1
|
Ndunda EN, Mwanza MM. Towards miniaturized electrochemical sensors for monitoring of polychlorinated biphenyls. OPEN RESEARCH AFRICA 2023; 6:5. [PMID: 37224321 PMCID: PMC10192943 DOI: 10.12688/openresafrica.13983.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/26/2023]
Abstract
Pollution of our environment as a result of industrialization and other human activities is a growing concern due to the harmful effects of most chemicals that are released into the environment. Of particular interest are the persistent organic pollutants (POPs) that are reported to be toxic and build up in the environment due to their persistence. Among the POPs are polychlorinated biphenyls (PCBs), which were widely used in the past in various applications ranging from additives in pesticides to dielectric fluids in electrical equipment. As a way of protecting the one health trilogy (environment, human and animal health), their determination in the environment is a paramount call that has seen researchers continue to provide advanced technologies towards achieving this goal. These technologies involve the conventional gold standard gas chromatography systems coupled to sensitive detectors that can detect trace level concentrations. They have come in handy in monitoring of PCBs but their application for routing monitoring may not be sustainable because of the cost of operation associated with them and the need for experts to run the equipment. As a result, there is need for affordable systems that are still able to achieve the required sensitivity for routine monitoring and real-time data acquisition. Sensor systems fit very well in this category since they can be miniaturized for affordability and portray many other desirable features. PCBs as environmentally relevant environmental pollutants have received minimal attention with regards to sensor development and this review highlights the efforts that have been made so far. It provides in-depth discussions on electrochemical sensors and the various modifications that have been employed to date to achieve detection of PCBs at low concentrations as well as the future prospects in remote and routine monitoring.
Collapse
Affiliation(s)
- Elizabeth Nthambi Ndunda
- Department of Physical Sciences, School of Pure and Applied Sciences, Machakos University, Machakos, Machakos County, Kenya
| | - Moses Mutiso Mwanza
- Department of Physical Sciences, School of Pure and Applied Sciences, Machakos University, Machakos, Machakos County, Kenya
| |
Collapse
|
2
|
Ohmuro-Matsuyama Y, Furuta T, Matsui H, Kanai M, Ueda H. Miniaturization of Bright Light-Emitting Luciferase ALuc: picALuc. ACS Chem Biol 2022; 17:864-872. [PMID: 35293729 DOI: 10.1021/acschembio.1c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Luciferases are widely used as sensitive reporters in various fields ranging from basic biology to medical diagnosis, public health, and food inspection. Scientists have isolated novel luciferases from bioluminescent organisms and concentrated on improving their brightness and thermostability. Recently, small bright luciferases such as artificial luciferase (ALuc) (21 kDa), NanoLuc (19 kDa), GLuc (18 kDa), and TurboLuc (16 kDa) have been reported. However, smaller, brighter, and more stable luciferases are desired for further applications. Here, we constructed the smallest and bright mutant of ALuc, named "picALuc" (13 kDa). picALuc retained the luminescence activity of the full-length ALuc; moreover, its brightness and thermostability were at the same levels as NanoLuc. Furthermore, we showed the advantage of picALuc for the bioluminescence resonance energy transfer-based assay due to its smallness. Our development has opened the door for wider and more practical applications of luciferases.
Collapse
Affiliation(s)
- Yuki Ohmuro-Matsuyama
- Technology Research Laboratory, Shimadzu Corporation, Kyoto 619-0237, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hayato Matsui
- Technology Research Laboratory, Shimadzu Corporation, Kyoto 619-0237, Japan
| | - Masaki Kanai
- Technology Research Laboratory, Shimadzu Corporation, Kyoto 619-0237, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
3
|
Liberatori G, Cotugno P, Sturba L, Vannuccini ML, Capasso G, Velardo R, Besselink H, Massari F, Tursi A, Corbelli V, Behnisch PA, Corsi I. Occurrence and spatial distribution of dioxin and dioxin-like compounds in topsoil of Taranto (Apulia, Italy) by GC-MS analysis and DR-CALUX® bioassay. CHEMOSPHERE 2021; 279:130576. [PMID: 33894519 DOI: 10.1016/j.chemosphere.2021.130576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
The aim of the present study was to assess the occurrence and spatial distribution of PCDD/Fs and dioxin-like compounds in topsoils of Taranto (Apulia Region), one of the most heavily industrialized and contaminated area of Southern Italy. A combined approach of chemical analysis by GC-MS/MS and AhR reporter gene bioassay was applied in a subset of topsoil samples (n = 20) collected in 2017-18 from ten sites embracing three levels of risk (from high to low) in the framework of a large survey inside Taranto municipality. TCDD-BEQs and GC-MS/MS TEQWHO and TEQTHEORETICAL revealed a decreasing trend with the distance from main industrial settings and landfill areas. A strong correlation between TCDD-BEQs and TEQWHO values (R2 = 0.85) and TEQTHEORETICAL (R2 = 0.88) was also found. In 3 out of 10 topsoil investigated, BEQs and TEQWHO/THEORETICAL resulted above Italian National Regulatory Limits for ∑PCDD/Fs in green, private and recreational used soils (10 ng TEQ/kg d.w. D.Lgs 152/2006) and for ∑PCDD/F/dl-PCBs in agricultural and farming soil (6 ng TEQ/kg d.w. D.M. 46/2019). GC-MS/MS pattern revealed the highest prevalence of dl-PCBs in 6 out of 10 sites, followed by PCDFs and PCDDs. Those sites are all located in proximity of main industrial steel and iron ore sinter plant, steel plant's landfills and illegal dumping sites. An update on occurrence and spatial distribution of PCDD/Fs and dl-PCBs contamination of Taranto urban soils was obtained and the DR-CALUX® bioassay was further recommended as a suitable screening tool for environmental and human risk assessment.
