1
|
Chua ST, Smith A, Murthy S, Murace M, Yang H, Schertel L, Kühl M, Cicuta P, Smith AG, Wangpraseurt D, Vignolini S. Light management by algal aggregates in living photosynthetic hydrogels. Proc Natl Acad Sci U S A 2024; 121:e2316206121. [PMID: 38805271 PMCID: PMC11161743 DOI: 10.1073/pnas.2316206121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/12/2024] [Indexed: 05/30/2024] Open
Abstract
Rapid progress in algal biotechnology has triggered a growing interest in hydrogel-encapsulated microalgal cultivation, especially for the engineering of functional photosynthetic materials and biomass production. An overlooked characteristic of gel-encapsulated cultures is the emergence of cell aggregates, which are the result of the mechanical confinement of the cells. Such aggregates have a dramatic effect on the light management of gel-encapsulated photobioreactors and hence strongly affect the photosynthetic outcome. To evaluate such an effect, we experimentally studied the optical response of hydrogels containing algal aggregates and developed optical simulations to study the resultant light intensity profiles. The simulations are validated experimentally via transmittance measurements using an integrating sphere and aggregate volume analysis with confocal microscopy. Specifically, the heterogeneous distribution of cell aggregates in a hydrogel matrix can increase light penetration while alleviating photoinhibition more effectively than in a flat biofilm. Finally, we demonstrate that light harvesting efficiency can be further enhanced with the introduction of scattering particles within the hydrogel matrix, leading to a fourfold increase in biomass growth. Our study, therefore, highlights a strategy for the design of spatially efficient photosynthetic living materials that have important implications for the engineering of future algal cultivation systems.
Collapse
Affiliation(s)
- Sing Teng Chua
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Alyssa Smith
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Swathi Murthy
- Marine Biology Section, Department of Biology, University of Copenhagen, HelsingørDK-3000, Denmark
| | - Maria Murace
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Han Yang
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing100040, China
| | | | - Michael Kühl
- Marine Biology Section, Department of Biology, University of Copenhagen, HelsingørDK-3000, Denmark
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Daniel Wangpraseurt
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093-0205
- Department of Nanoengineering, University of California San Diego, La Jolla, CA92093-0205
| | - Silvia Vignolini
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Sustainable and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
| |
Collapse
|
2
|
Ma Z, Meliana C, Munawaroh HSH, Karaman C, Karimi-Maleh H, Low SS, Show PL. Recent advances in the analytical strategies of microbial biosensor for detection of pollutants. CHEMOSPHERE 2022; 306:135515. [PMID: 35772520 DOI: 10.1016/j.chemosphere.2022.135515] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/10/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Microbial biosensor which integrates different types of microorganisms, such as bacteria, microalgae, fungi, and virus have become suitable technologies to address limitations of conventional analytical methods. The main applications of biosensors include the detection of environmental pollutants, pathogenic bacteria and compounds related to illness, and food quality. Each type of microorganisms possesses advantages and disadvantages with different mechanisms to detect the analytes of interest. Furthermore, there is an increasing trend in genetic modifications for the development of microbial biosensors due to potential for high-throughput analysis and portability. Many review articles have discussed the applications of microbial biosensor, but many of them focusing only about bacterial-based biosensor although other microbes also possess many advantages. Additionally, reviews on the applications of all microbes as biosensor especially viral and microbial fuel cell biosensors are also still limited. Therefore, this review summarizes all the current applications of bacterial-, microalgal-, fungal-, viral-based biosensor in regard to environmental, food, and medical-related applications. The underlying mechanism of each microbes to detect the analytes are also discussed. Additionally, microbial fuel cell biosensors which have great potential in the future are also discussed. Although many advantageous microbial-based biosensors have been discovered, other areas such as forensic detection, early detection of bacteria or virus species that can lead to pandemics, and others still need further investigation. With that said, microbial-based biosensors have promising potential for vast applications where the biosensing performance of various microorganisms are presented in this review along with future perspectives to resolve problems related on microbial biosensors.
Collapse
Affiliation(s)
- Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| | - Catarina Meliana
- Department of Food Science and Nutrition, Faculty of Life Science, Indonesia International Institute of Life Sciences, Jakarta, 13210, Indonesia
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Ceren Karaman
- Akdeniz University, Department of Electricity and Energy, Antalya, 07070, Turkey
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Sze Shin Low
- Research Centre of Life Science and Healthcare, China Beacons Institute, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, 315100, Zhejiang, China.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
3
|
Ghosh S, Yi HG. A Review on Bioinks and their Application in Plant Bioprinting. Int J Bioprint 2022; 8:612. [PMID: 36404783 PMCID: PMC9668583 DOI: 10.18063/ijb.v8i4.612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, the characterization and fabrication methods concerning new bioinks have received much attention, largely because the absence of bioprintable materials has been identified as one of the most rudimentary challenges for rapid advancement in the field of three-dimensional (3D) printing. Bioinks for printing mammalian organs have been rapidly produced, but bioinks in the field of plant science remain sparse. Thus, 3D fabrication of plant parts is still in its infancy due to the lack of appropriate bioink materials, and aside from that, the difficulty in recreating sophisticated microarchitectures that accurately and safely mimic natural biological activities is a concern. Therefore, this review article is designed to emphasize the significance of bioinks and their applications in plant bioprinting.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Hee-Gyeong Yi
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
4
|
Cao J, Chande C, Köhler JM. Microtoxicology by microfluidic instrumentation: a review. LAB ON A CHIP 2022; 22:2600-2623. [PMID: 35678285 DOI: 10.1039/d2lc00268j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microtoxicology is concerned with the toxic effects of small amounts of substances. This review paper discusses the application of small amounts of noxious substances for toxicological investigation in small volumes. The vigorous development of miniaturized methods in microfluidics over the last two decades involves chip-based devices, micro droplet-based procedures, and the use of micro-segmented flow for microtoxicological studies. The studies have shown that the microfluidic approach is particularly valuable for highly parallelized and combinatorial dose-response screenings. Accurate dosing and mixing of effector substances in large numbers of microcompartments supplies detailed data of dose-response functions by highly concentration-resolved assays and allows evaluation of stochastic responses in case of small separated cell ensembles and single cell experiments. The investigations demonstrate that very different biological targets can be studied using miniaturized approaches, among them bacteria, eukaryotic microorganisms, cell cultures from tissues of multicellular organisms, stem cells, and early embryonic states. Cultivation and effector exposure tests can be performed in small volumes over weeks and months, confirming that the microfluicial strategy is also applicable for slow-growing organisms. Here, the state of the art of miniaturized toxicology, particularly for studying antibiotic susceptibility, drug toxicity testing in the miniaturized system like organ-on-chip, environmental toxicology, and the characterization of combinatorial effects by two and multi-dimensional screenings, is discussed. Additionally, this review points out the practical limitations of the microtoxicology platform and discusses perspectives on future opportunities and challenges.
