1
|
Patil Y, Megalamani MB, Nandi S, Nandibewoor ST, Adimule V, Rajendrachari S. Electrochemical Determination of Cyclobenzaprine Hydrochloride Muscle Relaxant Using Novel S-GCN/TiO 2-Based Carbon Electrode. ACS OMEGA 2024; 9:31657-31668. [PMID: 39072069 PMCID: PMC11270554 DOI: 10.1021/acsomega.4c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
We have successfully prepared the titanium dioxide (TiO2) nanoparticles (NPs) and sulfur-incorporated graphitic carbon nitride (S-GCN)-modified carbon paste electrode (CPE). The CPEs modified with TiO2 NPs and S-GCN were employed for detecting and quantifying the skeletal muscle relaxant cyclobenzaprine hydrochloride (CBP) using cyclic voltammetry and square wave voltammetry (SWV) techniques. Optimal electrochemical conditions were indicated by the pH study results, with the highest peak current observed at a physiological pH of 7.4. The electrochemical process was determined to involve an equivalent number of protons (H+) and electrons (e-). The concentration variation of CBP (ranging from 0.06 to 10 × 10-7 mol L-1) was explored using SWV. The limits of detection and quantification were determined as 6.4 × 10-9 and 2.1 × 10-8 M, respectively. The proposed electrode configuration was applied to analyze real samples, including water, biomedical, and pharmaceutical specimens.
Collapse
Affiliation(s)
- Yuvarajgouda
N. Patil
- Department
of Chemistry, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Manjunath B. Megalamani
- Department
of Chemistry, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Santosh Nandi
- Department
of Chemistry, KLE Technological University
Dr. M. S. Sheshgiri Campus, Udyambag, Belagavi, Karnataka 590008, India
| | - Sharanappa T. Nandibewoor
- Department
of Chemistry, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Vinayak Adimule
- Department
of Chemistry, Angadi Institute of Technology
and Management (AITM), Savagaon Road, Belagavi, Karnataka 590009, India
| | - Shashanka Rajendrachari
- Department
of Metallurgical and Materials Engineering, Bartin University, Bartin 74100, Turkey
| |
Collapse
|
2
|
Ali AMBH, Rageh AH, Abdel-aal FA, Mohamed AMI. Anatase titanium oxide nanoparticles and multi-walled carbon nanotubes-modified carbon paste electrode for simultaneous determination of avanafil and doxorubicin in plasma samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
3
|
Królicka A, Szczurkowska A, Mochalski P, Malata G. Preparation, Characterization, and Activation of Natural Glassy Carbon Paste Electrodes as New Sensors for Determining the Total Antioxidant Capacity of Plant Extracts. MEMBRANES 2022; 12:1193. [PMID: 36557100 PMCID: PMC9783599 DOI: 10.3390/membranes12121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The continuous search for new sensing materials with high recognition capabilities is necessary to improve existing analytical procedures and to develop new ones. Natural glassy carbon and polydimethylsiloxane were shown to be used for the preparation of carbon paste electrodes to employ them in new, voltammetric, green-chemistry-friendly electroanalytical procedures aimed at evaluating the antioxidant capacity of plant extracts, dietary supplements, and hydrolats. The developed electrodes provided well-shaped and reproducible voltammetric signals (RSD = 1%) of the oxidation of epigallocatechin gallate, the main component of many plants and plant-based formulations with antioxidative activity, in the 1-12.5 µM range (DPV mode, LOD = 0.08 µM). If needed, the performance of new carbon paste electrodes can be further enhanced by the introduction of trivalent rare earth oxides to carbon paste to increase its active surface, facilitate electron transfer, and improve the resolution of recorded signals.
Collapse
Affiliation(s)
- Agnieszka Królicka
- Department of Building Materials Technology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Anna Szczurkowska
- Department of Building Materials Technology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Paweł Mochalski
- Institute of Chemistry, Jan Kochanowski University of Kielce, 25-406 Kielce, Poland
| | - Grzegorz Malata
- Department of Building Materials Technology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
4
|
Buffon E, Stradiotto NR. Using a disposable platform based on reduced graphene oxide, iron nanoparticles and molecularly imprinted polymer for voltammetric determination of vanillic acid in fruit peels. Food Chem 2022; 397:133786. [PMID: 35908470 DOI: 10.1016/j.foodchem.2022.133786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/21/2022] [Accepted: 07/23/2022] [Indexed: 11/24/2022]
Abstract
This work reports the development and application of a disposable electrochemical platform for vanillic acid (VA) detection using screen-printed electrode modified with reduced graphene oxide, iron nanoparticles and molecularly imprinted poly(pyrrole) film. The electrochemical platform was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Using optimized conditions, the proposed disposable platform presented linear concentration ranges of 1.0 × 10-9 to 1.5 × 10-7 mol/L. The limits of detection and quantification obtained for the device were 3.1 × 10-10 and 1.0 × 10-9 mol/L, respectively. The electrochemical platform was found to be selective for VA recognition and presented voltammetric responses with good repeatability and stability. The analytical methodology developed was applied for VA determination in banana and orange peels. The results obtained showed that the proposed electrochemical platform has a good accuracy when applied for the determination of VA.
Collapse
Affiliation(s)
- Edervaldo Buffon
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil.
| | - Nelson Ramos Stradiotto
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| |
Collapse
|
5
|
Polat EO, Cetin MM, Tabak AF, Bilget Güven E, Uysal BÖ, Arsan T, Kabbani A, Hamed H, Gül SB. Transducer Technologies for Biosensors and Their Wearable Applications. BIOSENSORS 2022; 12:385. [PMID: 35735533 PMCID: PMC9221076 DOI: 10.3390/bios12060385] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 05/17/2023]
Abstract
The development of new biosensor technologies and their active use as wearable devices have offered mobility and flexibility to conventional western medicine and personal fitness tracking. In the development of biosensors, transducers stand out as the main elements converting the signals sourced from a biological event into a detectable output. Combined with the suitable bio-receptors and the miniaturization of readout electronics, the functionality and design of the transducers play a key role in the construction of wearable devices for personal health control. Ever-growing research and industrial interest in new transducer technologies for point-of-care (POC) and wearable bio-detection have gained tremendous acceleration by the pandemic-induced digital health transformation. In this article, we provide a comprehensive review of transducers for biosensors and their wearable applications that empower users for the active tracking of biomarkers and personal health parameters.
Collapse
Affiliation(s)
- Emre Ozan Polat
- Faculty of Engineering and Natural Sciences, Kadir Has University, Cibali, Istanbul 34083, Turkey; (M.M.C.); (A.F.T.); (E.B.G.); (B.Ö.U.); (T.A.); (A.K.); (H.H.); (S.B.G.)