Collapse
Affiliation(s)
- Giulia Liberatori
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy.
| | - Pietro Cotugno
- Department of Biology, University of Bari Aldo Moro, Bari, Italy
| | - Lucrezia Sturba
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Maria Luisa Vannuccini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Gennaro Capasso
- Special Commissioner for Urgent Intervention for Remediation, Environmental Enhancement and Upgrading of Taranto, Taranto, Italy
| | - Raffaele Velardo
- Special Commissioner for Urgent Intervention for Remediation, Environmental Enhancement and Upgrading of Taranto, Taranto, Italy
| | | | - Federica Massari
- Department of Biology, University of Bari Aldo Moro, Bari, Italy
| | - Angelo Tursi
- Department of Biology, University of Bari Aldo Moro, Bari, Italy
| | - Vera Corbelli
- Special Commissioner for Urgent Intervention for Remediation, Environmental Enhancement and Upgrading of Taranto, Taranto, Italy
| | | | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| |
Collapse
|
4
|
Studies towards the Synthesis of Novel 3-Aminopropoxy-Substituted Dioxins Suitable for the Development of Aptamers for Photonic Biosensor Applications. MATERIALS 2021; 14:ma14164727. [PMID: 34443249 PMCID: PMC8401930 DOI: 10.3390/ma14164727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022]
Abstract
Hydroxy-substituted tetrachlorodibenzo[b,e][1,4]dioxin and tetrachlorodibenzo[b,d]furans have been synthesized using 3,4-dichloroanisole, 2,3,6-trichlorophenol and 4,5-dichlorocatechol as starting materials and electrophilic and/or nucleophilic aromatic substitution reactions for the assembly of the dibenzo[b,e][1,4]dioxin and dibenzo[b,d]furan systems. The thus-obtained phenolic compounds were then alkylated with N-1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde)-protected 3-bromopropan-1-amine to give the corresponding N-Dde protected 3-aminopropoxy-substituted tetrachlorodibenzo[b,e][1,4]dioxin and tetrachlorodibenzo[b,d]furans, respectively. Hydrazinolysis-mediated Dde removal from the former compound provided the corresponding amino-substituted dioxin, which was coupled to carboxy-substituted magnetic beads affording magnetic beads coated by the amino-substituted dioxin. The latter is an attractive intermediate for the development of selective single-standard DNA (ssDNA) aptamers, which constitute molecular recognition elements in photonic biosensors with potential application to the monitoring of the dangerous environmental pollutants, dioxins having serious implications in human health.
Collapse
|
5
|
Ding G, Wang L, Zhang S, Li S, Xie Q, Xu L, Zhou Z, He Y, Zhao B. Simple and rapid determination of dioxin in fish and sea food using a highly sensitive reporter cell line, CBG 2.8D. J Environ Sci (China) 2021; 100:353-359. [PMID: 33279049 DOI: 10.1016/j.jes.2020.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 06/12/2023]
Abstract
Food, especially animal origin food is the main source of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and dioxin-like polychlorinated biphenyls (dl-PCBs) for human exposure. So, a simple, rapid and cheap bioassay method is needed for determination of dioxins in food samples. In this study, we used a new highly sensitive reporter cell line to determine the concentration of dioxins in 33 fish and seafood samples. The samples were extracted by shaking with water/isopropanol (1:1 v/v) and hexane and cleaned-up by a multi layered silica gel column and an alumina column, then analyzed using CBG 2.8D cell line. We compared the results obtained from the CBG 2.8D cell assay to those obtained from conventional High-Resolution Gas Chromatography-High Resolution Mass Spectrometry (HRGC-HRMS) analysis. Good correlations were observed between these two methods (r2=0.93). While the slope of regression line was 1.76, the bioanalytical equivalent (BEQ) values were 1.76 folds higher than WHO-TEQ values and the conversion coefficient was 0.568 (the reciprocal of 1.76). In conclusion, CBG 2.8D cell assay was an applicable method to determine dioxins levels in fish and sea food samples.