Collapse
Affiliation(s)
- Jialan Cao
- Techn. Univ. Ilmenau, Dept. Phys. Chem. and Microreaction Technology, Institute for Micro- und Nanotechnologies/Institute for Chemistry and Biotechnology, Ilmenau, Germany.
| | - Charmi Chande
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - J Michael Köhler
- Techn. Univ. Ilmenau, Dept. Phys. Chem. and Microreaction Technology, Institute for Micro- und Nanotechnologies/Institute for Chemistry and Biotechnology, Ilmenau, Germany.
| |
Collapse
|
5
|
Ge J, Yang Q, Fang Z, Liu S, Zhu Y, Yao J, Ma Z, Gonçalves RJ, Guan W. Microplastics impacts in seven flagellate microalgae: Role of size and cell wall. ENVIRONMENTAL RESEARCH 2022; 206:112598. [PMID: 34953887 DOI: 10.1016/j.envres.2021.112598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The toxicity of microplastic particles (MPs) on aquatic environments has been widely reported; however, their effects on protists are still contradictory. For example, it is unclear if cell size and cell wall have a role in shaping the response of flagellates to MPs. In this study, seven marine flagellated microalgae (six Dinoflagellates and one Raphidophyceae) were incubated with 10 mg L-1 MPs (polystyrene plastic micro-spheres, 1 μm diameter) to address the above question by measuring different response variables, i.e., growth, optimal photochemical efficiency (Fv/Fm), chlorophyll-a (Chl-a) content, superoxide dismutase (SOD) activity, and cell morphology. The effect of MPs on growth and Fv/Fm showed species-specificity effects. Maximum and minimum MPs-induced inhibitions were detected in Karenia mikimotoi (76.43%) and Akashiwo sanguinea (10.16%), respectively, while the rest of the species showed intermediate responses. The presence of MPs was associated with an average reduction of Chl-a content in most cases and with a higher superoxide dismutase activity in all cases. Seven species were classified into two groups by the variation of Chl-a under MPs treatment. One group (Prorocentrum minimum and Karenia mikimotoi) showed increased Chl-a, while the other (P. donghaiense, P. micans, Alexandrium tamarense, Akashiwo sanguinea, Heterosigma akashiwo) showed decreased Chl-a content. The MPs-induced growth inhibition was negatively correlated with cell size in the latter group. SEM images further indicated that MPs-induced malformation in the smaller cells (e.g., P. donghaiense and K. mikimotoi) was more severe than the bigger cells (e.g., A. sanguinea and P. micans), probably due to a relatively higher ratio of the cell surface to cell volume in the former. These results implicate that the effect of MPs on marine flagellated microalgae was related to the cell size among most species but not cell wall. Thus plastic pollution may have size-dependent effects on phytoplankton in future scenarios.
Collapse
Affiliation(s)
- Jingke Ge
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Qiongying Yang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China
| | - Zhouxi Fang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China
| | - Shuqi Liu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China
| | - Yue Zhu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China
| | - Jiang Yao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Rodrigo J Gonçalves
- Laboratorio de Oceanografía Biológica (LOBio), Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), U9120ACD, Puerto Madryn, Argentina
| | - Wanchun Guan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China.
| |
Collapse
|
6
|
Homburg SV, Patel AV. Silica Hydrogels as Entrapment Material for Microalgae. Polymers (Basel) 2022; 14:polym14071391. [PMID: 35406264 PMCID: PMC9002651 DOI: 10.3390/polym14071391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
Despite being a promising feedstock for food, feed, chemicals, and biofuels, microalgal production processes are still uneconomical due to slow growth rates, costly media, problematic downstreaming processes, and rather low cell densities. Immobilization via entrapment constitutes a promising tool to overcome these drawbacks of microalgal production and enables continuous processes with protection against shear forces and contaminations. In contrast to biopolymer gels, inorganic silica hydrogels are highly transparent and chemically, mechanically, thermally, and biologically stable. Since the first report on entrapment of living cells in silica hydrogels in 1989, efforts were made to increase the biocompatibility by omitting organic solvents during hydrolysis, removing toxic by-products, and replacing detrimental mineral acids or bases for pH adjustment. Furthermore, methods were developed to decrease the stiffness in order to enable proliferation of entrapped cells. This review aims to provide an overview of studied entrapment methods in silica hydrogels, specifically for rather sensitive microalgae.
