1
|
Fan Y, Li R, Deng X, Li M, Zhou Y, Wu D, Liu G. Sensitive osteoarthritis sensing by salt-induced aggregation and dispersion of gold nanoparticles. Biotechnol Appl Biochem 2024; 71:940-947. [PMID: 38606832 DOI: 10.1002/bab.2588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Osteoarthritis occurs in any joints, and identification in its earlier stages helps to treat the disease and increase the recovery rate. The radiography method and imaging techniques are traditionally used to identify osteoarthritis. But these methods are expensive, and with the complicated steps. Researchers are working toward developing a highly sensitive biosensor in identifying the osteoarthritis biomarker. This research was focused on developing a C-terminal telopeptide of type II collagen (CTX-II) colorimetric sensor with gold nanoparticle (AuNP) for diagnosing osteoarthritis. Anti-CTX-II was conjugated with AuNP and then added with CTX-II and sodium chloride for the color change. In the presence of CTX-II, antibody releases from AuNP then binds with CTX-II, and the color of AuNP changed to purple. Without the CTX-II, AuNP remains its red color (dispersed). This easier colorimetric assay detected the CTX-II as low as 2 ng/mL on linear regression [y = 0.0131x - 0.0051; R2 = 0.9205]. Furthermore, control performances with the relevant proteins osteopontin, IL-6, and nonimmune antibody failed to change the color confirming the specific identification of CTX-II.
Collapse
Affiliation(s)
- Yong Fan
- Orthopedics, The People's Hospital of Renshou County, Renshou, Sichuan, People's Republic of China
| | - Renjie Li
- Orthopedics, The People's Hospital of Renshou County, Renshou, Sichuan, People's Republic of China
| | - Xuekai Deng
- Orthopedics, The People's Hospital of Renshou County, Renshou, Sichuan, People's Republic of China
| | - Ming Li
- Orthopedics, The People's Hospital of Renshou County, Renshou, Sichuan, People's Republic of China
| | - Yu Zhou
- Orthopedics, The People's Hospital of Renshou County, Renshou, Sichuan, People's Republic of China
| | - Dan Wu
- Orthopedics, The People's Hospital of Renshou County, Renshou, Sichuan, People's Republic of China
| | - Gang Liu
- Orthopedics, The People's Hospital of Renshou County, Renshou, Sichuan, People's Republic of China
| |
Collapse
|
2
|
Sun Z, Zhang B, Tu H, Pan C, Chai Y, Chen W. Advances in colorimetric biosensors of exosomes: novel approaches based on natural enzymes and nanozymes. NANOSCALE 2024; 16:1005-1024. [PMID: 38117141 DOI: 10.1039/d3nr05459d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Exosomes are 30-150 nm vesicles derived from diverse cell types, serving as one of the most important biomarkers for early diagnosis and prognosis of diseases. However, the conventional detection method for exosomes faces significant challenges, such as unsatisfactory sensitivity, complicated operation, and the requirement of complicated devices. In recent years, colorimetric exosome biosensors with a visual readout underwent rapid development due to the advances in natural enzyme-based assays and the integration of various types of nanozymes. These synthetic nanomaterials show unique physiochemical properties and catalytic abilities, enabling the construction of exosome colorimetric biosensors with novel principles. This review will illustrate the reaction mechanisms and properties of natural enzymes and nanozymes, followed by a detailed introduction of the recent advances in both types of enzyme-based colorimetric biosensors. A comparison between natural enzymes and nanozymes is made to provide insights into the research that improves the sensitivity and convenience of assays. Finally, the advantages, challenges, and future directions of enzymes as well as exosome colorimetric biosensors are highlighted, aiming at improving the overall performance from different approaches.