Collapse
Affiliation(s)
- Gangdou Ding
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China; Comprehensive Test Center of Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| | - Lingyun Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Songyan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuaizhang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiguang Zhou
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - YinFeng He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
6
|
Sha R, Chen Y, Wang Y, Luo Y, Liu Y, Ma Y, Li Y, Xu L, Xie HQ, Zhao B. Gestational and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice: Neurobehavioral effects on female offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141784. [PMID: 32889265 DOI: 10.1016/j.scitotenv.2020.141784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Emerging evidence suggests that perinatal dioxin exposure affects neurodevelopment and impairs multiple brain functions, including cognitive, language, learning and emotion, in the offspring. However, the impacts of gestational and lactational exposure to dioxin on behavior and related molecular events are still not fully understood. In this study, female C57BL/6J mice were orally administered three doses of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) (0.1 or 10 μg/kg body weight (bw)) during the pregnancy and lactation periods. The locomotion, exploration and anxiety-related behaviors were examined by an open field test of the young adult female offspring at postnatal day 68. We found that the maternal TCDD exposure, particularly at a low dose, increased movement ability, novelty-exploration and certain anxiety-related behaviors in the offspring. Such hyperactivity-like behaviors were accompanied by the upregulation of certain genes associated with cholinergic neurotransmission or synaptogenesis in the offspring brain. In accordance with the potential enhancement of cholinergic neurotransmission due to the gene upregulations, the enzymatic activity of acetylcholinesterase was decreased, which might lead to excess acetylcholine and consequent hyper-excitation at the synapses. Thus, we found that gestational and lactational TCDD exposure at low dose caused hyperactivity-like behaviors in young adult female offspring and speculated the enhancement of cholinergic neurotransmission and synaptogenesis as potential molecular events underlying the neurobehavioral effects.
Collapse
Affiliation(s)
- Rui Sha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yijing Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongchao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Endocrine disruptors in teleosts: Evaluating environmental risks and biomarkers. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Xie HQ, Ma Y, Fu H, Xu T, Luo Y, Liu Y, Chen Y, Xu L, Xia Y, Zhao B. New perspective on the regulation of acetylcholinesterase via the aryl hydrocarbon receptor. J Neurochem 2020; 158:1254-1262. [PMID: 33278027 DOI: 10.1111/jnc.15261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022]
Abstract
Acetylcholinesterase (AChE, EC 3.1.1.7) plays important roles in cholinergic neurotransmission and has been widely recognized as a biomarker for monitoring pollution by organophosphate (OP) and carbamate pesticides. Dioxin is an emerging environmental AChE disruptor and is a typical persistent organic pollutant with multiple toxic effects on the nervous system. Growing evidence has shown that there is a significant link between dioxin exposure and neurodegenerative diseases and neurodevelopmental disorders, most of which involve AChE and cholinergic dysfunctions. Therefore, an in-depth understanding of the effects of dioxin on AChE and the related mechanisms of action might help to shed light on the molecular bases of dioxin impacts on the nervous system. In the past decade, the effects of dioxins on AChE have been revealed in cultured cells of different origins and in rodent animal models. Unlike OP and carbamate pesticides, dioxin-induced AChE disturbance is not due to direct inhibition of enzymatic activity; instead, dioxin causes alterations of AChE expression in certain models. As a widely accepted mechanism for most dioxin effects, the aryl hydrocarbon receptor (AhR)-dependent pathway has become a research focus in studies on the mechanism of action of dioxin-induced AChE dysregulation. In this mini-review, the effects of dioxin on AChE and the diverse roles of the AhR pathway in AChE regulation are summarized. Additionally, the involvement of AhR in AChE regulation during different neurodevelopmental processes is discussed. These AhR-related findings might also provide new insight into AChE regulation triggered by diverse xenobiotics capable of interacting with AhR.
Collapse
Affiliation(s)
- Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yongchao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hualing Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yali Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yingjie Xia
- Division of Life Science and Center for Chinese Medicine, the Hong Kong University of Science and Technology, Hong Kong, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Kirkok SK, Kibet JK, Kinyanjui TK, Okanga FI. A review of persistent organic pollutants: dioxins, furans, and their associated nitrogenated analogues. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03551-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
10
|
Artabe AE, Cunha-Silva H, Barranco A. Enzymatic assays for the assessment of toxic effects of halogenated organic contaminants in water and food. A review. Food Chem Toxicol 2020; 145:111677. [PMID: 32810589 DOI: 10.1016/j.fct.2020.111677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/05/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Halogenated organic compounds are a particular group of contaminants consisting of a large number of substances, and of great concern due to their persistence in the environment, potential for bioaccumulation and toxicity. Some of these compounds have been classified as persistent organic pollutants (POPs) under The Stockholm Convention and many toxicity assessments have been conducted on them previously. In this work we provide an overview of enzymatic assays used in these studies to establish toxic effects and dose-response relationships. Studies in vivo and in vitro have been considered with a particular emphasis on the impact of halogenated compounds on the activity of relevant enzymes to the humans and the environment. Most information available in the literature focuses on chlorinated compounds, but brominated and fluorinated molecules are also the target of increasing numbers of studies. The enzymes identified can be classified as enzymes: i) the activities of which are affected by the presence of halogenated organic compounds, and ii) those involved in their metabolisation/detoxification resulting in increased activities. In both cases the halogen substituent seems to have an important role in the effects observed. Finally, the use of these enzymes in biosensing tools for monitoring of halogenated compounds is described.
