental variations. Built upon our syntheses, we summarize existing gaps and uncertainties in current SIF observations. Further, we offer our perspectives on innovations needed to help improve informing ecosystem structure, function, and service under climate change, including enhancing in-situ SIF observing capability especially in "data desert" regions, improving cross-instrument data standardization and network coordination, and advancing applications by fully harnessing theory and data.
Collapse
Affiliation(s)
- Ying Sun
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Jiaming Wen
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Joanna Joiner
- National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
| | - Christine Y Chang
- US Department of Agriculture, Agricultural Research Service, Adaptive Cropping Systems Laboratory, Beltsville, Maryland, USA
| | - Christiaan van der Tol
- Affiliation Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, The Netherlands
| | - Albert Porcar-Castell
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS), University of Helsinki, Helsinki, Finland
| | - Troy Magney
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Lixin Wang
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, USA
| | - Leiqiu Hu
- Department of Atmospheric and Earth Science, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Uwe Rascher
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Pablo Zarco-Tejada
- School of Agriculture and Food (SAF-FVAS) and Faculty of Engineering and Information Technology (IE-FEIT), University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher B Barrett
- Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, New York, USA
| | - Jiameng Lai
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Jimei Han
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Zhenqi Luo
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Wong CYS, Jones T, McHugh DP, Gilbert ME, Gepts P, Palkovic A, Buckley TN, Magney TS. TSWIFT: Tower Spectrometer on Wheels for Investigating Frequent Timeseries for high-throughput phenotyping of vegetation physiology. PLANT METHODS 2023; 19:29. [PMID: 36978119 PMCID: PMC10044391 DOI: 10.1186/s13007-023-01001-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Remote sensing instruments enable high-throughput phenotyping of plant traits and stress resilience across scale. Spatial (handheld devices, towers, drones, airborne, and satellites) and temporal (continuous or intermittent) tradeoffs can enable or constrain plant science applications. Here, we describe the technical details of TSWIFT (Tower Spectrometer on Wheels for Investigating Frequent Timeseries), a mobile tower-based hyperspectral remote sensing system for continuous monitoring of spectral reflectance across visible-near infrared regions with the capacity to resolve solar-induced fluorescence (SIF). RESULTS We demonstrate potential applications for monitoring short-term (diurnal) and long-term (seasonal) variation of vegetation for high-throughput phenotyping applications. We deployed TSWIFT in a field experiment of 300 common bean genotypes in two treatments: control (irrigated) and drought (terminal drought). We evaluated the normalized difference vegetation index (NDVI), photochemical reflectance index (PRI), and SIF, as well as the coefficient of variation (CV) across the visible-near infrared spectral range (400 to 900 nm). NDVI tracked structural variation early in the growing season, following initial plant growth and development. PRI and SIF were more dynamic, exhibiting variation diurnally and seasonally, enabling quantification of genotypic variation in physiological response to drought conditions. Beyond vegetation indices, CV of hyperspectral reflectance showed the most variability across genotypes, treatment, and time in the visible and red-edge spectral regions. CONCLUSIONS TSWIFT enables continuous and automated monitoring of hyperspectral reflectance for assessing variation in plant structure and function at high spatial and temporal resolutions for high-throughput phenotyping. Mobile, tower-based systems like this can provide short- and long-term datasets to assess genotypic and/or management responses to the environment, and ultimately enable the spectral prediction of resource-use efficiency, stress resilience, productivity and yield.
Collapse
Affiliation(s)
| | - Taylor Jones
- Department of Earth & Environment, Boston University, Boston, MA 02215 USA
| | - Devin P. McHugh
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616 USA
| | - Matthew E. Gilbert
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616 USA
| | - Paul Gepts
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616 USA
| | - Antonia Palkovic
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616 USA
| | - Thomas N. Buckley
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616 USA
| | - Troy S. Magney
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
5
|
Kuai L, Parazoo NC, Shi M, Miller CE, Baker I, Bloom AA, Bowman K, Lee M, Zeng Z, Commane R, Montzka SA, Berry J, Sweeney C, Miller JB, Yung YL. Quantifying Northern High Latitude Gross Primary Productivity (GPP) Using Carbonyl Sulfide (OCS). GLOBAL BIOGEOCHEMICAL CYCLES 2022; 36:e2021GB007216. [PMID: 36590828 PMCID: PMC9787914 DOI: 10.1029/2021gb007216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 06/17/2023]
Abstract
The northern high latitude (NHL, 40°N to 90°N) is where the second peak region of gross primary productivity (GPP) other than the tropics. The summer NHL GPP is about 80% of the tropical peak, but both regions are still highly uncertain (Norton et al. 2019, https://doi.org/10.5194/bg-16-3069-2019). Carbonyl sulfide (OCS) provides an important proxy for photosynthetic carbon uptake. Here we optimize the OCS plant uptake fluxes across the NHL by fitting atmospheric concentration simulation with the GEOS-CHEM global transport model to the aircraft profiles acquired over Alaska during NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (2012-2015). We use the empirical biome-specific linear relationship between OCS plant uptake flux and GPP to derive the six plant uptake OCS fluxes from different GPP data. Such GPP-based fluxes are used to drive the concentration simulations. We evaluate the simulations against the independent observations at two ground sites of Alaska. The optimized OCS fluxes suggest the NHL plant uptake OCS flux of -247 Gg S year-1, about 25% stronger than the ensemble mean of the six GPP-based OCS fluxes. GPP-based OCS fluxes systematically underestimate the peak growing season across the NHL, while a subset of models predict early start of season in Alaska, consistent with previous studies of net ecosystem exchange. The OCS optimized GPP of 34 PgC yr-1 for NHL is also about 25% more than the ensembles mean from six GPP data. Further work is needed to fully understand the environmental and biotic drivers and quantify their rate of photosynthetic carbon uptake in Arctic ecosystems.