Collapse
Affiliation(s)
- Zhonghao Sun
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Binmao Zhang
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Hangjia Tu
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Chuye Pan
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China.
| | - Yujuan Chai
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Wenwen Chen
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Davydova AS, Vorobyeva MA. Aptasensors Based on Non-Enzymatic Peroxidase Mimics: Current Progress and Challenges. BIOSENSORS 2023; 14:1. [PMID: 38275302 PMCID: PMC10813519 DOI: 10.3390/bios14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Immunoassays based on antibodies as recognizing elements and enzymes as signal-generating modules are extensively used now in clinical lab diagnostics, food, and environmental analyses. However, the application of natural enzymes and antibodies has some drawbacks, such as relatively high manufacturing costs, thermal instability, and lot-to-lot variations that lower the reproducibility of results. Oligonucleotide aptamers are able to specifically bind their targets with high affinity and selectivity, so they represent a prospective alternative to protein antibodies for analyte recognition. Their main advantages include thermal stability and long shelf life, cost-efficient chemical synthesis, and negligible batch-to-batch variations. At the same time, a wide variety of non-protein peroxidase mimics are now available that show strong potential to replace protein enzymes. Here, we review and analyze non-protein biosensors that represent a nexus of these two concepts: aptamer-based sensors (aptasensors) with optical detection (colorimetric, luminescent, or fluorescent) based on different peroxidase mimics, such as DNAzymes, nanoparticles, or metal-organic frameworks.
Collapse
Affiliation(s)
- Anna S. Davydova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Akad. Lavrentiev, 8, 630090 Novosibirsk, Russia;
| | | |
Collapse
|
4
|
Chang D, Li J, Liu R, Liu M, Tram K, Schmitt N, Li Y. A Colorimetric Biosensing Platform with Aptamers, Rolling Circle Amplification and Urease-Mediated Litmus Test. Angew Chem Int Ed Engl 2023; 62:e202315185. [PMID: 37903738 DOI: 10.1002/anie.202315185] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Here we report on an ultra-sensitive colorimetric sensing platform that takes advantage of both the strong amplification power of rolling circle amplification (RCA) and the high efficiency of a simple urease-mediated litmus test. The presence of a target triggers the RCA reaction, and urease-labelled DNA can hybridize to the biotinylated RCA products and be immobilized onto streptavidin-coated magnetic beads. The urease-laden beads are then used to hydrolyze urea, leading to an increase in pH that can be detected by a simple litmus test. We show this sensing platform can be easily integrated with aptamers for sensing diverse targets via the detection of human thrombin and platelet-derived growth factor (PDGF) utilizing structure-switching aptamers as well as SARS-CoV-2 in human saliva using a spike-binding trimeric DNA aptamer. Furthermore, we demonstrate that this colorimetric sensing platform can be integrated into a simple paper-based device for sensing applications.
Collapse
Affiliation(s)
- Dingran Chang
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Jiuxing Li
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Rudi Liu
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Meng Liu
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Kha Tram
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Natalie Schmitt
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Yingfu Li
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| |
Collapse
|
5
|
Zhu J, Wang D, Yu H, Yin H, Wang L, Shen G, Geng X, Yang L, Fei Y, Deng Y. Advances in colorimetric aptasensors for heavy metal ion detection utilizing nanomaterials: a comprehensive review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6320-6343. [PMID: 37965993 DOI: 10.1039/d3ay01815f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Heavy metal ion contamination poses significant environmental and health risks, necessitating rapid and efficient detection methods. In the last decade, colorimetric aptasensors have emerged as powerful tools for heavy metal ion detection, owing to their notable attributes such as high specificity, facile synthesis, adaptability to modifications, long-term stability, and heightened sensitivity. This comprehensive overview summarizes the key developments in this field over the past ten years. It discusses the principles, design strategies, and innovative techniques employed in colorimetric aptasensors using nanomaterials. Recent advancements in enhancing sensitivity, selectivity, and on-site applicability are highlighted. The review also presents application studies of successful heavy metal ion detection using colorimetric aptasensors, underlining their potential for environmental monitoring and health protection. Finally, future directions and challenges in the continued evolution of these aptasensors are outlined.