Collapse
Affiliation(s)
- Amaia Ereño Artabe
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| | - Hugo Cunha-Silva
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| | - Alejandro Barranco
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain.
| |
Collapse
|
11
|
Priyanka M, Dey S. Ruminal impaction due to plastic materials - An increasing threat to ruminants and its impact on human health in developing countries. Vet World 2018; 11:1307-1315. [PMID: 30410238 PMCID: PMC6200578 DOI: 10.14202/vetworld.2018.1307-1315] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/03/2018] [Indexed: 11/16/2022] Open
Abstract
Ruminal impaction due to plastic materials is a condition, in which indigestible plastic foreign bodies accumulate in the rumen of ruminants leading to ruminal impaction, indigestion, recurrent tympany, and many other adverse health effects. It is caused by the indiscriminate feeding of ruminants on indigestible plastic waste materials. The disease is primarily noticed in stray animals residing in urban areas of developing countries. Ingested plastic materials in the rumen slowly release the chemicals in rumen fluid, which intern enter the food chain through milk and meat products. These chemicals have a detrimental effect on human health. At present, exploratory rumenotomy is the only choice for both diagnosis and treatment of ruminal impaction due to plastic materials in ruminants. Control measures include good animal husbandry practices and proper disposal of plastic waste materials. The present review discusses in depth about the epidemiology, pathophysiology, diagnosis, treatment, prevention, and control of ruminal impaction due to plastic materials in ruminants and also highlights its impact on human health.
Collapse
Affiliation(s)
- M Priyanka
- Animal Experimentation Station, Indian Veterinary Research Institute, Yelahanka, Bengaluru, Karnataka, India
| | - S Dey
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
12
|
Shangguan L, Wei Y, Wang K, Zhang Y, Liu S. Highly sensitive fluorescent bioassay of 2,3,7,8-tetrachloro-dibenzo-p-dioxin based on abnormal expression of cytochrome P450 1A2 in human cells. Anal Chim Acta 2018; 1046:179-184. [PMID: 30482297 DOI: 10.1016/j.aca.2018.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/10/2018] [Accepted: 08/02/2018] [Indexed: 12/27/2022]
Abstract
Current in vitro bioassays of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a major threat carcinogen) are relied on murine cells and fluorescent probe 7-ethoxyresorufin (7-ER), in which TCDD mostly causes abnormal expression of cytochrome P450 1A1 (CYP1A1). However, for human cells, TCDD mainly leads to a distinct abnormal expression of cytochrome P450 1A2 (CYP1A2). The poor response of 7-ER to CYP1A2 limits the traditional bioassay for human cells. Herein, we report a fluorescent probe N-(3-hydroxybutyl)-4-methoxy-1,8-naphthalimide (HBMN) for in vitro bioassay of TCDD with human cells. HBMN had ca. 60 times higher affinity to CYP1A2 than 7-ER. As such, the sensing sensitivity increased by 10 times, and different expression of CYP1A2 by TCDD induction in different human cells was found. Besides, HBMN was also feasible in rapid screening of TCDD concentration by naked eye. It would open a new way to highly sensitive detect TCDD and understand the pathogenesis of TCDD in different human organs.
Collapse
Affiliation(s)
- Li Shangguan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China; School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, Jiangsu Province, PR China
| | - Yuanqing Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Kan Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Yuanjian Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China.
| | - Songqin Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China.
| |
Collapse
|
13
|
Ambrosio L, Russo R, Salzano AM, Serpe FP, Ariano A, Tommasi ND, Piaz FD, Severino L. Accumulation of Polychlorinated Biphenyls in Mussels: A Proteomic Study. J Food Prot 2018; 81:316-324. [PMID: 29369691 DOI: 10.4315/0362-028x.jfp-17-148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Polychlorinated biphenyls (PCBs) are environmental pollutants of industrial origin that can contaminate food, mainly food of animal origin. Although production of PCBs has been banned in many countries since the 1980s, they are still present in the environment and are considered dangerous pollutants for human health. In fact, they can bioaccumulate in living organisms such as marine organisms because of their chemical and physical properties. New analytical approaches are useful to monitor the presence of such contaminants in seafood products and in the environment. In this work, we evaluate changes in protein expression of Mytilus galloprovincialis (Lam.) experimentally exposed to a PCB mixture and identify chemically specific protein expression signatures by using a proteomic approach. In particular, we identify 21 proteins whose levels of expression are sensibly modified after 3 weeks of exposure. The present work shows that a proteomic approach can be a useful tool to study alterations of protein expression in mussels exposed to PCBs and represents a first step toward the development of screening protocols to be used for biomonitoring surveys of fishery products.