Collapse
Affiliation(s)
- Le Kuai
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - Mingjie Shi
- Pacific Northwest National LaboratoryRichlandWAUSA
| | - Charles E. Miller
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Ian Baker
- Colorado State UniversityFort CollinsCOUSA
| | - Anthony A. Bloom
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Kevin Bowman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Meemong Lee
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Zhao‐Cheng Zeng
- University of California Los AngelesJIFRESSELos AngelesCAUSA
| | - Roisin Commane
- Lamont‐Doherty Earth Observatory at Columbia UniversityPalisadesNYUSA
| | | | | | | | | | - Yuk L. Yung
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
- California Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
6
|
Porcar-Castell A, Malenovský Z, Magney T, Van Wittenberghe S, Fernández-Marín B, Maignan F, Zhang Y, Maseyk K, Atherton J, Albert LP, Robson TM, Zhao F, Garcia-Plazaola JI, Ensminger I, Rajewicz PA, Grebe S, Tikkanen M, Kellner JR, Ihalainen JA, Rascher U, Logan B. Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. NATURE PLANTS 2021; 7:998-1009. [PMID: 34373605 DOI: 10.1038/s41477-021-00980-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/28/2021] [Indexed: 05/27/2023]
Abstract
For decades, the dynamic nature of chlorophyll a fluorescence (ChlaF) has provided insight into the biophysics and ecophysiology of the light reactions of photosynthesis from the subcellular to leaf scales. Recent advances in remote sensing methods enable detection of ChlaF induced by sunlight across a range of larger scales, from using instruments mounted on towers above plant canopies to Earth-orbiting satellites. This signal is referred to as solar-induced fluorescence (SIF) and its application promises to overcome spatial constraints on studies of photosynthesis, opening new research directions and opportunities in ecology, ecophysiology, biogeochemistry, agriculture and forestry. However, to unleash the full potential of SIF, intensive cross-disciplinary work is required to harmonize these new advances with the rich history of biophysical and ecophysiological studies of ChlaF, fostering the development of next-generation plant physiological and Earth-system models. Here, we introduce the scale-dependent link between SIF and photosynthesis, with an emphasis on seven remaining scientific challenges, and present a roadmap to facilitate future collaborative research towards new applications of SIF.
Collapse
Affiliation(s)
- Albert Porcar-Castell
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS), University of Helsinki, Helsinki, Finland.
| | - Zbyněk Malenovský
- School of Geography, Planning, and Spatial Sciences, College of Sciences Engineering and Technology, University of Tasmania, Hobart, Tasmania, Australia
| | - Troy Magney
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Shari Van Wittenberghe
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS), University of Helsinki, Helsinki, Finland
- Laboratory of Earth Observation, University of Valencia, Paterna, Spain
| | - Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), Tenerife, Spain
| | - Fabienne Maignan
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Yongguang Zhang
- International Institute for Earth System Sciences, Nanjing University, Nanjing, China
| | - Kadmiel Maseyk
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
| | - Jon Atherton
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS), University of Helsinki, Helsinki, Finland
| | - Loren P Albert
- Institute at Brown for Environment and Society, Brown University, Providence, RI, USA
- Biology Department, West Virginia University, Morgantown, WV, USA
| | - Thomas Matthew Robson
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Feng Zhao
- School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China
| | | | - Ingo Ensminger
- Department of Biology, Graduate Programs in Cell & Systems Biology and Ecology & Evolutionary Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Paulina A Rajewicz
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS), University of Helsinki, Helsinki, Finland
| | - Steffen Grebe
- Molecular Plant Biology, University of Turku, Turku, Finland
| | - Mikko Tikkanen
- Molecular Plant Biology, University of Turku, Turku, Finland
| | - James R Kellner
- Institute at Brown for Environment and Society, Brown University, Providence, RI, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Janne A Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Uwe Rascher
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Barry Logan
- Biology Department, Bowdoin College, Brunswick, ME, USA
| |
Collapse
|