Collapse
Affiliation(s)
- Jiangxiong Zhu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Danfeng Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Hong Yu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Hao Yin
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Lumei Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Guoqing Shen
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Xueqing Geng
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Linnan Yang
- School of Big Data, Yunnan Agricultural University, Kunming 650201, China
| | - Yongcheng Fei
- Eryuan County Inspection and Testing Institute, Yunnan 671299, China
| | - Yun Deng
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
- Eryuan County Inspection and Testing Institute, Yunnan 671299, China
| |
Collapse
|
6
|
Moulahoum H. Dual Chromatic Laser-Printed Microfluidic Paper-Based Analytical Device (μPAD) for the Detection of Atrazine in Water. ACS OMEGA 2023; 8:41194-41203. [PMID: 37970019 PMCID: PMC10633824 DOI: 10.1021/acsomega.3c04387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 11/17/2023]
Abstract
Water pollution caused by pesticides is a significant threat to the environment and human health. Silver and gold nanoparticle (AgNPs, AuNPs)-based biosensors are affordable tools, ideal for environmental monitoring. Microfluidic paper-based devices (μPADs) are a promising approach for on-site testing, but few studies have explored the use of laser printing (LP) for μPAD-based biosensors. This study investigates the feasibility of using laser printing to fabricate paper-based biosensors for pesticide detection in water samples. The μPAD was designed and optimized by using different filter paper porosities, patterns, and channel thicknesses. The developed LP-μPAD was used to sense the pesticide atrazine in water through colorimetric assessments using a smartphone-assisted image analysis. The analytical assessment showed a limit of detection (LOD) of 3.5 and 10.9 μM for AgNPs and AuNPs, respectively. The sensor had high repeatability and reproducibility. The LP-μPAD also demonstrated good recovery and functionality in simulated contaminated water. Furthermore, the detection of pesticides was found to be specific under the influence of interferents, such as NaCl and pH levels. By combining laser printing and nanoparticles, the proposed sensor could contribute to developing effective and low-cost solutions for monitoring water quality that are widely accessible.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department,
Faculty of Science, Ege University, Bornova, Izmir 35040, Turkey
| |
Collapse
|
7
|
Abstract
Rapid qualitative and quantitative detection of Salmonella typhimurium (S. typhimurium) takes an important role in ensuring food safety. Herein, a colorimetric assay aptasensor for S. typhimurium utilizing intrinsic peroxidase-like activity of gold nanoparticles embedded spherical covalent organic framework and the affinity and specificity of S. typhimurium-aptamer has been explored. This aptasensor can capture the S. typhimurium via the selective binding effect of aptamer, and the catalytically active sites were shielded. As a result, the colorimetric signals of the 3,3′,5,5′-tetramethylbenzidine-H2O2 system were turned off. Under optimum conditions, the aptasensor gave a linear response over the range of 10 to 107 CFU/mL for S. typhimurium. The detection limit of 7 CFU/mL was obtained within 45 min and was effectively applied to detect S. typhimurium in milk and lake water samples with recoveries in the range from 96.4 to 101.0%. More importantly, combined with a self-developed smartphone-based image analysis system, the proposed aptasensor can be used for point-of-care testing applications.
Collapse
|
8
|
Gorbenko DA, Shkodenko LA, Rubel MS, Slita AV, Nikitina EV, Martens EA, Kolpashchikov DM. DNA nanomachine for visual detection of structured RNA and double stranded DNA. Chem Commun (Camb) 2022; 58:5395-5398. [PMID: 35415727 DOI: 10.1039/d2cc00325b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Visual detection of ssRNA and dsDNA amplicons was achieved at room temperature without the need for a probe-analyte annealing stage. This approach uses a DNA nanostructure equipped with two analyte-binding arms. Highly selective binding of the third arm leads to the formation of a G-quadruplex structure capable of changing the solution color.