Collapse
Affiliation(s)
- Letizia Ambrosio
- 1 Dipartimento di Medicina Veterinaria e Produzioni Animali, Settore di Tossicologia, Università degli Studi di Napoli "Federico II", Via F. Delpino, 1, 80137, Napoli, Italy (ORCID: http://orcid.org/0000-0001-8597-0724 [L.S.]).,2 Dipartimento di Farmacia, Università di Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy; and
| | - Rosario Russo
- 1 Dipartimento di Medicina Veterinaria e Produzioni Animali, Settore di Tossicologia, Università degli Studi di Napoli "Federico II", Via F. Delpino, 1, 80137, Napoli, Italy (ORCID: http://orcid.org/0000-0001-8597-0724 [L.S.])
| | - Anna Maria Salzano
- 3 Institute for Animal Production System in Mediterranean Environment, CNR, Via Argine 1085, 80147, Napoli, Italy
| | - Francesco Paolo Serpe
- 1 Dipartimento di Medicina Veterinaria e Produzioni Animali, Settore di Tossicologia, Università degli Studi di Napoli "Federico II", Via F. Delpino, 1, 80137, Napoli, Italy (ORCID: http://orcid.org/0000-0001-8597-0724 [L.S.])
| | - Andrea Ariano
- 1 Dipartimento di Medicina Veterinaria e Produzioni Animali, Settore di Tossicologia, Università degli Studi di Napoli "Federico II", Via F. Delpino, 1, 80137, Napoli, Italy (ORCID: http://orcid.org/0000-0001-8597-0724 [L.S.])
| | - Nunziatina De Tommasi
- 2 Dipartimento di Farmacia, Università di Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy; and
| | - Fabrizio Dal Piaz
- 2 Dipartimento di Farmacia, Università di Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy; and
| | - Lorella Severino
- 1 Dipartimento di Medicina Veterinaria e Produzioni Animali, Settore di Tossicologia, Università degli Studi di Napoli "Federico II", Via F. Delpino, 1, 80137, Napoli, Italy (ORCID: http://orcid.org/0000-0001-8597-0724 [L.S.])
| |
Collapse
|
14
|
Quijano L, Marín S, Millan E, Yusà V, Font G, Pardo O. Dietary exposure and risk assessment of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and dioxin-like polychlorinated biphenyls of the population in the Region of Valencia (Spain). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:740-749. [DOI: 10.1080/19440049.2017.1414960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Leyre Quijano
- Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, University of Valencia, Valencia, Spain
| | - Silvia Marín
- Food Safety Research Area, Center for Public Health Research (CSISP), Valencia, Spain
| | | | - Vicent Yusà
- Food Safety Research Area, Center for Public Health Research (CSISP), Valencia, Spain
- Public Health Laboratory of Valencia, Valencia, Spain
- Analytical Chemistry Department, University of Valencia, Valencia, Spain
| | - Guillermina Font
- Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, University of Valencia, Valencia, Spain
| | - Olga Pardo
- Food Safety Research Area, Center for Public Health Research (CSISP), Valencia, Spain
- Public Health Laboratory of Valencia, Valencia, Spain
- Analytical Chemistry Department, University of Valencia, Valencia, Spain
| |
Collapse
|
15
|
Chen X, Lin Y, Dang K, Puschner B. Quantification of Polychlorinated Biphenyls and Polybrominated Diphenyl Ethers in Commercial Cows' Milk from California by Gas Chromatography-Triple Quadruple Mass Spectrometry. PLoS One 2017; 12:e0170129. [PMID: 28085917 PMCID: PMC5234792 DOI: 10.1371/journal.pone.0170129] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/29/2016] [Indexed: 12/04/2022] Open
Abstract
We determined 12 polybrominated diphenyl ethers (PBDEs) and 19 polychlorinated biphenyls (PCBs) congeners in eight different brands of commercial whole milk (WM) and fat free milk (FFM) produced and distributed in California. Congeners were extracted using a modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method, purified by gel permeation chromatography, and quantified using gas chromatography-triple quadruple mass spectrometry. PBDEs and PCBs were detected in all FFM and WM samples. The most prevalent PBDE congeners in WM were BDE-47 (geometric mean: 18.0 pg/mL, 0.51 ng/g lipid), BDE-99 (geometric mean: 9.9 pg/mL, 0.28 ng/g lipid), and BDE-49 (geometric mean: 6.0 pg/mL, 0.17 ng/g lipid). The dominant PCB congeners in WM were PCB-101(geometric mean: 23.6 pg/mL, 0.67 ng/g lipid), PCB-118 (geometric mean: 25.2 pg/mL, 0.72 ng/g lipid), and PCB-138 (geometric mean: 25.3 pg/mL, 0.72 ng/g lipid). The sum of all 19 PCB congeners in FFM and WM were several orders of magnitude below the U.S. FDA tolerance. The sum of PBDEs in milk samples suggest close proximity to industrial emissions, and confirm previous findings of elevated PBDE levels in California compared to other regions in the United States.