Collapse
Affiliation(s)
- Sarah Vanessa Homburg
- WG Fermentation and Formulation of Biologicals and Chemicals, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Interaktion 1, 33619 Bielefeld, Germany
| | - Anant V Patel
- WG Fermentation and Formulation of Biologicals and Chemicals, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Interaktion 1, 33619 Bielefeld, Germany
| |
Collapse
|
7
|
Halicka K, Cabaj J. Electrospun Nanofibers for Sensing and Biosensing Applications-A Review. Int J Mol Sci 2021; 22:6357. [PMID: 34198611 PMCID: PMC8232165 DOI: 10.3390/ijms22126357] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
Sensors and biosensors have found applications in many areas, e.g., in medicine and clinical diagnostics, or in environmental monitoring. To expand this field, nanotechnology has been employed in the construction of sensing platforms. Because of their properties, such as high surface area to volume ratio, nanofibers (NFs) have been studied and used to develop sensors with higher loading capacity, better sensitivity, and faster response time. They also allow to miniaturize designed platforms. One of the most commonly used techniques of the fabrication of NFs is electrospinning. Electrospun NFs can be used in different types of sensors and biosensors. This review presents recent studies concerning electrospun nanofiber-based electrochemical and optical sensing platforms for the detection of various medically and environmentally relevant compounds, including glucose, drugs, microorganisms, and toxic metal ions.
Collapse
Affiliation(s)
| | - Joanna Cabaj
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| |
Collapse
|
8
|
Zeng N, Wu Y, Chen W, Huang Q, Cai P. Whole-Cell Microbial Bioreporter for Soil Contaminants Detection. Front Bioeng Biotechnol 2021; 9:622994. [PMID: 33708764 PMCID: PMC7940511 DOI: 10.3389/fbioe.2021.622994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Anthropogenic activities have released various contaminants into soil that pose a serious threat to the ecosystem and human well-being. Compared to conventional analytical methodologies, microbial cell-based bioreporters are offering a flexible, rapid, and cost-effective strategy to assess the environmental risks. This review aims to summarize the recent progress in the application of bioreporters in soil contamination detection and provide insight into the challenges and current strategies. The biosensing principles and genetic circuit engineering are introduced. Developments of bioreporters to detect and quantify heavy metal and organic contaminants in soil are reviewed. Moreover, future opportunities of whole-cell bioreporters for soil contamination monitoring are discussed.
Collapse
Affiliation(s)
- Ni Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Gall JL, Vasilijević S, Battaglini N, Mattana G, Noël V, Brayner R, Piro B. Algae-functionalized hydrogel-gated organic field-effect transistor. Application to the detection of herbicides. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Munagamage T, Rathnayake IVN, Pathiratne A, Megharaj M. Comparison of Sensitivity of Tropical Freshwater Microalgae to Environmentally Relevant Concentrations of Cadmium and Hexavalent Chromium in Three Types of Growth Media. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:397-404. [PMID: 32747993 DOI: 10.1007/s00128-020-02950-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Sensitivity of tropical freshwater microalgae (Mesotaenium sp., Chlorococcum sp. and Scenedesmus sp.) to environmentally relevant concentrations of hexavalent chromium (Cr6+) and cadmium (Cd2+) was compared individually in three growth media viz. Bold's Basal Medium (BBM), Test Medium 1 (TM1) and Test Medium 2 (TM2) based on fluorescence reduction. Free metal content of growth media was determined by Visual MINTEQ (version 3.1). After 24 h, relative fluorescence of microalgae in the three media decreased with increased metal concentration showing a concentration dependent graded toxicity response. All microalgae were more sensitive to the metals when grown in TM1, when compared, more sensitive to Cr6+ than Cd2+. Metal speciation indicated that TM1 and TM2 media have higher percentage of bioavailable Cd2+ than BBM, and chromium was present mainly as CrO42- and HCrO4-. The results suggest that the TM1 medium is more suitable under short term exposure of microalgae to metals in environmental monitoring.
Collapse
Affiliation(s)
- Thilini Munagamage
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya, GQ, 11600, Sri Lanka
| | - I V N Rathnayake
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya, GQ, 11600, Sri Lanka.
| | - A Pathiratne
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya, GQ, 11600, Sri Lanka
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, University Drive, ATC Building, Callaghan, NSW, 2308, Australia
| |
Collapse
|
11
|
Attaallah R, Antonacci A, Mazzaracchio V, Moscone D, Palleschi G, Arduini F, Amine A, Scognamiglio V. Carbon black nanoparticles to sense algae oxygen evolution for herbicides detection: Atrazine as a case study. Biosens Bioelectron 2020; 159:112203. [PMID: 32364935 DOI: 10.1016/j.bios.2020.112203] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 11/28/2022]
Abstract
A novel amperometric algae-based biosensor was developed for the detection of photosynthetic herbicides in river water. The green photosynthetic algae Chlamydomonas reinhardtii was immobilized on carbon black modified screen-printed electrodes, exploiting carbon black as smart nanomaterial to monitor changes in algae oxygen evolution during the photosynthetic process. The decrease of oxygen evolution, occurring in the presence of herbicides, results in a decrease of current signals by means of amperometric measurements, in an analyte concentration dependent manner. Atrazine as case study herbicide was detected in a concentration range of 0.1 and 50 μM, with a linear range from 0.1 to 5 μM and a detection limit of 1 nM. No interference was observed in presence of 100 ppb arsenic, 20 ppb copper, 5 ppb cadmium, 10 ppb lead, 10 ppb bisphenol A, and 1 ppb paraoxon, tested as safety limits. A ~25% matrix effect and satisfactory recovery values of 107 ± 10% and 96 ± 8% were obtained in river water for 3 and 5 μM of atrazine, respectively. Stability studies were also performed obtaining a high working stability up to 10 h and repeatability with an RSD of 1.1% (n = 12), as well as a good storage stability up to 3 weeks.