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kaleeswarran P, Koventhan C, Chen SM, Arumugam A. Coherent design of indium doped copper bismuthate-encapsulated graphene nanocomposite for sensitive electrochemical detection of Rutin. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Angelis PN, Casarin J, Gonçalves Júnior AC, Rocha LR, Prete MC, Tarley CRT. Development of a Novel Molecularly Imprinted Polyvinylimidazole/Functionalized Carbon Black Nanocomposite‐based Paste Electrode for Electrochemical Sensing of Imazethapyr in Rice Samples. ELECTROANAL 2022. [DOI: 10.1002/elan.202100360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Pedro Nunes Angelis
- Universidade Estadual de Londrina (UEL) Departamento de Química Centro de Ciências Exatas Rodovia Celso Garcia Cid PR 445 Km 380, CEP 86050-482 Londrina-PR Brazil
| | - Juliana Casarin
- Universidade Estadual de Londrina (UEL) Departamento de Química Centro de Ciências Exatas Rodovia Celso Garcia Cid PR 445 Km 380, CEP 86050-482 Londrina-PR Brazil
| | - Affonso Celso Gonçalves Júnior
- Universidade Estadual do Oeste do Paraná (UNIOESTE) Centro de Ciências Agrárias, CEP 85960-000 Marechal Cândido Rondon-PR Brazil
| | - Luana Rianne Rocha
- Universidade Estadual de Londrina (UEL) Departamento de Química Centro de Ciências Exatas Rodovia Celso Garcia Cid PR 445 Km 380, CEP 86050-482 Londrina-PR Brazil
| | - Maiyara Carolyne Prete
- Universidade Estadual de Londrina (UEL) Departamento de Química Centro de Ciências Exatas Rodovia Celso Garcia Cid PR 445 Km 380, CEP 86050-482 Londrina-PR Brazil
| | - César Ricardo Teixeira Tarley
- Universidade Estadual de Londrina (UEL) Departamento de Química Centro de Ciências Exatas Rodovia Celso Garcia Cid PR 445 Km 380, CEP 86050-482 Londrina-PR Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) de Bioanalítica Universidade Estadual de Campinas (UNICAMP) Instituto de Química Departamento de Química Analítica Cidade Universitária Zeferino Vaz s/n, CEP 13083-970 Campinas Brazil
| |
Collapse
|
8
|
Preparation of modified carbon paste electrodes from orange peel and used coffee ground. New materials for the treatment of dye-contaminated solutions using electro-Fenton processes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Catalytic and photocatalytic effects of TiO2 nanoparticles on electrooxidation of common antioxidants on carbon paste. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Abstract
Antioxidants are compounds that prevent or delay the oxidation process, acting at a much smaller concentration, in comparison to that of the preserved substrate. Primary antioxidants act as scavenging or chain breaking antioxidants, delaying initiation or interrupting propagation step. Secondary antioxidants quench singlet oxygen, decompose peroxides in non-radical species, chelate prooxidative metal ions, inhibit oxidative enzymes. Based on antioxidants’ reactivity, four lines of defense have been described: Preventative antioxidants, radical scavengers, repair antioxidants, and antioxidants relying on adaptation mechanisms. Carbon-based electrodes are largely employed in electroanalysis given their special features, that encompass large surface area, high electroconductivity, chemical stability, nanostructuring possibilities, facility of manufacturing at low cost, and easiness of surface modification. Largely employed methods encompass voltammetry, amperometry, biamperometry and potentiometry. Determination of key endogenous and exogenous individual antioxidants, as well as of antioxidant activity and its main contributors relied on unmodified or modified carbon electrodes, whose analytical parameters are detailed. Recent advances based on modifications with carbon-nanotubes or the use of hybrid nanocomposite materials are described. Large effective surface area, increased mass transport, electrocatalytical effects, improved sensitivity, and low detection limits in the nanomolar range were reported, with applications validated in complex media such as foodstuffs and biological samples.
Collapse
|
11
|
The Importance of Developing Electrochemical Sensors Based on Molecularly Imprinted Polymers for a Rapid Detection of Antioxidants. Antioxidants (Basel) 2021; 10:antiox10030382. [PMID: 33806514 PMCID: PMC8001462 DOI: 10.3390/antiox10030382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 12/30/2022] Open
Abstract
This review aims to pin out the importance of developing a technique for rapid detection of antioxidants, based on molecular imprinting techniques. It covers three major areas that have made great progress over the years in the field of research, namely: antioxidants characterization, molecular imprinting and electrochemistry, alone or combined. It also reveals the importance of bringing these three areas together for a good evaluation of antioxidants in a simple or complex medium, based on selectivity and specificity. Although numerous studies have associated antioxidants with molecular imprinting, or antioxidants with electrochemistry, but even electrochemistry with molecular imprinting to valorize different compounds, the growing prominence of antioxidants in the food, medical, and paramedical sectors deserves to combine the three areas, which may lead to innovative industrial applications with satisfactory results for both manufacturers and consumers.
Collapse
|
12
|
Erdem Ö, Derin E, Sagdic K, Yilmaz EG, Inci F. Smart materials-integrated sensor technologies for COVID-19 diagnosis. EMERGENT MATERIALS 2021; 4:169-185. [PMID: 33495747 PMCID: PMC7817967 DOI: 10.1007/s42247-020-00150-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/01/2020] [Indexed: 05/05/2023]
Abstract
After the first case has appeared in China, the COVID-19 pandemic continues to pose an omnipresent threat to global health, affecting more than 70 million patients and leading to around 1.6 million deaths. To implement rapid and effective clinical management, early diagnosis is the mainstay. Today, real-time reverse transcriptase (RT)-PCR test is the major diagnostic practice as a gold standard method for accurate diagnosis of this disease. On the other side, serological assays are easy to be implemented for the disease screening. Considering the limitations of today's tests including lengthy assay time, cost, the need for skilled personnel, and specialized infrastructure, both strategies, however, have impediments to be applied to the resource-scarce settings. Therefore, there is an urgent need to democratize all these practices to be applicable across the globe, specifically to the locations comprising of very limited infrastructure. In this regard, sensor systems have been utilized in clinical diagnostics largely, holding great potential to have pivotal roles as an alternative or complementary options to these current tests, providing crucial fashions such as being suitable for point-of-care settings, cost-effective, and having short turnover time. In particular, the integration of smart materials into sensor technologies leverages their analytical performances, including sensitivity, linear dynamic range, and specificity. Herein, we comprehensively review major smart materials such as nanomaterials, photosensitive materials, electrically sensitive materials, their integration with sensor platforms, and applications as wearable tools within the scope of the COVID-19 diagnosis.