Collapse
Affiliation(s)
- Daria A Gorbenko
- Laboratory of Molecular Robotics and Biosensor Materials, SCAMT Institute, ITMO University, Saint-Petersburg, Russia, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation. .,Ioffe Institute, 26 Politekhnicheskaya, St. Petersburg, 194021, Russian Federation
| | - Liubov A Shkodenko
- Laboratory of Molecular Robotics and Biosensor Materials, SCAMT Institute, ITMO University, Saint-Petersburg, Russia, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation.
| | - Maria S Rubel
- Laboratory of Molecular Robotics and Biosensor Materials, SCAMT Institute, ITMO University, Saint-Petersburg, Russia, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation.
| | - Aleksandr V Slita
- St. Petersburg Pasteur Institute, 14 Mira Str., St. Petersburg, 197101, Russian Federation
| | - Ekaterina V Nikitina
- Pediatric Research and Clinical Center for Infectious Diseases, 9 Prof. Popova Str, Saint Petersburg, 197022, Russian Federation
| | - Elvira A Martens
- Pediatric Research and Clinical Center for Infectious Diseases, 9 Prof. Popova Str, Saint Petersburg, 197022, Russian Federation
| | - Dmitry M Kolpashchikov
- Laboratory of Molecular Robotics and Biosensor Materials, SCAMT Institute, ITMO University, Saint-Petersburg, Russia, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation. .,Chemistry Department, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA.,National Center for Forensic Science, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
9
|
Wang W, You Y, Gunasekaran S. LSPR-based colorimetric biosensing for food quality and safety. Compr Rev Food Sci Food Saf 2021; 20:5829-5855. [PMID: 34601783 DOI: 10.1111/1541-4337.12843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 11/29/2022]
Abstract
Ensuring consistently high quality and safety is paramount to food producers and consumers alike. Wet chemistry and microbiological methods provide accurate results, but those methods are not conducive to rapid, onsite testing needs. Hence, many efforts have focused on rapid testing for food quality and safety, including the development of various biosensors. Herein, we focus on a group of biosensors, which provide visually recognizable colorimetric signals within minutes and can be used onsite. Although there are different ways to achieve visual color-change signals, we restrict our focus on sensors that exploit the localized surface plasmon resonance (LSPR) phenomenon of metal nanoparticles, primarily gold and silver nanoparticles. The typical approach in the design of LSPR biosensors is to conjugate biorecognition ligands on the surface of metal nanoparticles and allow the ligands to specifically recognize and bind the target analyte. This ligand-target binding reaction leads to a change in color of the test sample and a concomitant shift in the ultraviolet-visual absorption peak. Various designs applying this and other signal generation schemes are reviewed with an emphasis on those applied for evaluating factors that compromise the quality and safety of food and agricultural products. The LSPR-based colorimetric biosensing platform is a promising technology for enhancing food quality and safety. Aided by the advances in nanotechnology, this sensing technique lends itself easily for further development on field-deployable platforms such as smartphones for onsite and end-user applications.
Collapse
Affiliation(s)
- Weizheng Wang
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Youngsang You
- Department of Food Engineering, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Sundaram Gunasekaran
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Chang D, Zakaria S, Esmaeili Samani S, Chang Y, Filipe CDM, Soleymani L, Brennan JD, Liu M, Li Y. Functional Nucleic Acids for Pathogenic Bacteria Detection. Acc Chem Res 2021; 54:3540-3549. [PMID: 34478272 DOI: 10.1021/acs.accounts.1c00355] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pathogens have long presented a significant threat to human lives, and hence the rapid detection of infectious pathogens is vital for improving human health. Current detection methods lack the means to detect infectious pathogens in a simple, rapid, and reliable manner at the time and point of need. Functional nucleic acids (FNAs) have the potential to overcome these limitations by acting as key components for point-of-care (POC) biosensors due to their distinctive advantages that include high binding affinities and specificities, excellent chemical stability, ease of synthesis and modification, and compatibility with a variety of signal-amplification and signal-transduction mechanisms.This Account summarizes the work completed in our groups toward developing FNA-based biosensors for detecting bacteria. In vitro selection has led to the isolation of many RNA-cleaving fluorogenic DNAzymes (RFDs) and DNA aptamers that can recognize infectious pathogens, including Escherichia coli, Clostridium difficile, Helicobacter pylori, and Legionella pneumophila. In most cases, a "many-against-many" approach was employed using a DNA library against a crude cellular