Collapse
Affiliation(s)
- Raouia Attaallah
- Faculty of Sciences and Techniques, Hassan II University of Casablanca, Morocco
| | - Amina Antonacci
- Institute of Crystallography (IC-CNR), Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015, Monterotondo, Italy
| | - Vincenzo Mazzaracchio
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Danila Moscone
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Giuseppe Palleschi
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133, Rome, Italy; SENSE4MED, via Renato Rascel 30, 00128, Rome, Italy
| | - Aziz Amine
- Faculty of Sciences and Techniques, Hassan II University of Casablanca, Morocco
| | - Viviana Scognamiglio
- Institute of Crystallography (IC-CNR), Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015, Monterotondo, Italy.
| |
Collapse
|
12
|
Plekhanova YV, Reshetilov AN. Microbial Biosensors for the Determination of Pesticides. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819120098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Scognamiglio V, Antonacci A, Arduini F, Moscone D, Campos EVR, Fraceto LF, Palleschi G. An eco-designed paper-based algal biosensor for nanoformulated herbicide optical detection. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:483-492. [PMID: 30947038 DOI: 10.1016/j.jhazmat.2019.03.082] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/20/2019] [Accepted: 03/18/2019] [Indexed: 05/23/2023]
Abstract
In this study we reported the development of a paper-based algal biosensor for the optical detection of nanoencapsulated-atrazine, a forefront nanoformulated herbicide with a high effective post-emergence herbicidal activity. In particular, the unicellular green photosynthetic algae Chlamydomonas reinhardtii was immobilised on a paper substrate soaked with an agar thin film and placed in a glass optical measurement cell, obtaining a totally environmental-friendly device. Nanoencapsulated-atrazine was detected by following the variable fluorescence (1-VJ) parameter, which decreased inversely proportional to the herbicide concentrations, in a range between 0.5 and 200 nM, indicating a linear relationship in the measured dose-response curves and a detection limit of 4 pM. Interference studies resulted in a very slight interference in presence of 2 ppm copper and 10 ppb arsenic at safety limits, as well as a slight matrix effect and a satisfactory recovery value of 96 ± 5% for 75 nM nanoencapsulated-atrazine in tap water. Stability studies were also performed obtaining a good storage stability up to 3 weeks. Results demonstrated the suitability of the proposed paper-based optical biosensor as a valid support in smart agriculture for on site, environmental friendly, cost effective and sensitive nanoencapsulated-atrazine analysis.
Collapse
Affiliation(s)
- Viviana Scognamiglio
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Via Salaria Km 29.3, 00015, Monterotondo Scalo, Rome, Italy.
| | - Amina Antonacci
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Via Salaria Km 29.3, 00015, Monterotondo Scalo, Rome, Italy
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Danila Moscone
- Department of Chemical Science and Technologies, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Estefania V R Campos
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Laboratory of Environmental Nanotechnology, Av. Três de Março, 511 - CEP 18-087-180, Sorocaba, Brazil
| | - Leonardo F Fraceto
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Laboratory of Environmental Nanotechnology, Av. Três de Março, 511 - CEP 18-087-180, Sorocaba, Brazil
| | - Giuseppe Palleschi
- Department of Chemical Science and Technologies, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
14
|
|
15
|
Xurography-based microfluidic algal biosensor and dedicated portable measurement station for online monitoring of urban polluted samples. Biosens Bioelectron 2018; 117:669-677. [DOI: 10.1016/j.bios.2018.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/28/2018] [Accepted: 07/04/2018] [Indexed: 01/09/2023]
|
16
|
Moro L, Pezzotti G, Turemis M, Sanchís J, Farré M, Denaro R, Giacobbe MG, Crisafi F, Giardi MT. Fast pesticide pre-screening in marine environment using a green microalgae-based optical bioassay. MARINE POLLUTION BULLETIN 2018; 129:212-221. [PMID: 29680540 DOI: 10.1016/j.marpolbul.2018.02.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
The present study evaluates an optical bioassay based on green photosynthetic microalgae as a promising alternative for monitoring of relevant seawater pollutants. Photosystem II fluorescence parameters from several microalgae species were examined in the presence of three common marine pesticides that act as photosynthesis inhibitors. The three pollutants were detected within 10 min in concentrations between ng/L-μg/L. The different algae species showed slightly diverse pesticide sensitivities, being Chlorella mirabilis the most sensitive one. Potential interferences due to oil-spill pollutants were discarded. The lipid content was characterized to identify microorganisms with suitable mechanisms that could facilitate stress acclimatization. C. mirabilis presented elevated content of unsaturated lipids, showing a promising potential for biosensing in saline stress conditions. The optimized microalgae-based bioassay was preliminarily incorporated into a marine buoy for autonomous pre-screening of pesticides in coastal areas, demonstrating its suitability for real-time monitoring of marine water and quantitative evaluation of total biotoxicity.
Collapse
Affiliation(s)
- Laura Moro
- Biosensor Srl, Via degli Olmetti 44, 00060 Formello, Rome, Italy.
| | - Gianni Pezzotti
- Biosensor Srl, Via degli Olmetti 44, 00060 Formello, Rome, Italy.
| | - Mehmet Turemis
- Biosensor Srl, Via degli Olmetti 44, 00060 Formello, Rome, Italy.
| | - Josep Sanchís
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/ Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain.
| | - Marinella Farré
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/ Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain.
| | - Renata Denaro
- Institute for Coastal Marine Environment (IAMC-CNR), Spianata S. Raineri 86, 98122 Messina, Italy.
| | - Maria Grazia Giacobbe
- Institute for Coastal Marine Environment (IAMC-CNR), Spianata S. Raineri 86, 98122 Messina, Italy.
| | - Francesca Crisafi
- Institute for Coastal Marine Environment (IAMC-CNR), Spianata S. Raineri 86, 98122 Messina, Italy.
| | - Maria Teresa Giardi
- Biosensor Srl, Via degli Olmetti 44, 00060 Formello, Rome, Italy; Crystallography Institute, CNR Area della Ricerca di Roma, Via Salaria km 29,300, 00015 Monterotondo, Rome, Italy.