Collapse
Affiliation(s)
- Özgecan Erdem
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Esma Derin
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Kutay Sagdic
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Eylul Gulsen Yilmaz
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
13
|
Influence of cationic surfactant cetyltrimethylammonium bromide for electrochemical detection of guanine, uric acid and dopamine. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114893] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
Petković BB, Ognjanović M, Antić B, Viktorovich Avdin V, Manojlović DD, Vranješ Đurić S, Stanković DM. Easily Prepared Co
3
O
4
Doped Porous Carbon Material Decorated with Single‐wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α‐lipoic Acid. ELECTROANAL 2020. [DOI: 10.1002/elan.202060290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Branka B. Petković
- University of Priština-Kosovska Mitrovica Faculty of Sciences Lole Ribara 29 38220 Kosovska Mitrovica Serbia
| | - Miloš Ognjanović
- Department of Theoretical Physics and Condensed Matter Physics „VINČA“ Institute of Nuclear Sciences – National Institute of the Republic of Serbia University of Belgrade Belgrade Serbia
| | - Bratislav Antić
- Department of Theoretical Physics and Condensed Matter Physics „VINČA“ Institute of Nuclear Sciences – National Institute of the Republic of Serbia University of Belgrade Belgrade Serbia
| | | | - Dragan D. Manojlović
- South Ural State University 76, Lenin prospekt Chelyabinsk Russia 454080
- Faculty of Chemistry University of Beograde Studentski trg 12–16 11000 Beograd Serbia
| | - Sanja Vranješ Đurić
- Department of Radioisotopes „VINČA“ Institute of Nuclear Sciences – National Institute of the Republic of Serbia University of Belgrade Belgrade Serbia
| | - Dalibor M. Stanković
- Faculty of Chemistry University of Beograde Studentski trg 12–16 11000 Beograd Serbia
- Department of Radioisotopes „VINČA“ Institute of Nuclear Sciences – National Institute of the Republic of Serbia University of Belgrade Belgrade Serbia
| |
Collapse
|
15
|
Electrochemical Sensors Coupled with Multivariate Statistical Analysis as Screening Tools for Wine Authentication Issues: A Review. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8030059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Consumers are increasingly interested in the characteristics of the products they consume, including aroma, taste, and appearance, and hence, scientific research was conducted in order to develop electronic senses devices that mimic the human senses. Thanks to the utilization of electroanalytical techniques that used various sensors modified with different electroactive materials coupled with pattern recognition methods, artificial senses such as electronic tongues (ETs) are widely applied in food analysis for quality and authenticity approaches. This paper summarizes the applications of electrochemical sensors (voltammetric, amperometric, and potentiometric) coupled with unsupervised and supervised pattern recognition methods (principal components analysis (PCA), linear discriminant analysis (LDA), partial least square (PLS) regression, artificial neural network (ANN)) for wine authenticity assessments including the discrimination of varietal and geographical origins, monitoring the ageing processes, vintage year discrimination, and detection of frauds and adulterations. Different wine electrochemical authentication methodologies covering the electrochemical techniques, electrodes types, functionalization sensitive materials and multivariate statistical analysis are emphasized and the main advantages and disadvantages of using the proposed methodologies for real applications were concluded.
Collapse
|
16
|
Chiorcea-Paquim AM, Enache TA, De Souza Gil E, Oliveira-Brett AM. Natural phenolic antioxidants electrochemistry: Towards a new food science methodology. Compr Rev Food Sci Food Saf 2020; 19:1680-1726. [PMID: 33337087 DOI: 10.1111/1541-4337.12566] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 11/27/2022]
Abstract
Natural phenolic compounds are abundant in the vegetable kingdom, occurring mainly as secondary metabolites in a wide variety of chemical structures. Around 10,000 different plant phenolic derivatives have been isolated and identified. This review provides an exhaustive overview concerning the electron transfer reactions in natural polyphenols, from the point of view of their in vitro antioxidant and/or pro-oxidant mode of action, as well as their identification in highly complex matrixes, for example, fruits, vegetables, wine, food supplements, relevant for food quality control, nutrition, and health research. The accurate assessment of polyphenols' redox behavior is essential, and the application of the electrochemical methods in routine quality control of natural products and foods, where the polyphenols antioxidant activity needs to be quantified in vitro, is of the utmost importance. The phenol moiety oxidation pathways and the effect of substituents and experimental conditions on their electrochemical behavior will be reviewed. The fundamental principles concerning the redox behavior of natural polyphenols, specifically flavonoids and other benzopyran derivatives, phenolic acids and ester derivatives, quinones, lignins, tannins, lignans, essential oils, stilbenes, curcuminoids, and chalcones, will be described. The final sections will focus on the electroanalysis of phenolic antioxidants in natural products and the electroanalytical evaluation of in vitro total antioxidant capacity.
Collapse
Affiliation(s)
| | - Teodor Adrian Enache
- CEMMPRE, Department of Chemistry, University of Coimbra, Coimbra, 3004-535, Portugal
| | - Eric De Souza Gil
- CEMMPRE, Department of Chemistry, University of Coimbra, Coimbra, 3004-535, Portugal.,Faculdade de Farmácia, Universidade Federal de Goiás, Setor Universitário, Goiânia, Goiás, Brasil
| | | |
Collapse
|
17
|
Voltammetric Sensors Based on Nanomaterials for Detection of Caffeic Acid in Food Supplements. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8020041] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Caffeic acid may be accurately detected in food supplements by using cyclic voltammetry and carbon screen-printed sensors modified with various nanomaterials. Sensor characterization by cyclic voltammetry in reference solutions has shown that carbon nanotubes or carbon nanofibers significantly improve the sensor response in terms of sensitivity and reversibility. Screen-printed sensors were then used in order to study the electrochemical behavior of caffeic acid in aqueous solution at pH 3.6. A redox process was observed in all cases, which corresponds to a reversible redox process involving the transfer of two electrons and two protons. The role of nanomaterials in the increment of sensor performance characteristics was evidenced. Calibration curves were developed for each sensor, and the detection (LOD) and quantification (LOQ) limits were calculated. Low LOD and LOQ values were obtained, in the 10−7 to 10−9 M range, which demonstrates that the method is feasible for quantification of caffeic acid in real samples. Caffeic acid was quantitatively determined in three food supplements using the most sensitive sensor, namely the carbon nanofiber sensor. The Folin–Ciocalteu spectrophotometric assay was used to validate the results obtained with the sensor. The results obtained by using the voltammetric method were consistent with those obtained by using the spectrophotometric method, with no statistically significant differences between the results obtained at 95% confidence level.
Collapse
|
18
|
Sanchayanukun P, Muncharoen S. Chitosan coated magnetite nanoparticle as a working electrode for determination of Cr(VI) using square wave adsorptive cathodic stripping voltammetry. Talanta 2020; 217:121027. [PMID: 32498824 DOI: 10.1016/j.talanta.2020.121027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/23/2022]
Abstract
The application of chitosan coated magnetite nanoparticle modified carbon paste electrode as a working electrode (chitosan@Fe3O4/CPE) for Cr(VI) analysis is presented. The electrochemical detection mode of square wave adsorptive cathodic stripping voltammetry (SWAdCSV) was selected for determination of Cr(VI) due to the high sensitivity and selectivity. The optimal conditions for electrode preparation and the electrode behavior including parameters affecting the SWAdCSV signal were investigated. Two linear ranges of Cr(VI) determination were observed 0.01-0.3 μg L-1 and 0.5-30 μg L-1 with limits of detection of 0.0061 and 0.078 μg L-1, respectively. The precision of the electrode output in terms of %RSD was 11.4% (n = 30). The method was successfully applied to determine Cr(VI) in drinking water and sea water samples with recovery percentages in range 87-110%. Moreover, the results obtained agree with a paired t-test at the 95% confidence level which were comparable to the standard UV-visible spectrophotometric method.