mixture of an infectious pathogen containing diverse biomarkers as the target to isolate RFDs, with combined counter and positive selections ensuring high specificity toward the desired target. This procedure allows for the isolation of pathogen-specific FNAs without first identifying a suitable biomarker. Multiple target-specific DNA aptamers, including anti-glutamate dehydrogenase (GDH) circular aptamers, anti-degraded toxin B aptamers, and anti-RNase HII aptamers, have also been isolated for the detection of bacteria such as Clostridium difficile. The isolated FNAs have been integrated into fluorescent, colorimetric, and electrochemical biosensors using various signal transduction mechanisms. Both simple-to-use paper-based analytical devices and hand-held electrical devices with integrated FNAs have been developed for POC applications. In addition, signal-amplification strategies, including DNA catenane enabled rolling circle amplification (RCA), DNAzyme feedback RCA, and an all-DNA amplification system using a four-way junction and catalytic hairpin assembly (CHA), have been designed and applied to these systems to further increase their detection sensitivity. The use of these FNA-based biosensors to detect pathogens directly in clinical samples, such as urine, blood, and stool, has now been demonstrated with an outstanding sensitivity of as low as 10 cells per milliliter, highlighting the tremendous potential of using FNA-based sensors in clinical applications. We further describe strategies to overcome the challenges of using FNA-based biosensors in clinical applications, including strategies to improve the stability of FNAs in biological samples and prevent their nonspecific degradation from nucleases and strategies to deal with issues such as signal loss caused by nonspecific binding and biofouling. Finally, the remaining roadblocks for employing FNA-based biosensors in clinical applications are discussed.
Collapse
Affiliation(s)
| | | | | | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | | | | | | | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | | |
Collapse
|
11
|
Muto Y, Hirao G, Zako T. Transcription-Based Amplified Colorimetric Thrombin Sensor Using Non-Crosslinking Aggregation of DNA-Modified Gold Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2021; 21:4318. [PMID: 34202605 PMCID: PMC8272040 DOI: 10.3390/s21134318] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 11/17/2022]
Abstract
Gold nanoparticles (AuNPs) have been employed as colorimetric biosensors due to the color difference between their dispersed (red) and aggregated (blue) states. Although signal amplification reactions triggered by structural changes of the ligands on AuNPs have been widely used to improve measurement sensitivity, the use of ligands is limited. In this study, we designed a AuNP-based signal-amplifying sandwich biosensor, which does not require a conformational change in the ligands. Thrombin was used as a model target, which is recognized by two different probes. In the presence of the target, an extension reaction occurs as a result of hybridization of the two probes. Then RNA synthesis is started by RNA polymerase activation due to RNA promoter duplex formation. The amplified RNA drives aggregation or dispersion of the AuNPs, and a difference of the color if the AuNP solution is observed. As this detection system does not require a conformational change in the ligand, it can be generically applied to a wide range ligands.
Collapse
Affiliation(s)
- Yu Muto
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo, Matsuyama 790-8577, Japan; (Y.M.); (G.H.)
- Tokyo Research Center, TOSOH Corporation, 2743-1 Hayakawa, Ayase 252-1123, Japan
| | - Gen Hirao
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo, Matsuyama 790-8577, Japan; (Y.M.); (G.H.)
| | - Tamotsu Zako
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo, Matsuyama 790-8577, Japan; (Y.M.); (G.H.)
| |
Collapse
|
12
|
Lin KW, Chang YC. Embedded Immunodetection System for Fecal Occult Blood. BIOSENSORS-BASEL 2021; 11:bios11040106. [PMID: 33916834 PMCID: PMC8066604 DOI: 10.3390/bios11040106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
In this paper, a rapid test system with high sensitivity, linearity, and stability is presented for fecal occult blood (FOB) detection. The coloration results of the immune response are used as the basis for the determination of the detection target in combination with an immunochromatographic strip. The rapid test system can be used to detect and calculate the concentration of the sample, so detection of the immune coloration response is more accurate in a quantitative analysis. The system is composed of both hardware and software. The programs used for the analysis and programmed by Python include the main program, polarization calibration, QR Code decoding, Bluetooth transmission, and image processing. After verification of each part of the system, it was found that the rapid test system successfully detects from 0 ng/mL to 400 ng/mL of FOB with coefficients of variation (CV) below 3.7% and 1000 ng/mL with a CV only at 7.41%.