| |
Collapse
|
17
|
Islam MS, Sazawa K, Hata N, Sugawara K, Kuramitz H. Determination of heavy metal toxicity by using a micro-droplet hydrodynamic voltammetry for microalgal bioassay based on alkaline phosphatase. CHEMOSPHERE 2017; 188:337-344. [PMID: 28888859 DOI: 10.1016/j.chemosphere.2017.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/29/2017] [Accepted: 09/02/2017] [Indexed: 06/07/2023]
Abstract
We developed an electrochemical microalgal bioassay for the determination of heavy metal toxicity in water on the basis of the alkaline phosphatase (ALP) enzyme inhibition of Chlamydomonas reinhardtii. Five heavy metals were chosen as toxicants: Hg, Cd, Pb, Zn, and Cu. The induced ALP activity of C. reinhardtii was inhibited using the phosphate starvation method, and the results were evaluated by measuring the electrochemical oxidation of p-aminophenol (PAP) following the enzymatic conversion of p-aminophenyl phosphate (PAPP) as a substrate. The rapid determination of enzymatic activity was achieved using hydrodynamic voltammetry in a 50 μL micro-droplet with a rotating disk electrode (RDE). Enzymatic activity over a PAPP substrate is affected by heavy metal ions, and this phenomenon decreases the chronoamperometric current signal. The concentrations of Hg, Cd, Pb, Zn, and Cu in which the ALP activity was half that of the control (EC50) were found to be 0.017, 0.021, 0.27, 1.30, and 1.36 μM, respectively. The RDE system was demonstrated to be capable of detecting enzymatic activity by using a small amount of regent, a reaction time of only 60 s, and a detection limit of 5.4 × 10-7 U.
Collapse
Affiliation(s)
- Md Saiful Islam
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Kazuto Sazawa
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Noriko Hata
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | | | - Hideki Kuramitz
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| |
Collapse
|
18
|
Gosset A, Durrieu C, Orias F, Bayard R, Perrodin Y. Identification and assessment of ecotoxicological hazards attributable to pollutants in urban wet weather discharges. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1150-1168. [PMID: 28691727 DOI: 10.1039/c7em00159b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Urbanization has led to considerable pressure on urban/suburban aquatic ecosystems. Urban Wet Weather Discharges (UWWD) during rainfall events are a major source of pollutants leached onto and into urban surfaces and sewers, which in turn affect aquatic ecosystems. We assessed the ecotoxicity of the different compounds identified in UWWD and identified the hazard represented by each of them. To this end, hazard quotient (HQ) values were calculated for each compound detected in UWWD based on their predicted no effect concentration (PNEC) values and their maximum measured effluent concentrations (MECmax) found in the dissolved part of UWWD. For the 207 compounds identified in UWWD, sufficient data existed for 165 of them to calculate their PNEC. The ecotoxicity of these compounds varied greatly. Pesticides represented a high proportion of the wide variety of hazardous compounds whose HQ values were calculated (94 HQ values), and they were among the most hazardous pollutants (HQ > 1000) transported by stormwater. The hazard of combined sewer overflows (CSO) was linked mainly to heavy metals and pharmaceutical compounds. Consequently, the monitoring of these pollutants should be a priority in the future. The hazard level of certain pollutants could have been underestimated due to their adsorption onto particles, leading to their low concentration in the dissolved phase of UWWD. Hence, an in-depth study of these pollutants will be required to clarify their effects on aquatic organisms.
Collapse
Affiliation(s)
- Antoine Gosset
- Université de Lyon, ENTPE, CNRS, UMR 5023, LEHNA, 3 Rue Maurice Audin, 69518 Vaulx-en-Velin, France.
| | | | | | | | | |
Collapse
|
19
|
One-stage immobilization of the microalga Porphyridium purpureum using a biocompatible silica precursor and study of the fluorescence of its pigments. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:75-85. [PMID: 28477084 DOI: 10.1007/s00249-017-1213-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 03/16/2017] [Accepted: 04/16/2017] [Indexed: 10/19/2022]
Abstract
The biocompatible silica precursor tetrakis(2-hydroxyethyl)orthosilicate with ethylene glycol residues was used instead of the common alcohol-containing tetraethoxysilane for the first time to prepare a biorecognition element by entrapping the marine microalga Porphyridium purpureum into a silica matrix by a one-stage sol-gel procedure at conditions (pH, ionic strength, and temperature) appropriate for living cells. We show that the microalga immobilized in this way fully maintains its viability and functionality. We furthermore show that the silica matrix had a stabilizing effect, providing microalgal survival and functionality at increased temperature. The high optical transparency of the silica matrix allowed us to study the optical properties of Porphyridium purpureum thoroughly. When irradiated by a laser, intense fluorescence of chlorophyll-a and phycoerythrin of the photosynthetic system was observed. The characteristics of this fluorescence differed notably from that observed with P. purpureum in suspension before immobilization; possible reasons for this and an underlying mechanism are discussed.
Collapse
|
20
|
Buckova M, Licbinsky R, Jandova V, Krejci J, Pospichalova J, Huzlik J. Fast Ecotoxicity Detection Using Biosensors. WATER, AIR, AND SOIL POLLUTION 2017; 228:166. [PMID: 28450754 PMCID: PMC5382182 DOI: 10.1007/s11270-017-3341-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/14/2017] [Indexed: 05/27/2023]
Abstract
The article provides information about a new device, AlgaTox developed in the R&D project sponsored by the Technology Agency (n.TA02030179) and patented in Czech Republic (CZ 305687). Its functionality is based on the use of biosensor, and its main advantage is fast response rate. The toxicity detection is achieved through precise measurement of green algae oxygen production dynamics after their exposure to light of wavelength of 680 nm. Clark sensor with a resolution of 0.05% of the equilibrium oxygen concentrations and stability at a constant pressure and temperature of 0.1% of the equilibrium oxygen concentration at the 24-h measurement is used for the oxygen detection. Laboratory testing of the device has been made using silver nitrate, substance with known inhibitory effect on algae. Real samples of aqueous soil extracts and waste sample from old dried-up industrial tailing pond enriched with insecticide have been also tested. The values of oxygen production inhibition or stimulation determined with the new device in the evaluation of real samples were up to six times higher in comparison with the corresponding values of inhibition (stimulation) of growth rates determined by standard procedure.