Collapse
Affiliation(s)
- Phetlada Sanchayanukun
- Department of Chemistry, Faculty of Science, Burapha University, Chonburi, 20130, Thailand
| | - Sasithorn Muncharoen
- Department of Chemistry, Faculty of Science, Burapha University, Chonburi, 20130, Thailand.
| |
Collapse
|
19
|
Interaction between Amorphous Zirconia Nanoparticles and Graphite: Electrochemical Applications for Gallic Acid Sensing Using Carbon Paste Electrodes in Wine. NANOMATERIALS 2020; 10:nano10030537. [PMID: 32192127 PMCID: PMC7153396 DOI: 10.3390/nano10030537] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022]
Abstract
Amorphous zirconium oxide nanoparticles (ZrO2) have been used for the first time, to modify carbon paste electrode (CPE) and used as a sensor for the electrochemical determination of gallic acid (GA). The voltammetric results of the ZrO2 nanoparticles-modified CPE showed efficient electrochemical oxidation of gallic acid, with a significantly enhanced peak current from 261 µA ± 3 to about 451 µA ± 1. The modified surface of the electrode and the synthesised zirconia nanoparticles were characterised by scanning electrode microscopy (SEM), Energy-dispersive x-ray spectroscopy (EDXA), X-ray powdered diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). Meanwhile, the electrochemical behaviour of GA on the surface of the modified electrode was studied using differential pulse voltammetry (DPV), showing a sensitivity of the electrode for GA determination, within a concentration range of 1 × 10−6 mol L−1 to 1 × 10−3 mol L−1 with a correlation coefficient of R2 of 0.9945 and a limit of detection of 1.24 × 10−7 mol L−1 (S/N = 3). The proposed ZrO2 nanoparticles modified CPE was successfully used for the determination of GA in red and white wine, with concentrations of 0.103 mmol L−1 and 0.049 mmol L−1 respectively.
Collapse
|
20
|
Ahmadpour S, Tashkhourian J, Hemmateenejad B. The effect of carbonaceous materials on faradaic and charging current contribution in carbon paste electrodes investigated by chemometrics methods. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04422-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Badea M, di Modugno F, Floroian L, Tit DM, Restani P, Bungau S, Iovan C, Badea GE, Aleya L. Electrochemical strategies for gallic acid detection: Potential for application in clinical, food or environmental analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:129-140. [PMID: 30954811 DOI: 10.1016/j.scitotenv.2019.03.404] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/10/2019] [Accepted: 03/25/2019] [Indexed: 04/15/2023]
Abstract
Polyphenols are important to human health thus making it interesting and necessary to identify and assess methods for their detection. Gallic acid (GA) is a well-known antioxidant compound, found in tea leaves, various fruits, fruit seeds and in fruit-derived foods and beverages. In this study, to electrochemically detect this compound and assess the potential for GA detection, different analytical conditions at pH values of 5.8, 7 and 8 were tried. Two types of device were used for GA detection: (1) Lazar ORP-146C reduction-oxidation microsensors, coupled with a Jenco device, for estimation of antioxidant capacities of different electroactive media, and (2) screen-printed carbon sensors coupled with a mobile PalmSens device using differential pulse voltammetry (qualitative and quantitative GA determination). These proposed methods were validated by analysing some real samples: wine, green tea, apple juice and serum fortified with GA. Detection was evaluated in terms of specific calibration curves, with low limit of detection (LOD) and limit of quantification (LOQ), low response time, and high sensitivities. The analytical characteristics obtained recommend these methods to be tested on more other types of real samples. Our proposed methods, used in the established conditions of pH, may have further application in other clinical, food or environmental samples analyses in which the results of total antioxidants contents are usually expressed in GA equivalents.
Collapse
Affiliation(s)
- Mihaela Badea
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Brasov 500039, Romania.
| | - Federico di Modugno
- Department of Pharmacological and Biomolecular Sciences, Faculty of Pharmacology Science, Universita Degli Studi di Milano, Milan 20133, Italy.
| | - Laura Floroian
- Department of Automation and Information Technology, Faculty of Electrical Engineering and Computer Sciences, Transylvania University of Brasov, Brasov 500039, Romania.
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
| | - Patrizia Restani
- Department of Pharmacological and Biomolecular Sciences, Faculty of Pharmacology Science, Universita Degli Studi di Milano, Milan 20133, Italy.
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
| | - Ciprian Iovan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania.
| | - Gabriela Elena Badea
- Department of Chemistry, Faculty of Sciences, University of Oradea, Oradea 410087, Romania.
| | - Lotfi Aleya
- Laboratoire Chrono-environnement, Université de Franche-Comté, Besançon, France.
| |
Collapse
|
22
|
Laghrib F, Farahi A, Bakasse M, Lahrich S, El Mhammedi MA. Voltammetric determination of nitro compound 4-nitroaniline in aqueous medium at chitosan gelified modified carbon paste electrode (CS@CPE). Int J Biol Macromol 2019; 131:1155-1161. [PMID: 30981774 DOI: 10.1016/j.ijbiomac.2019.04.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/30/2019] [Accepted: 04/10/2019] [Indexed: 11/18/2022]
Abstract
A sensitive, selective and reproducible electrochemical method has been established for the electroanalysis of 4-nitroaniline (4-NA) using a carbon paste electrode modified with a chitosan solution gelled in acetic acid (CS@CPE). The modified electrode was then characterized spectroscopically using Fourier Transform Infrared (FTIR) spectroscopy. In addition, the electrochemical and interfacial characteristics of the as-prepared modified electrode were assessed by potentiodynamic cyclic voltammetry (CV) and AC electrochemical impedance spectroscopy (EIS). Differential pulse voltammetry (DPV) was additionally used to deduce the trace amounts of (4-NA) in phosphate buffered saline (PBS) of pH7.0 as an ideal electrolyte. Under optimized conditions, the peak current of 4-NA increased linearly with the increasing 4-NA concentration over the range of 0.1μM to 0.1Mm. The calibration curve presents two linear ranges of current versus 4-NA concentration with a detection limit of 93.4nM (3sb/B). The repeatability of the current peak registered at CS@CPE was performed at a level of 0.5μM 4-NA employing one sensor on the same day for eight measurements. The relative standard deviation was 3.5%.