Collapse
Affiliation(s)
| | - Yu-Chi Chang
- Correspondence: ; Tel.: +886-6-275-7575 (ext. 63350)
| |
Collapse
|
13
|
Cozma I, McConnell EM, Brennan JD, Li Y. DNAzymes as key components of biosensing systems for the detection of biological targets. Biosens Bioelectron 2021; 177:112972. [DOI: 10.1016/j.bios.2021.112972] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/11/2022]
|
14
|
Shaban SM, Kim DH. Recent Advances in Aptamer Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:979. [PMID: 33540523 PMCID: PMC7867169 DOI: 10.3390/s21030979] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Recently, aptamers have attracted attention in the biosensing field as signal recognition elements because of their high binding affinity toward specific targets such as proteins, cells, small molecules, and even metal ions, antibodies for which are difficult to obtain. Aptamers are single oligonucleotides generated by in vitro selection mechanisms via the systematic evolution of ligand exponential enrichment (SELEX) process. In addition to their high binding affinity, aptamers can be easily functionalized and engineered, providing several signaling modes such as colorimetric, fluorometric, and electrochemical, in what are known as aptasensors. In this review, recent advances in aptasensors as powerful biosensor probes that could be used in different fields, including environmental monitoring, clinical diagnosis, and drug monitoring, are described. Advances in aptamer-based colorimetric, fluorometric, and electrochemical aptasensing with their advantages and disadvantages are summarized and critically discussed. Additionally, future prospects are pointed out to facilitate the development of aptasensor technology for different targets.
Collapse
Affiliation(s)
- Samy M. Shaban
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Petrochemicals Department, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| |
Collapse
|
15
|
Detection mechanism and classification of design principles of peroxidase mimic based colorimetric sensors: A brief overview. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
A compact nanobody-DNAzyme conjugate enables antigen detection and signal amplification. N Biotechnol 2020; 56:1-8. [DOI: 10.1016/j.nbt.2019.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
|
17
|
Che Sulaiman IS, Chieng BW, Osman MJ, Ong KK, Rashid JIA, Wan Yunus WMZ, Noor SAM, Kasim NAM, Halim NA, Mohamad A. A review on colorimetric methods for determination of organophosphate pesticides using gold and silver nanoparticles. Mikrochim Acta 2020; 187:131. [PMID: 31940088 DOI: 10.1007/s00604-019-3893-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/06/2019] [Indexed: 01/08/2023]
Abstract
This review (with 99 refs.) summarizes the progress that has been made in colorimetric (i.e. spectrophotometric) determination of organophosphate pesticides (OPPs) using gold and silver nanoparticles (NPs). Following an introduction into the field, a first large section covers the types and functions of organophosphate pesticides. Methods for colorimetric (spectrophotometric) measurements including RGB techniques are discussed next. A further section covers the characteristic features of gold and silver-based NPs. Syntheses and modifications of metal NPs are covered in section 5. This is followed by overviews on enzyme inhibition-based assays, aptamer-based assays and chemical (non-enzymatic) assays, and a discussion of specific features of colorimetric assays. Several Tables are presented that give an overview on the wealth of methods and materials. A concluding section addresses current challenges and discusses potential future trends and opportunities. Graphical abstractSchematic representation of organophosphate pesticide determinations based on aggregation of nanoparticles (particular silver or gold nanoparticles). This leads to a color change which can be determined visually and monitored by a red shift in the absorption spectrum.