Collapse
Affiliation(s)
- Martina Buckova
- Transport Research Centre, Líšeňská 33a, 636 00 Brno, Czech Republic
| | - Roman Licbinsky
- Transport Research Centre, Líšeňská 33a, 636 00 Brno, Czech Republic
| | - Vilma Jandova
- Transport Research Centre, Líšeňská 33a, 636 00 Brno, Czech Republic
| | - Jan Krejci
- BVT Technologies, a.s, Strážek 206, 592 53 Strážek, Czech Republic
| | | | - Jiri Huzlik
- Transport Research Centre, Líšeňská 33a, 636 00 Brno, Czech Republic
| |
Collapse
|
21
|
Yotsova EK, Stefanov MA, Dobrikova AG, Apostolova EL. Different sensitivities of photosystem II in green algae and cyanobacteria to phenylurea and phenol-type herbicides: effect on electron donor side. ACTA ACUST UNITED AC 2017; 72:315-324. [PMID: 28258977 DOI: 10.1515/znc-2016-0089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 02/05/2017] [Indexed: 11/15/2022]
Abstract
Abstract
The effects of short-term treatment with phenylurea (DCMU, isoproturon) and phenol-type (ioxynil) herbicides on the green alga Chlorella kessleri and the cyanobacterium Synechocystis salina with different organizations of photosystem II (PSII) were investigated using pulse amplitude modulated (PAM) chlorophyll fluorescence and photosynthetic oxygen evolution measured by polarographic oxygen electrodes (Clark-type and Joliot-type). The photosynthetic oxygen evolution showed stronger inhibition than the PSII photochemistry. The effects of the studied herbicides on both algal and cyanobacterial cells decreased in the following order: DCMU>isoproturon>ioxynil. Furthermore, we observed that the number of blocked PSII centers increased significantly after DCMU treatment (204–250 times) and slightly after ioxynil treatment (19–35 times) in comparison with the control cells. This study suggests that the herbicides affect not only the acceptor side but also the donor side of PSII by modifications of the Mn cluster of the oxygen-evolving complex. We propose that one of the reasons for the different PSII inhibitions caused by herbicides is their influence, in different extents, on the kinetic parameters of the oxygen-evolving reactions (the initial S0−S1 state distribution, the number of blocked centers SB, the turnover time of Si states, misses and double hits). The relationship between the herbicide-induced inhibition and the changes in the kinetic parameters is discussed.
Collapse
Affiliation(s)
- Ekaterina K Yotsova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
| | - Martin A Stefanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
| | - Anelia G Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
| | - Emilia L Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria, Tel: +359-2979-2621, Fax: +359-2971-2493
| |
Collapse
|
22
|
Fabrication of Magnetically Modified Chlorella pyrenoidosa Microalgae Using Poly(diallyldimethyl ammonium)-stabilised Magnetic Nanoparticles. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0263-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Oestreicher V, Perullini M, Jobbágy M. Physicochemical aspects of epoxide driven nano-ZrO2 hydrogel formation: milder kinetics for better properties. Dalton Trans 2016; 45:9920-4. [PMID: 26974822 DOI: 10.1039/c6dt00323k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Robust and highly transparent quasi amorphous ZrO2-water-glycerol hydrogels were obtained in a mild one pot procedure, based on the 2,3-epoxy-1-propanol driven alkalinization. SAXS-based characterization of the sol-gel transition revealed that an homogeneously nucleated sol composed of 2 nm primary particles continuously grows up to a critical size of 5-6 nm, when gelation takes place. These particles reach a size of 8-10 nm, depending on the Zr(iv) concentration. Conductivity measurements offer an overall in situ assessment of the reaction rate. The gelled samples share a common trend: once the conductivity decays to 40% of the starting value, the primary particles nucleate and when this decay reaches 20%, the sol-gel transition takes place. The mild conditions employed herein prevent massive ripening and recrystallization leaving hydrogels with extremely low undesired visible light scattering. This suitable nanostructure was achieved in a wide range of total Zr(iv) concentrations or water to glycerol ratios.
Collapse
Affiliation(s)
- V Oestreicher
- INQUIMAE, DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, C1428EHA-Buenos Aires, Argentina.
| | - M Perullini
- INQUIMAE, DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, C1428EHA-Buenos Aires, Argentina.