Collapse
Affiliation(s)
- F Laghrib
- Sultan Moulay Slimane University, Laboratory of Chemistry, Mathematical and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - A Farahi
- Sultan Moulay Slimane University, Laboratory of Chemistry, Mathematical and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco; Ibn Zohr University, Catalysis and Environment Team, Faculty of Sciences, BP 8106, Dakhla campus, Agadir, Morocco
| | - M Bakasse
- Sultan Moulay Slimane University, Laboratory of Chemistry, Mathematical and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco; Univ. Chouaib Doukkali, Equipe d'Analyse des Micropolluants Organiques, Faculté de Sciences, Eljadida, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University, Laboratory of Chemistry, Mathematical and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University, Laboratory of Chemistry, Mathematical and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco.
| |
Collapse
|
23
|
Saka C. Electroanalytical Approaches for Determination of Prostate Cancer Drugs in Biological Samples and Dosage Forms. Crit Rev Anal Chem 2019; 49:403-414. [DOI: 10.1080/10408347.2018.1538768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Cafer Saka
- School of Healthy, Siirt University, Siirt, Turkey
| |
Collapse
|
24
|
Gonzalez A, Vidal S, Ugliano M. Untargeted voltammetric approaches for characterization of oxidation patterns in white wines. Food Chem 2018; 269:1-8. [PMID: 30100410 DOI: 10.1016/j.foodchem.2018.06.104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 04/18/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022]
Abstract
Chemical and electrochemical changes associated with controlled oxidation were measured in thirteen commercial white wines, in order to evaluate the potential of linear sweep voltammetry to provide relevant information on the oxidative behavior of individual wines. For a given amount of oxygen consumed, substantial diversity of oxidative behaviors was observed. A good correlation (R2 = 0.69) was observed between the rate of O2 consumption of individual wines and the total charged passed during linear sweep voltammetry, but not with their Folin-Ciocalteu values. Onset potential of anodic oxidation was also related to oxygen consumption capacity of wine, indicating an important contribution of easily oxidizable substrates. Subtraction of voltammograms of oxidized wines from their corresponding non-oxidized controls generated new voltammograms representative of the global changes induced by oxidation. These new voltammograms contained several features related to oxygen consumption rates of each wine, and could be considered as a 'wine oxidation signature'.
Collapse
Affiliation(s)
- Asael Gonzalez
- Nomacorc France, 7 Av. Yves Cazeaux, 30230 Rodilhan, France
| | - Stephane Vidal
- Nomacorc France, 7 Av. Yves Cazeaux, 30230 Rodilhan, France.
| | | |
Collapse
|
25
|
Ghanei-Motlagh M, Taher MA. A novel electrochemical sensor based on silver/halloysite nanotube/molybdenum disulfide nanocomposite for efficient nitrite sensing. Biosens Bioelectron 2018; 109:279-285. [DOI: 10.1016/j.bios.2018.02.057] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/12/2018] [Accepted: 02/26/2018] [Indexed: 02/01/2023]
|
26
|
Garcia-Hernandez C, Medina-Plaza C, Garcia-Cabezon C, Blanco Y, Fernandez-Escudero JA, Barajas-Tola E, Rodriguez-Perez MA, Martin-Pedrosa F, Rodriguez-Mendez ML. Monitoring the Phenolic Ripening of Red Grapes Using a Multisensor System Based on Metal-Oxide Nanoparticles. Front Chem 2018; 6:131. [PMID: 29740576 PMCID: PMC5928143 DOI: 10.3389/fchem.2018.00131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/09/2018] [Indexed: 11/29/2022] Open
Abstract
The maturity of grapes is usually monitored by means of the sugar concentration. However, the assessment of other parameters such as the phenolic content is also important because the phenolic maturity has an important impact on the organoleptic characteristics of wines. In this work, voltammetric sensors able to detect phenols in red grapes have been developed. They are based on metal oxide nanoparticles (CeO2, NiO, and TiO2,) whose excellent electrocatalytic properties toward phenols allows obtaining sensors with detection limits in the range of 10-8 M and coefficients of variation lower than 7%. An electronic tongue constructed using a combination of the nanoparticle-based sensors is capable to monitor the phenolic maturity of red grapes from véraison to maturity. Principal Component Analysis (PCA) can be successfully used to discriminate samples according to the ripeness. Regression models performed using Partial Least Squares (PLS-1) have established good correlations between voltammetric data obtained with the electrochemical sensors and the Total Polyphenolic Index, the Brix degree and the Total Acidity, with correlation coefficients close to 1 and low number of latent variables. An advantage of this system is that the electronic tongue can be used for the simultaneous assessment of these three parameters which are the main factors used to monitor the maturity of grapes. Thus the electronic tongue based on metal oxide nanoparticles can be a valuable tool to monitor ripeness. These results demonstrate the exciting possible applications of metal oxide nanoparticles in the field of electronic tongues.
Collapse
Affiliation(s)
- Celia Garcia-Hernandez
- Group UVaSens, Department of Inorganic Chemistry, Escuela de Ingenierías Industriales, Universidad de Valladolid, Valladolid, Spain
| | - Cristina Medina-Plaza
- Group UVaSens, Department of Inorganic Chemistry, Escuela de Ingenierías Industriales, Universidad de Valladolid, Valladolid, Spain
| | - Cristina Garcia-Cabezon
- Group UVasens, Department of Materials Science, Universidad de Valladolid, Valladolid, Spain
| | - Yolanda Blanco
- Group UVasens, Department of Materials Science, Universidad de Valladolid, Valladolid, Spain
| | | | | | - Miguel A. Rodriguez-Perez
- Group UVaSens, Department of Inorganic Chemistry, Escuela de Ingenierías Industriales, Universidad de Valladolid, Valladolid, Spain
| | - Fernando Martin-Pedrosa
- Group UVasens, Department of Materials Science, Universidad de Valladolid, Valladolid, Spain
| | - Maria L. Rodriguez-Mendez
- Group UVaSens, Department of Inorganic Chemistry, Escuela de Ingenierías Industriales, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
27
|
Muñoz R, García-Hernández C, Medina-Plaza C, García-Cabezón C, Fernández-Escudero JA, Barajas E, Medrano G, Rodriguez-Méndez ML. A different approach for the analysis of grapes: Using the skin as sensing element. Food Res Int 2018; 107:544-550. [PMID: 29580518 DOI: 10.1016/j.foodres.2018.02.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/16/2018] [Accepted: 02/25/2018] [Indexed: 11/29/2022]
Abstract
In this work, an alternative method to monitor the phenolic maturity of grapes was developed. In this approach, the skins of grapes were used to cover the surface of carbon paste electrodes and the voltammetric signals obtained with the skin-modified sensors were used to obtain information about the phenolic content of the skins. These sensors could easily detect differences in the phenolic composition of different Spanish varieties of grapes (Mencía, Prieto Picudo and Juan García). Moreover, sensors were able to monitor changes in the phenolic content throughout the ripening process from véraison until harvest. Using PLS-1 (Partial Least Squares), correlations were established between the voltammetric signals registered with the skin-modified sensors and the phenolic content measured by classical methods (Glories or Total Polyphenol Index). PLS-1 models provided additional information about Brix degree, density or sugar content, which usually used to establish the harvesting date. The quality of the correlations was influenced by the maturation process and the structural and mechanical skin properties. Thus the skin sensors fabricated with Juan García and Prieto Picudo grapes (that showed faster polyphenolic maturation and a higher amount of extractable polyphenols than Mencía), showed good correlations and therefore could be used to monitor the ripening.