Collapse
Affiliation(s)
- Xiaopeng Chen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Yanping Lin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Katherine Dang
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Wang L, Ding G, Zhou Z, Liu X, Wang Y, Xie H, Xu T, Wang P, Zhao B. Level and characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans in feed and feed additives. J Environ Sci (China) 2017; 51:324-331. [PMID: 28115145 DOI: 10.1016/j.jes.2016.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/13/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Feed security is a prerequisite for safe animal food products. In this study, 13 groups of feed and feed ingredients, totaling 2067 samples, were collected in the period of 2011 to 2014 from China. The highest mean level of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) was found in fish meals and shell powders, with a concentration of 60.35ng/kg, followed by mineral origin materials. In terms of the toxicity equivalent concentration, the fish oil group showed the highest PCDD/F levels because of their bio-accumulation through the aquatic food chain, with an average concentration of 1.26ng WHO-TEQ/kg, while the lowest level was observed in compound feed for chickens and pigs, with an average value of 0.16ng WHO-TEQ/kg. OCDD and OCDF were the predominant congeners in all groups except fish oils, in which the primary congeners were 2,3,4,7,8-PeCDF and 2,3,7,8-TCDF. For zinc chloride samples, different from other zinc-based compound samples, the main congeners were 1,2,3,4,6,7,8-HpCDF (17%), 1,2,3,4,7,8,9-HpCDF (15%), 1,2,3,4,7,8-HxCDF (12%) and OCDF (30%). Considering toxicity equivalency factors, the dominant congeners were 2,3,4,7,8-PeCDF, 1, 2,3,4,7,8-HxCDF, 2,3,7,8-TCDF and 1,2,3,7,8-PeCDD, and the contribution to the total TEQ was 29%, 16%, 14% and 12%, respectively. Overall, 2.1% (43 out of 2067) of all the analyzed samples exceeded the different individual 'European Union maximum limited levels for PCDD/Fs. This study is beneficial for the determination of the status of contamination levels of feed and feed ingredients.
Collapse
Affiliation(s)
- Lingyun Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Gangdou Ding
- Dioxin Laboratory, Chinese Academy of Inspection and Quarantine Comprehensive Test Center, Beijing 100123, China
| | - Zhiguang Zhou
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Xun Liu
- Dioxin Laboratory, Chinese Academy of Inspection and Quarantine Comprehensive Test Center, Beijing 100123, China
| | - Yixiao Wang
- Dioxin Laboratory, Chinese Academy of Inspection and Quarantine Comprehensive Test Center, Beijing 100123, China
| | - HeidQunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Pu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Scognamiglio V, Antonacci A, Patrolecco L, Lambreva MD, Litescu SC, Ghuge SA, Rea G. Analytical tools monitoring endocrine disrupting chemicals. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Tavakoly Sany SB, Narimani L, Soltanian FK, Hashim R, Rezayi M, Karlen DJ, Mahmud HNME. An overview of detection techniques for monitoring dioxin-like compounds: latest technique trends and their applications. RSC Adv 2016. [DOI: 10.1039/c6ra11442c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dioxin-like compounds (DLCs) are considered as persistent bioaccumulative toxicants with a number of continuing issues in the fields of ecotoxicology and bioassay.