| | - M Jobbágy
- INQUIMAE, DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, C1428EHA-Buenos Aires, Argentina. and Centro Interdisciplinario de NanoCiencia y NanoTecnología, Argentina
| |
Collapse
|
24
|
Gosset A, Ferro Y, Durrieu C. Methods for evaluating the pollution impact of urban wet weather discharges on biocenosis: A review. WATER RESEARCH 2016; 89:330-354. [PMID: 26720196 DOI: 10.1016/j.watres.2015.11.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 11/02/2015] [Accepted: 11/07/2015] [Indexed: 06/05/2023]
Abstract
Rainwater becomes loaded with a large number of pollutants when in contact with the atmosphere and urban surfaces. These pollutants (such as metals, pesticides, PAHs, PCBs) reduce the quality of water bodies. As it is now acknowledged that physico-chemical analyses alone are insufficient for identifying an ecological impact, these analyses are frequently completed or replaced by impact studies communities living in freshwater ecosystems (requiring biological indices), ecotoxicological studies, etc. Thus, different monitoring strategies have been developed over recent decades aimed at evaluating the impact of the pollution brought by urban wet weather discharges on the biocenosis of receiving aquatic ecosystems. The purpose of this review is to establish a synthetic and critical view of these different methods used, to define their advantages and disadvantages, and to provide recommendations for futures researches. Although studies on aquatic communities are used efficiently, notably on benthic macroinvertebrates, they are difficult to interpret. In addition, despite the fact that certain bioassays lack representativeness, the literature at present appears meagre regarding ecotoxicological studies conducted in situ. However, new tools for studying urban wet weather discharges have emerged, namely biosensors. The advantages of biosensors are that they allow monitoring the impact of discharges in situ and continuously. However, only one study on this subject has been identified so far, making it necessary to perform further research in this direction.
Collapse
Affiliation(s)
- Antoine Gosset
- Université de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 3 Rue Maurice Audin, 69518 Vaulx-en-Velin, France.
| | - Yannis Ferro
- Université de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 3 Rue Maurice Audin, 69518 Vaulx-en-Velin, France
| | - Claude Durrieu
- Université de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 3 Rue Maurice Audin, 69518 Vaulx-en-Velin, France
| |
Collapse
|
25
|
Perullini M, Calcabrini M, Jobbágy M, Bilmes SA. Alginate/porous silica matrices for the encapsulation of living organisms: tunable properties for biosensors, modular bioreactors, and bioremediation devices. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/mesbi-2015-0003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract:The encapsulation of living cells within inorganic silica hydrogels is a promising strategy for the design of biosensors, modular bioreactors, and bioremediation devices, among other interesting applications, attracting scientific and technological interest. These hostguest multifunctional materials (HGFM) combine synergistically specific biologic functions of their guest with those of the host matrix enhancing their performance. Although inorganic immobilization hosts present several advantages over their (bio)polymer-based counterparts in terms of chemical and physical stability, the direct contact of cells with silica precursors during synthesis and the constraints imposed by the inorganic host during operating conditions have proved to influence their biological response. Recently, we proposed an alternative two-step procedure including a pre-encapsulation in biocompatible polymers such as alginates in order to confer protection to the biological guest during the inorganic and more cytotoxic synthesis. By means of this procedure, whole cultures of microorganisms remain confined in small liquid volumes generated inside the inorganic host, providing near conventional liquid culture conditions.Moreover, the fact of protecting the biological guest during the synthesis of the host, allows extending the synthesis parameters beyond biocompatible conditions, tuning the microstructure of the matrix. In turn, the microstructure (porosity at the nanoscale, radius of gyration of particles composing the structure, and fractal dimension of particle clusters) is determinant of macroscopic parameters, such as optical quality and transport properties that govern the encapsulation material’s performance. Here, we review the most interesting applications of the two-step procedure, making special emphasis on the optimization of optical, transport and mechanical properties of the host as well as in the interaction with the guest during operation conditions.
Collapse
|
26
|
Mistry KK, Layek K, Mahapatra A, RoyChaudhuri C, Saha H. A review on amperometric-type immunosensors based on screen-printed electrodes. Analyst 2015; 139:2289-311. [PMID: 24678518 DOI: 10.1039/c3an02050a] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this brief review, we summarize the recent research activities involved in the development of amperometric-type immunosensors based on screen-printed electrodes (SPEs). We focus on the underlying principle involved in these types of sensors, their fabrication and electrode surface modification. We also discuss the various factors involved in the designing of such immunosensors and how they affect their performances. Finally we provide an insight into the drawbacks associated with these SPEs.
Collapse
Affiliation(s)
- Kalyan Kumar Mistry
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur-713209, India.
| | | | | | | | | |
Collapse
|
27
|
Lode A, Krujatz F, Brüggemeier S, Quade M, Schütz K, Knaack S, Weber J, Bley T, Gelinsky M. Green bioprinting: Fabrication of photosynthetic algae-laden hydrogel scaffolds for biotechnological and medical applications. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400205] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Anja Lode
- Centre for Translational Bone; Joint and Soft Tissue Research; University Hospital and Faculty of Medicine Carl Gustav Carus of Technische Universität Dresden; Dresden Germany
| | - Felix Krujatz
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Dresden Germany
| | - Sophie Brüggemeier
- Centre for Translational Bone; Joint and Soft Tissue Research; University Hospital and Faculty of Medicine Carl Gustav Carus of Technische Universität Dresden; Dresden Germany
| | - Mandy Quade
- Centre for Translational Bone; Joint and Soft Tissue Research; University Hospital and Faculty of Medicine Carl Gustav Carus of Technische Universität Dresden; Dresden Germany
| | - Kathleen Schütz
- Centre for Translational Bone; Joint and Soft Tissue Research; University Hospital and Faculty of Medicine Carl Gustav Carus of Technische Universität Dresden; Dresden Germany
| | - Sven Knaack
- Centre for Translational Bone; Joint and Soft Tissue Research; University Hospital and Faculty of Medicine Carl Gustav Carus of Technische Universität Dresden; Dresden Germany
| | - Jost Weber
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Dresden Germany
| | - Thomas Bley
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Dresden Germany
| | - Michael Gelinsky
- Centre for Translational Bone; Joint and Soft Tissue Research; University Hospital and Faculty of Medicine Carl Gustav Carus of Technische Universität Dresden; Dresden Germany
| |
Collapse
|
28
|
Spedalieri C, Sicard C, Perullini M, Brayner R, Coradin T, Livage J, Bilmes SA, Jobbágy M. Silica@proton-alginate microreactors: a versatile platform for cell encapsulation. J Mater Chem B 2015; 3:3189-3194. [DOI: 10.1039/c4tb02020k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acid gelation of alginate allows the inclusion of living cultures within sol–gel silica hydrogels. The formed beads spontaneously revert into a liquid viable culture.