Collapse
Affiliation(s)
- Raquel Muñoz
- Group of Sensors UVASENS, Universidad de Valladolid, 47011 Valladolid, Spain; Dept. Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47011 Valladolid, Spain
| | | | | | | | - J A Fernández-Escudero
- Estación Enológica de Castilla y León, C/Santísimo Cristo, 26, 47490 Rueda, Valladolid, Spain
| | - Enrique Barajas
- ITACYL Avenida de Burgos, KM.118, Finca Zamadueñas, 47071 Valladolid, Spain
| | - Germán Medrano
- R&D Dept. Bodega Cooperativa de Cigales, C/Las Bodegas, s/n, 47270 Cigales, Valladolid, Spain
| | | |
Collapse
|
28
|
Hernandez-Vargas G, Sosa-Hernández JE, Saldarriaga-Hernandez S, Villalba-Rodríguez AM, Parra-Saldivar R, Iqbal HMN. Electrochemical Biosensors: A Solution to Pollution Detection with Reference to Environmental Contaminants. BIOSENSORS 2018; 8:E29. [PMID: 29587374 PMCID: PMC6023016 DOI: 10.3390/bios8020029] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 02/05/2023]
Abstract
The increasing environmental pollution with particular reference to emerging contaminants, toxic heavy elements, and other hazardous agents is a serious concern worldwide. Considering this global issue, there is an urgent need to design and develop strategic measuring techniques with higher efficacy and precision to detect a broader spectrum of numerous contaminants. The development of precise instruments can further help in real-time and in-process monitoring of the generation and release of environmental pollutants from different industrial sectors. Moreover, real-time monitoring can also reduce the excessive consumption of several harsh chemicals and reagents with an added advantage of on-site determination of contaminant composition prior to discharge into the environment. With key scientific advances, electrochemical biosensors have gained considerable attention to solve this problem. Electrochemical biosensors can be an excellent fit as an analytical tool for monitoring programs to implement legislation. Herein, we reviewed the current trends in the use of electrochemical biosensors as novel tools to detect various contaminant types including toxic heavy elements. A particular emphasis was given to screen-printed electrodes, nanowire sensors, and paper-based biosensors and their role in the pollution detection processes. Towards the end, the work is wrapped up with concluding remarks and future perspectives. In summary, electrochemical biosensors and related areas such as bioelectronics, and (bio)-nanotechnology seem to be growing areas that will have a marked influence on the development of new bio-sensing strategies in future studies.
Collapse
Affiliation(s)
- Gustavo Hernandez-Vargas
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Sara Saldarriaga-Hernandez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
- Exact and Natural Sciences, Institute of Biology, University of Antioquia, St. 67 No. 53-108, Medellín 050021, Colombia.
| | - Angel M Villalba-Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
- Microsystems Technologies Laboratories, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
- Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA 02139, USA.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| |
Collapse
|
29
|
Carneiro EA, Agustini D, Figueiredo-Filho LCS, Banks CE, Marcolino-Junior LH, Bergamini MF. 3D-printed Microfluidic Device Based on Cotton Threads for Amperometric Estimation of Antioxidants in Wine Samples. ELECTROANAL 2017. [DOI: 10.1002/elan.201700579] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Emmanuelle A. Carneiro
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química; Universidade Federal do Paraná (UFPR); CEP 81.531-980 Curitiba-PR Brazil
| | - Deonir Agustini
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química; Universidade Federal do Paraná (UFPR); CEP 81.531-980 Curitiba-PR Brazil
| | | | - Craig E. Banks
- Faculty of Science and Engineering; Manchester Metropolitan University; Chester Street Manchester M1 5GD UK
| | - Luiz Humberto Marcolino-Junior
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química; Universidade Federal do Paraná (UFPR); CEP 81.531-980 Curitiba-PR Brazil
| | - Márcio F. Bergamini
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química; Universidade Federal do Paraná (UFPR); CEP 81.531-980 Curitiba-PR Brazil
| |
Collapse
|
30
|
Apetrei IM, Apetrei C. Highly sensitive voltamperometric determination of pyritinol using carbon nanofiber/gold nanoparticle composite screen-printed carbon electrode. Int J Nanomedicine 2017; 12:5177-5188. [PMID: 28860746 PMCID: PMC5560415 DOI: 10.2147/ijn.s138978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A novel and highly sensitive electrochemical method for the detection of pyritinol in pharmaceutical products and serum samples has been accomplished based on voltamperometric response of pyritinol in carbon nanofiber-gold nanoparticle (CNF-GNP)-modified screen-printed carbon electrode (SPCE). The electrochemical response of pyritinol to CNF-GNP-modified SPCE was studied by cyclic voltammetry and square-wave voltammetry (SWV). Under optimized working conditions, the novel sensor shows excellent voltamperometric response toward pyritinol. The SWV study shows significantly enhanced electrochemical response for pyritinol in CNF-GNP-modified SPCE providing high sensitivity to the novel sensor for pyritinol detection. The peak current for pyritinol is found to be linear with the concentration in the range 1.0×10-8-5.0×10-5 M with a detection limit of 6.23×10-9 M using SWV as the detection method. The viability of the new developed sensor for the analytical purposes was studied by performing experiments on various commercial pharmaceutical products and blood serum samples, which yielded adequate recoveries of pyritinol. The novel electrochemical sensor provides high sensitivity, enhanced selectivity, good reproducibility and practical applicability.
Collapse
Affiliation(s)
- Irina Mirela Apetrei
- Department of Pharmaceutical Sciences, Medical and Pharmaceutical Research Center, Faculty of Medicine and Pharmacy
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, "Dunarea de Jos" University of Galati, Galati, Romania
| |
Collapse
|
31
|
An Overview of Pesticide Monitoring at Environmental Samples Using Carbon Nanotubes-Based Electrochemical Sensors. C — JOURNAL OF CARBON RESEARCH 2017. [DOI: 10.3390/c3010008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
32
|
Ugliano M. Rapid fingerprinting of white wine oxidizable fraction and classification of white wines using disposable screen printed sensors and derivative voltammetry. Food Chem 2016; 212:837-43. [DOI: 10.1016/j.foodchem.2016.05.156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
|
33
|
The efficacy of the ZnO:α-Fe2O3 composites modified carbon paste electrode for the sensitive electrochemical detection of loperamide: A detailed investigation. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.11.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Śliwińska M, Garcia-Hernandez C, Kościński M, Dymerski T, Wardencki W, Namieśnik J, Śliwińska-Bartkowiak M, Jurga S, Garcia-Cabezon C, Rodriguez-Mendez ML. Discrimination of Apple Liqueurs (Nalewka) Using a Voltammetric Electronic Tongue, UV-Vis and Raman Spectroscopy. SENSORS 2016; 16:s16101654. [PMID: 27735832 PMCID: PMC5087442 DOI: 10.3390/s16101654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/09/2016] [Accepted: 10/01/2016] [Indexed: 11/16/2022]
Abstract
The capability of a phthalocyanine-based voltammetric electronic tongue to analyze strong alcoholic beverages has been evaluated and compared with the performance of spectroscopic techniques coupled to chemometrics. Nalewka Polish liqueurs prepared from five apple varieties have been used as a model of strong liqueurs. Principal Component Analysis has demonstrated that the best discrimination between liqueurs prepared from different apple varieties is achieved using the e-tongue and UV-Vis spectroscopy. Raman spectra coupled to chemometrics have not been efficient in discriminating liqueurs. The calculated Euclidean distances and the k-Nearest Neighbors algorithm (kNN) confirmed these results. The main advantage of the e-tongue is that, using PLS-1, good correlations have been found simultaneously with the phenolic content measured by the Folin-Ciocalteu method (R² of 0.97 in calibration and R² of 0.93 in validation) and also with the density, a marker of the alcoholic content method (R² of 0.93 in calibration and R² of 0.88 in validation). UV-Vis coupled with chemometrics has shown good correlations only with the phenolic content (R² of 0.99 in calibration and R² of 0.99 in validation) but correlations with the alcoholic content were low. Raman coupled with chemometrics has shown good correlations only with density (R² of 0.96 in calibration and R² of 0.85 in validation). In summary, from the three holistic methods evaluated to analyze strong alcoholic liqueurs, the voltammetric electronic tongue using phthalocyanines as sensing elements is superior to Raman or UV-Vis techniques because it shows an excellent discrimination capability and remarkable correlations with both antioxidant capacity and alcoholic content-the most important parameters to be measured in this type of liqueurs.