Collapse
Affiliation(s)
| | - Leila Narimani
- Chemistry Department
- Faculty of Science
- University Malaya
- 50603 Kuala Lumpur
- Malaysia
| | | | - Rosli Hashim
- Institute of Biological Sciences University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - Majid Rezayi
- Chemistry Department
- Faculty of Science
- University Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - David J. Karlen
- Environmental Protection Commission of Hillsborough County
- Tampa
- USA
| | | |
Collapse
|
19
|
Winkler J. High levels of dioxin-like PCBs found in organic-farmed eggs caused by coating materials of asbestos-cement fiber plates: A case study. ENVIRONMENT INTERNATIONAL 2015; 80:72-78. [PMID: 25898153 DOI: 10.1016/j.envint.2015.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 02/16/2015] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
During a regional monitoring project of organic-farmed, free-range and cage-free eggs, high levels of dioxin-like compounds were detected in organic-farmed eggs, using the dioxin responsive chemical-activated luciferase gene expression (DR-CALUX®) bioassay. Further evaluations performed with GC-HRMS (gas chromatography in combination with high resolution mass spectrometry) revealed elevated amounts of non-dioxin-like (non-dl) polychlorinated biphenyls (PCBs) dominated by most lipophilic congeners like PCB 138, 153 and 180 and of dioxin-like (dl) PCBs, with a congener pattern in the descending order of PCB 118, 156, 167, 105, 189, 157, 105, 126 and PCB 77. Contaminations with polychlorinated dibenzo-p-dioxins (PCDDs) appeared of minor priority, with only hepta- and octa-substituted dioxins above their limits of quantification (LOQs). The pattern of polychlorinated dibenzofurans (PCDFs) was dominated by low amounts of tetra- and penta-chlorinated congeners. To identify the source of contamination, several samples of organic-farmed eggs, soil, laying hens, feedstuff, corrugated asbestos-cement cover plates (ACPs), stable dust and debris collected in the gutter of the stable, were analyzed. Comparing PCB congener-pattern of individual samples, the source was traced back to the coating of ACPs, which covered roof and sidewalls of the stable. Because coating materials probably have been used for roofing and cladding in many countries worldwide, there is a high probability that the presented case report is not a local incident but rather describes a new source of PCB contamination, yet widely unknown or underestimated.
Collapse
Affiliation(s)
- Jörg Winkler
- Landesbetrieb Hessisches Landeslabor, Am Versuchsfeld 11-13, 34128 Kassel, Germany.
| |
Collapse
|
20
|
Ishikawa T, Takahashi S, Morita K, Okinaga H, Teramoto T. Induction of AhR-mediated gene transcription by coffee. PLoS One 2014; 9:e102152. [PMID: 25007155 PMCID: PMC4090196 DOI: 10.1371/journal.pone.0102152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 06/16/2014] [Indexed: 11/29/2022] Open
Abstract
Background Aryl hydrocarbon receptor (AhR) is classically known to be activated by xenobiotics such as dioxins and polycyclic aromatic hydrocarbons (PAHs). Although it has been reported that PAHs are contained in roasted coffee beans, in general coffee beverages are not considered to be AhR activators. We tested whether exposure to coffee would activate AhR in cultured cells. Methods HepG2 cells stably expressing an AhR-responsive reporter gene were treated with coffee samples. Also, expression of CYP1A1, an endogenous AhR-responsive gene, was quantitated by RT-PCR and Western blotting in HepG2, Caco-2, and MCF-7 cells, after treatment with coffee. In order to obtain sensitive and reproducible results, all the experiments were performed with the cells placed in either phosphate-buffered saline (PBS) or pure serum, instead of routinely-used culture medium, whose intrinsic AhR-stimulating activity turned out to be so strong as to interfere with the analyses. Results All the coffee samples tested robustly stimulated AhR-mediated transcription in the reporter gene assays. Of note, to what extent coffee and other AhR agonists activated AhR was different, depending on whether the experiments were done in PBS or serum. CYP1A1 mRNA was induced by coffee, in HepG2, Caco-2, and MCF-7 cells placed in either PBS or serum. CYP1A1 protein expression, which was not detected in these cells incubated in PBS, was also increased by coffee in cells placed in serum. Conclusions By using culture medium-free experimental settings, we have shown that coffee is a strong AhR activator. Our observation may help elucidate as-yet-unrecognized effects of coffee on human health.
Collapse
Affiliation(s)
- Toshio Ishikawa
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Satoshi Takahashi
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Koji Morita
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiroko Okinaga
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Tamio Teramoto
- Teikyo Academic Research Center, Teikyo University, Tokyo, Japan
| |
Collapse
|
21
|
Girolami F, Spalenza V, Carletti M, Sacchi P, Rasero R, Nebbia C. Modulation of aryl hydrocarbon receptor target genes in circulating lymphocytes from dairy cows bred in a dioxin-like PCB contaminated area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 450-451:7-12. [PMID: 23454571 DOI: 10.1016/j.scitotenv.2013.01.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 06/01/2023]
Abstract
Animal productions (i.e. fish, eggs, milk and dairy products) represent the major source of exposure to dioxins, furans, and dioxin-like (DL) polychlorobiphenyls for humans. The negative effects of these highly toxic and persistent pollutants are mediated by the activation of the aryl hydrocarbon receptor (AHR) that elicits the transcriptional induction of several genes, including those involved in xenobiotic metabolism. Previously we demonstrated the presence and functioning of the AHR signaling pathway in primary cultures of bovine blood lymphocytes. The aim of the present study was to investigate by real time PCR the expression and the inducibility of selected target genes (i.e. AHR, AHR nuclear translocator (ARNT), AHR repressor, CYP1A1 and CYP1B1) in uncultured cells from dairy cows naturally exposed to DL-compounds. The study was carried out on two groups of animals bred in a highly polluted area and characterized by a different degree of contamination, as assessed by bulk milk TEQ values, and a control group reared in an industry free area. Bovine lymphocytes expressed only AHR, ARNT and CYP1B1 genes to a detectable level; moreover, only CYP1B1 expression appeared to be correlated to TEQ values, being higher in the most contaminated group, and decreasing along with animal decontamination. Finally, lymphocytes from exposed cows displayed a lower inducibility of both CYP1A1 and CYP1B1 after the in vitro treatment with a specific AHR ligand. In conclusion, our results indicate that DL-compound contaminated cows may display significant changes in AHR-target gene expression of circulating lymphocytes.