Collapse
Affiliation(s)
- Cecilia Spedalieri
- Laboratorio de Superficies y Materiales Funcionales INQUIMAE-DQIAQF
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
- Buenos Aires
- Argentina
| | - Clémence Sicard
- Sorbonne Universités
- UPMC Univ Paris 06
- CNRS
- UMR 7574
- Laboratoire de Chimie de la Matière Condensée de Paris
| | - Mercedes Perullini
- Laboratorio de Superficies y Materiales Funcionales INQUIMAE-DQIAQF
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
- Buenos Aires
- Argentina
| | - Roberta Brayner
- Univ Paris Diderot
- Sorbonne Paris Cité
- Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS)
- UMR 7086
- CNRS
| | - Thibaud Coradin
- Sorbonne Universités
- UPMC Univ Paris 06
- CNRS
- UMR 7574
- Laboratoire de Chimie de la Matière Condensée de Paris
| | - Jacques Livage
- Sorbonne Universités
- UPMC Univ Paris 06
- CNRS
- UMR 7574
- Laboratoire de Chimie de la Matière Condensée de Paris
| | - Sara A. Bilmes
- Laboratorio de Superficies y Materiales Funcionales INQUIMAE-DQIAQF
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
- Buenos Aires
- Argentina
| | - Matías Jobbágy
- Laboratorio de Superficies y Materiales Funcionales INQUIMAE-DQIAQF
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
- Buenos Aires
- Argentina
| |
Collapse
|
29
|
Perullini M, Orias F, Durrieu C, Jobbágy M, Bilmes SA. Co-encapsulation of Daphnia magna and microalgae in silica matrices, a stepping stone toward a portable microcosm. ACTA ACUST UNITED AC 2014. [PMID: 28626674 PMCID: PMC5466136 DOI: 10.1016/j.btre.2014.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on the first silica encapsulation of a metazoan (Daphnia magna), with a high initial viability (96% of the population remained active 48 h after encapsulation). Moreover, the co-encapsulation of this crustacean and microalgae (Pseudokirchneriella subcapitata) was achieved, creating inside a silica monolith, the smallest microcosm developed to present. This artificial ecosystem in a greatly diminished scale isolated inside a silica nanoporous matrix could have applications in environmental monitoring, allowing ecotoxicity studies to be carried out in portable devices for on-line and in situ pollution level assessment.
Collapse
Affiliation(s)
- Mercedes Perullini
- INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
- Corresponding author. Fax: +54 11 4576 3341
| | - Frédéric Orias
- Université de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 2 Rue Maurice Audin, 69518 Vaulxen-Velin, France
| | - Claude Durrieu
- Université de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 2 Rue Maurice Audin, 69518 Vaulxen-Velin, France
| | - Matías Jobbágy
- INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Sara A. Bilmes
- INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
30
|
Pannier A, Soltmann U, Soltmann B, Altenburger R, Schmitt-Jansen M. Alginate/silica hybrid materials for immobilization of green microalgae Chlorella vulgaris for cell-based sensor arrays. J Mater Chem B 2014; 2:7896-7909. [DOI: 10.1039/c4tb00944d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Perullini M, Ferro Y, Durrieu C, Jobbágy M, Bilmes SA. Sol-gel silica platforms for microalgae-based optical biosensors. J Biotechnol 2014; 179:65-70. [PMID: 24637376 DOI: 10.1016/j.jbiotec.2014.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/06/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
An advanced hybrid biosensing platform with improved optical quality is developed based on the acidic encapsulation of microalgi in silica matrices synthesized by TAFR (tetraethoxysilane derived alcohol free route). The three microalgi (Chlorella vulgaris, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii) were previously immobilized in alginate following the two-step procedure. Tuning the alginate protecting function with the aid of Tris-HCl buffer, the sol-gel synthesis was conducted at pH 4.0 well below the tolerance limit imposed by the encapsulated microalgae. The acidic condensation of Si(IV) generates silica matrices with outstanding optical properties that suit the requirements of biosensors based on optical detection methods.
Collapse
Affiliation(s)
- Mercedes Perullini
- INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina.
| | - Yannis Ferro
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 ENTPE, Université de Lyon, France
| | - Claude Durrieu
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 ENTPE, Université de Lyon, France
| | - Matías Jobbágy
- INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Sara A Bilmes
- INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
32
|
Roach T, Krieger-Liszkay A. Regulation of photosynthetic electron transport and photoinhibition. Curr Protein Pept Sci 2014; 15:351-62. [PMID: 24678670 PMCID: PMC4030316 DOI: 10.2174/1389203715666140327105143] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 01/30/2023]
Abstract
Photosynthetic organisms and isolated photosystems are of interest for technical applications. In nature, photosynthetic electron transport has to work efficiently in contrasting environments such as shade and full sunlight at noon. Photosynthetic electron transport is regulated on many levels, starting with the energy transfer processes in antenna and ending with how reducing power is ultimately partitioned. This review starts by explaining how light energy can be dissipated or distributed by the various mechanisms of non-photochemical quenching, including thermal dissipation and state transitions, and how these processes influence photoinhibition of photosystem II (PSII). Furthermore, we will highlight the importance of the various alternative electron transport pathways, including the use of oxygen as the terminal electron acceptor and cyclic flow around photosystem I (PSI), the latter which seem particularly relevant to preventing photoinhibition of photosystem I. The control of excitation pressure in combination with the partitioning of reducing power influences the light-dependent formation of reactive oxygen species in PSII and in PSI, which may be a very important consideration to any artificial photosynthetic system or technical device using photosynthetic organisms.
Collapse
|