Collapse
Affiliation(s)
- Magdalena Śliwińska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233 Gdańsk, Poland.
- Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain.
| | - Celia Garcia-Hernandez
- Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain.
| | - Mikołaj Kościński
- The NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland.
| | - Tomasz Dymerski
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233 Gdańsk, Poland.
| | - Waldemar Wardencki
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233 Gdańsk, Poland.
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233 Gdańsk, Poland.
| | - Małgorzata Śliwińska-Bartkowiak
- The NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland.
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland.
| | - Stefan Jurga
- The NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland.
| | - Cristina Garcia-Cabezon
- Department of Materials Science, Engineers School, University of Valladolid, Valladolid 47011, Spain.
| | - Maria Luz Rodriguez-Mendez
- Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain.
| |
Collapse
|
35
|
Ganesh P, Swamy BK. Voltammetric resolution of catechol and hydroquinone at eosin Y film modified carbon paste electrode. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.04.078] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Rodríguez-Méndez ML, Medina-Plaza C, García-Hernández C, Rodríguez S, García-Cabezón C, Paniagua D, Rodríguez-Pérez MA, de Saja JA. Improvement of electrocatalytic effect in voltammetric sensors based on phthalocyanines. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424616500218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Voltammetric sensors based on phthalocyanines have been used to detect a variety of compounds. In this paper, the state of the art of sensors prepared using classical techniques will be revised. Then, new strategies to improve the performance of the sensors will be described using as example sensors chemically modified with lutetium bisphthalocyanine (LuPc[Formula: see text] dedicated to the detection of phenols of interest in the food industry. Classical LuPc2 carbon paste electrodes can detect phenols such as catechol, caffeic acid or pyrogallol with limits of detection in the range of 10[Formula: see text]–10[Formula: see text] M. The performance can be improved by using nanostructured Langmuir–Blodgett (LB) or Layer by Layer (LbL) films. The enhanced surface to volume ratio produce an increase in the sensitivity of the sensors. Limits of detection of 10[Formula: see text]–10[Formula: see text] M are attained, which are one order of magnitude lower than those obtained using conventional carbon paste electrodes. Moreover, these techniques can be used to co-immobilize two electrocatalytic materials in the same device. The limits of detection obtained in LB sensors combining LuPc2/AuNPs or LuPc2/CNT are further improved. Finally, the LB technique has been used to prepare biosensors where a phenol oxydase (such as tyrosinase or lacasse) is immobilized in a biomimetic environment that preserves the enzymatic activity. Moreover, LuPc2 can be co-immobilized with the enzyme in a lipidic film formed by arachidic acid (AA). LuPc2 can act as an electron mediator facilitating the electron transfer. These biomimetic sensors formed by LuPc2/AA/enzyme show Limits of detection of 10[Formula: see text] M and an enhanced selectivity.
Collapse
Affiliation(s)
- María L. Rodríguez-Méndez
- Department of Inorganic Chemistry, Industrial Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Cristina Medina-Plaza
- Department of Inorganic Chemistry, Industrial Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Celia García-Hernández
- Department of Inorganic Chemistry, Industrial Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Silvia Rodríguez
- Department of Inorganic Chemistry, Industrial Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Cristina García-Cabezón
- Department of Materials Science, Industrial Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain
| | - David Paniagua
- Department of Inorganic Chemistry, Industrial Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Miguel A. Rodríguez-Pérez
- Department of Condensed Matter Physics, Faculty of Sciences, Universidad de Valladolid, 47011 Valladolid, Spain
| | - José A. de Saja
- Department of Condensed Matter Physics, Faculty of Sciences, Universidad de Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
37
|
Ghiaci M, Tghizadeh M, Ensafi AA, Zandi-Atashbar N, Rezaei B. Silver nanoparticles decorated anchored type ligands as new electrochemical sensors for glucose detection. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Apetrei IM, Apetrei C. Voltammetric determination of melatonin using a graphene-based sensor in pharmaceutical products. Int J Nanomedicine 2016; 11:1859-66. [PMID: 27194909 PMCID: PMC4859415 DOI: 10.2147/ijn.s104941] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Melatonin can be sensitively detected in pharmaceuticals by cyclic voltammetry and fixed-potential amperometry using a graphene-based sensor. The sensor characterization of cyclic voltammetry constantly provides high values of electrode active area and heterogeneous rate constant. In optimal conditions, the sensor was applied for the determination of melatonin in different pharmaceutical samples. The sensitivity to melatonin was 0.0371 A M(-1), and the limit of detection was 0.87×10(-6) M. The data obtained by using the graphene-based sensor for the detection of melatonin in pharmaceutical products were in good agreement with the data provided by the producer. Since no interferences from the excipients were found, using a separation technique was not necessary. Additionally, the low price, ease of handling, small amount of sample, short time per analysis, and possibility of automation are the important advantages that recommend this methodology for quality control of pharmaceuticals.