Collapse
Affiliation(s)
- I S Che Sulaiman
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - B W Chieng
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - M J Osman
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - K K Ong
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia. .,Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia.
| | - J I A Rashid
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - W M Z Wan Yunus
- Centre for Tropicalisation, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - S A M Noor
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - N A M Kasim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia.,Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - N A Halim
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - A Mohamad
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
18
|
Enhanced Colorimetric Signal for Accurate Signal Detection in Paper-Based Biosensors. Diagnostics (Basel) 2020; 10:diagnostics10010028. [PMID: 31936174 PMCID: PMC7167932 DOI: 10.3390/diagnostics10010028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 11/16/2022] Open
Abstract
Paper-based colorimetric biosensors combine the use of paper with colorimetric signal detection. However, they usually demonstrate lower sensitivities because a signal amplification procedure has not been used. Stopping the reaction of colorimetric signal generation is often used in lab-based assays in order to amplify and stabilize the colorimetric signal for detection. In this study, the generation of a stopped colorimetric signal was examined for accurate and enhanced signal detection in paper-based biosensors. The colorimetric reaction in biosensors is usually based on the interaction between the enzyme horseradish peroxidase (HRP) and a selected chromogenic substrate. The two most commonly used HRP substrates, 3,3’,5,5’-tetramethylbenzidine (TMB) and 2’-azinobis (3-ethylbenzothiazoline-6-sulfonic-acid) (ABTS), were compared in terms of their ability to generate a stopped colorimetric signal on membrane. The stopped colorimetric signal was visible for TMB but not for ABTS. Moreover, the generation of stopped colorimetric signal was dependent on the presence of polyvinylidene-difluoride (PVDF) membrane as the separation layer. With PVDF the colorimetric signal (color intensity) was higher (TMB: 126 ± 6 and ABTS: 121 ± 9) in comparison to without PVDF (TMB: 110 ± 2 and ABTS: 102 ± 4). The TMB stopped colorimetric signal demonstrated a more stable signal detection with lower standard deviation values. To conclude, a stopped colorimetric signal can be generated in paper-based biosensors for enhanced and accurate signal detection.
Collapse
|
19
|
Nucleic acid-cleaving catalytic DNA for sensing and therapeutics. Talanta 2020; 211:120709. [PMID: 32070594 DOI: 10.1016/j.talanta.2019.120709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022]
Abstract
DNAzymes with nucleic acid-cleaving catalytic activity are increasing in versatility through concerted efforts to discover new sequences with unique functions, and they are generating excitement in the sensing community as cheap, stable, amplifiable detection elements. This review provides a comprehensive list and detailed descriptions of the DNAzymes identified to date, classified by their associated small molecule or ion needed for catalysis; of note, this classification clarifies conserved regions of various DNAzymes that are not obvious in the literature. Furthermore, we detail the breadth of functionality of these DNA sequences as well as the range of reaction conditions under which they are useful. In addition, the utility of the DNAzymes in a variety of sensing and therapeutic applications is presented, detailing both their advantages and disadvantages.
Collapse
|
20
|
Wu Y, Meng HM, Chen J, Jiang K, Yang R, Li Y, Zhang K, Qu L, Zhang XB, Li Z. Accelerated DNAzyme-based fluorescent nanoprobe for highly sensitive microRNA detection in live cells. Chem Commun (Camb) 2020; 56:470-473. [DOI: 10.1039/c9cc08598j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An accelerated DNAzyme-based fluorescent nanoprobe was developed for rapid and highly sensitive detection of microRNA in live cells.