Collapse
Affiliation(s)
- Flavia Girolami
- Department of Animal Pathology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco, Italy.
| | | | | | | | | | | |
Collapse
|
22
|
Wilson AD. Diverse applications of electronic-nose technologies in agriculture and forestry. SENSORS (BASEL, SWITZERLAND) 2013; 13:2295-348. [PMID: 23396191 PMCID: PMC3649433 DOI: 10.3390/s130202295] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/30/2013] [Accepted: 01/30/2013] [Indexed: 12/14/2022]
Abstract
Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems.
Collapse
Affiliation(s)
- Alphus D Wilson
- USDA Forest Service, Southern Research Station, Center for Bottomland Hardwoods Research, Southern Hardwoods Laboratory, Stoneville, MS 38776, USA.
| |
Collapse
|
23
|
Crosson C, Rossi C. Quartz crystal microbalance immunosensor for the quantification of immunoglobulin G in bovine milk. Biosens Bioelectron 2012; 42:453-9. [PMID: 23238318 DOI: 10.1016/j.bios.2012.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/07/2012] [Accepted: 11/10/2012] [Indexed: 11/30/2022]
Abstract
The development of precise and sensitive methods for milk analysis remains a challenging task in the milk quality control field. A piezoelectric immunosensor was developed for the real-time quantification of immunoglobulin G (IgG) in bovine milk and colostrum. The sensing surface was designed with rabbit antibovine IgG as the detecting molecule, coupled onto a carboxymethyl dextran-coated gold crystal. Total binding and non-specific binding were measured using a quartz crystal microbalance with dissipation (QCM-D). Conditions of analysis, including ligand immobilization, dilution ratio of milk, salinity, and pH of the dilution buffer were optimized by Doehlert experimental design in order to enhance the detection specificity. The performances of the optimized immunosensor were evaluated. The standard curve was established from QCM-D responses and was linear until an IgG concentration of 2500 ng/mL, with a detection limit of 46 ng/mL. The total assay time is 5 min per sample, including the regeneration step. The intra- and inter-assay variation coefficients were equal to or below 4.7 and 6.1%, respectively. The sensing surface was stable for 100 analyses. This technique was successfully applied to the detection of colostrum addition in milk, with a minimum threshold of 0.1%. This new IgG quantification method is particularly interesting as a cost-effective and time-saving alternative for the dairy analytical laboratories when compared with the existing quantification methods.
Collapse
Affiliation(s)
- Cyril Crosson
- OCLA, Maison du Lait 42 Rue Châteaudun, 75009 Paris, France
| | | |
Collapse
|
24
|
Blasco C, Picó Y. Development of an improved method for trace analysis of quinolones in eggs of laying hens and wildlife species using molecularly imprinted polymers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:11005-11014. [PMID: 23009602 DOI: 10.1021/jf303222a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A sensitive, selective, and efficient method was developed for simultaneous determination of 11 fluoroquinolones (FQs), ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, flumequine, marbofloxacin, norfloxacin, ofloxacin, oxolinic acid, pipemidic acid, and sarafloxacin, in eggs by molecularly imprinted polymer (MIP) and column liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Samples were diluted with 50 mM sodium dihydrogen phosphate at pH 7.4, followed by purification with a commercial MIP (SupelMIP SPE-Fluoroquinolones). Recoveries for the 11 quinolones were in the range of 90-106% with intra- and interday relative standard deviation ranging from 1 to 6% and from 3 to 8%, respectively. Limits of detection (LODs) were 0.12-0.85 ng/g, and limits of quantification (LOQs) were 0.36 and 2.59 ng/g, whereas the decision limit (CC(α)) and detection capability (CC(β)) ranged from 0.46 to 3.35 ng/g and from 0.59 to 4.12 ng/g, respectively. The calculated relevant validation parameters are in an acceptable range and in compliance with the requirements of Commission Decision 2002/657/EC. Moreover, a comparison to two other sample treatments [solid-phase extraction (SPE) and solvent extraction] has been carried out. The method was applied to lying hens, Japanese quail, and black-headed gull eggs, in which FQs were not found. The method was also applied to study the depletion of sarafloxacin in eggs.
Collapse
Affiliation(s)
- Cristina Blasco
- Laboratori de Nutrició i Bromatologia, Facultat de Farmàcia, Universitat de València, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| | | |
Collapse
|