Collapse
Affiliation(s)
- Irina Mirela Apetrei
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, "Dunarea de Jos" University of Galati, Galati, Romania
| |
Collapse
|
39
|
Malha SIR, Lahcen AA, Arduini F, Ourari A, Amine A. Electrochemical Characterization of Carbon Solidlike Paste Electrode Assembled Using Different Carbon Nanoparticles. ELECTROANAL 2015. [DOI: 10.1002/elan.201500637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Pisoschi AM, Cimpeanu C, Predoi G. Electrochemical Methods for Total Antioxidant Capacity and its Main Contributors Determination: A review. OPEN CHEM 2015. [DOI: 10.1515/chem-2015-0099] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractBackround: The present review focuses on electrochemical methods for antioxidant capacity and its main contributors assessment. The main reactive oxygen species, responsible for low density lipoprotein oxidation, and their reactivity are reminded. The role of antioxidants in counteracting the factors leading to oxidative stress-related degenerative diseases occurence, is then discussed. Antioxidants can scavenge free radicals, can chelate pro-oxidative metal ions, or quench singlet oxygen. When endogenous factors (uric acid, bilirubin, albumin, metallothioneins, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase) cannot accomplish their protective role against reactive oxygen species, the intervention of exogenous antioxidants (vitamin C, tocopherols, flavonoids, carotenoids etc) is required, as intake from food, as nutritional supplements or as pharmaceutical products.Literature study: The main advantages of electrochemical methods with respect to traditional, more laborious instrumental techniques are described: sensitivity, rapidity, simplicity of the applied analytical procedure which does not require complicated sample pre-treatment etc.The paper reviews minutiously the voltammetric, amperometric, biamperometric, potentiometric and coulometric methods for total antioxidant capacity estimation. For each method presented, the electroactivity and the mechanism of electro-oxidation of antioxidant molecules at various electrodes, as well as the influences on the electroactive properties are discussed. The characteristics of the developed methods are viewed from the perspective of the antioxidant molecule structure influence, as well as from the importance of electrode material and/or surface groups standpoint.The antioxidant molecule-electrode surface interaction, the detection system chosen, the use of modifiers, as well as the nature of the analysed matrix are the factors discussed, which influence the performances of the studied electrochemical techniques.Conclusions: The electrochemical methods reviewed in this paper allow the successful determination of the total antioxidant capacity and of its main contributors in various media: foodstuffs and beverages, biological fluids, pharmaceuticals. The advantages and disadvantages of the electrochemical methods applied to antioxidant content and antioxidant activity assay are treated and interpreted, in the case of various analysed matrixes. Combining advanced materials with classical electrode construction, provides viable results and can constitute an alternative for the future.
Collapse
|
41
|
Analysis of organic acids and phenols of interest in the wine industry using Langmuir-Blodgett films based on functionalized nanoparticles. Anal Chim Acta 2014; 853:572-578. [PMID: 25467505 DOI: 10.1016/j.aca.2014.10.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 11/22/2022]
Abstract
A chemically modified electrode consisting of Langmuir-Blodgett (LB) films of n-dodecanethiol functionalized gold nanoparticles (SDODAuNP-LB), was investigated as a voltammetric sensor of organic and phenolic acids of interest in the wine industry. The nanostructured films demonstrated interfacial properties being able to detect the main organic acids present in grapes and wines (tartaric, malic, lactic and citric). Compared to a bare ITO electrode, the modified electrodes exhibited a shift of the reduction potential in the less positive direction and a marked enhancement in the current response. Moreover, the increased electrocatalytic properties made it possible to distinguish between the different dissociable protons of polyprotic acids. The SDODAuNP-LB sensor was also able to provide enhanced responses toward aqueous solutions of phenolic acids commonly found in wines (caffeic and gallic acids). The presence of nanoparticles increased drastically the sensitivity toward organic acids and phenolic compounds. Limits of detection as low as 10(-6) mol L(-1) were achieved. Efficient catalytic activity was also observed in mixtures of phenolic acid/tartaric in the range of pHs typically found in wines. In such mixtures, the electrode was able to provide simultaneous information about the acid and the phenol concentrations with a complete absence of interferences. The excellent sensing properties shown by these sensors could be attributed to the electrocatalytic properties of the nanoparticles combined with the high surface to volume ratio and homogeneity provided by the LB technique used for the immobilization. Moreover, the LB technique also provided an accurate method to immobilize the gold nanoparticles giving rise to stable and reproducible sensors showing repeatability lower than 2% and reproducibility lower than 4% for all the compounds analyzed.
Collapse
|
42
|
Ma W, Han D, Gan S, Zhang N, Liu S, Wu T, Zhang Q, Dong X, Niu L. Rapid and specific sensing of gallic acid with a photoelectrochemical platform based on polyaniline-reduced graphene oxide-TiO2. Chem Commun (Camb) 2014; 49:7842-4. [PMID: 23892451 DOI: 10.1039/c3cc43540g] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel photoelectrochemical sensor has been designed with polyaniline-reduced graphene oxide-titanium dioxide, which was further applied to sense gallic acid and exhibited extraordinary rapid response, high sensitivity and excellent anti-inference. Meanwhile, the mechanism has been elaborately explored.
Collapse
Affiliation(s)
- Weiguang Ma
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cetó X, Apetrei C, del Valle M, Rodríguez-Méndez ML. Evaluation of red wines antioxidant capacity by means of a voltammetric e-tongue with an optimized sensor array. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.12.079] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Apetrei IM, Apetrei C. Voltammetric e-tongue for the quantification of total polyphenol content in olive oils. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.04.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Yilmaz ÜT, Kekillioglu A, Mert R. Determination of Gallic acid by differential pulse polarography: Application to fruit juices. JOURNAL OF ANALYTICAL CHEMISTRY 2013. [DOI: 10.1134/s1061934813120113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Apetrei C, Medina-Plaza C, de Saja JA, Rodriguez-Mendez ML. Electrochemical characterization of dilithium phthalocyanine carbonaceous electrodes. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424613500430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Carbonaceous electrodes of dilithium phthalocyanine were prepared using graphite, carbon microspheres and multiwall carbon nanotubes. The electrochemical behavior of the dilithium bisphthalocyanine electrodes was found to be dependent on the nature of the carbonaceous material and on the nature of the electrolytic solution. The electrocatalytic properties of the dilithium phthalocyanine electrodes for oxidation of ascorbic acid were evidenced by the enhancement of the oxidation peak current, (~10 fold compared to the bare carbon electrodes) and the decrease of the oxidation potential at which oxidation of ascorbic acid takes place. The combined use of multiwall carbon nanotubes and dilithium phthalocyanine produces a synergistic effect that improves the electrocatalytic effect towards ascorbic acid.
Collapse
Affiliation(s)
- Constantin Apetrei
- Department of Inorganic Chemistry, Escuela de Ingenierías Industriales, University of Valladolid, Paseo del Cauce, 59, 47011 Valladolid, Spain
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, "Dunarea de Jos", University of Galati, 47 Domneasca Street, 800008 Galati, Romania
| | - Cristina Medina-Plaza
- Department of Inorganic Chemistry, Escuela de Ingenierías Industriales, University of Valladolid, Paseo del Cauce, 59, 47011 Valladolid, Spain
| | - José Antonio de Saja
- Department of Condensed Matter Physics, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - Maria Luz Rodriguez-Mendez
- Department of Inorganic Chemistry, Escuela de Ingenierías Industriales, University of Valladolid, Paseo del Cauce, 59, 47011 Valladolid, Spain
| |
Collapse
|
47
|
The renewable glassy carbon annular band electrode in a highly sensitive normal pulse voltammetric determination of paracetamol with continuous wavelet transformation. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.03.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Cetó X, Céspedes F, del Valle M. Comparison of methods for the processing of voltammetric electronic tongues data. Mikrochim Acta 2013. [DOI: 10.1007/s00604-012-0938-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
References. Anal Chem 2012. [DOI: 10.1201/b11478-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Affiliation(s)
- Danielle W. Kimmel
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, VU Station B 351822, Nashville, TN 37235-1822
| | - Gabriel LeBlanc
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, VU Station B 351822, Nashville, TN 37235-1822
| | - Mika E. Meschievitz
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, VU Station B 351822, Nashville, TN 37235-1822
| | - David E. Cliffel
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, VU Station B 351822, Nashville, TN 37235-1822
| |
Collapse
|