Collapse
|
21
|
Zhang W, Li J, Salena B, Li Y. A DNA Switch for Detecting Single Nucleotide Polymorphism within a Long DNA Sequence Under Denaturing Conditions. Chemistry 2019; 26:592-596. [PMID: 31475757 DOI: 10.1002/chem.201903536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Indexed: 01/24/2023]
Abstract
DNA detection is usually conducted under nondenaturing conditions to favor the formation of Watson-Crick base-paring interactions. However, although such a setting is excellent for distinguishing a single-nucleotide polymorphism (SNP) within short DNA sequences (15-25 nucleotides), it does not offer a good solution to SNP detection within much longer sequences. Here we report on a new detection method capable of detecting SNP in a DNA sequence containing 35-90 nucleotides. This is achieved through incorporating into the recognition DNA sequence a previously discovered DNA molecule that forms a stable G-quadruplex in the presence of 7 molar urea, a known condition for denaturing DNA structures. The systems are configured to produce both colorimetric and fluorescent signals upon target binding.
Collapse
Affiliation(s)
- Wenqing Zhang
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Jiuxing Li
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Bruno Salena
- Department of Medicine, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Yingfu Li
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
22
|
Hwang K, Mou Q, Lake RJ, Xiong M, Holland B, Lu Y. Metal-Dependent DNAzymes for the Quantitative Detection of Metal Ions in Living Cells: Recent Progress, Current Challenges, and Latest Results on FRET Ratiometric Sensors. Inorg Chem 2019; 58:13696-13708. [PMID: 31364355 PMCID: PMC7176321 DOI: 10.1021/acs.inorgchem.9b01280] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many different metal ions are involved in various biological functions including metallomics and trafficking, and yet there are currently effective sensors for only a few metal ions, despite the first report of metal sensors for calcium more than 40 years ago. To expand upon the number of metal ions that can be probed in biological systems, we and other laboratories employ the in vitro selection method to obtain metal-specific DNAzymes with high specificity for a metal ion and then convert these DNAzymes into fluorescent sensors for these metal ions using a catalytic beacon approach. In this Forum Article, we summarize recent progress made in developing these DNAzyme sensors to probe metal ions in living cells and in vivo, including several challenges that we were able to overcome for this application, such as DNAzyme delivery, spatiotemporal control, and signal amplification. Furthermore, we have identified a key remaining challenge for the quantitative detection of metal ions in living cells and present a new design and the results of a Förster resonance energy transfer (FRET)-based DNAzyme sensor for the ratiometric quantification of Zn2+ in HeLa cells. By converting existing DNAzyme sensors into a ratiometric readout without compromising the fundamental catalytic function of the DNAzymes, this FRET-based ratiometric DNAzyme design can readily be applied to other DNAzyme sensors as a major advance in the field to develop much more quantitative metal-ion probes for biological systems.
Collapse
Affiliation(s)
- Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Quanbing Mou
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Ryan J. Lake
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Mengyi Xiong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Brandalynn Holland
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
23
|
Nedorezova DD, Fakhardo AF, Molden TA, Kolpashchikov DM. Deoxyribozyme‐Based DNA Machines for Cancer Therapy. Chembiochem 2019; 21:607-611. [DOI: 10.1002/cbic.201900525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Daria D. Nedorezova
- Laboratory of Solution Chemistry of Advanced Materials and TechnologiesITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| | - Anna F. Fakhardo
- Laboratory of Solution Chemistry of Advanced Materials and TechnologiesITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| | - Tatiana A. Molden
- Chemistry DepartmentUniversity of Central Florida Orlando FL 32816-2366 USA
| | - Dmitry M. Kolpashchikov
- Chemistry DepartmentUniversity of Central Florida Orlando FL 32816-2366 USA
- Burnett School of Biomedical SciencesUniversity of Central Florida Orlando FL 32816 USA
| |
Collapse
|
24
|
Chang CC, Chen CP, Wu TH, Yang CH, Lin CW, Chen CY. Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E861. [PMID: 31174348 PMCID: PMC6631916 DOI: 10.3390/nano9060861] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022]
Abstract
Gold nanoparticles are popularly used in biological and chemical sensors and their applications owing to their fascinating chemical, optical, and catalytic properties. Particularly, the use of gold nanoparticles is widespread in colorimetric assays because of their simple, cost-effective fabrication, and ease of use. More importantly, the gold nanoparticle sensor response is a visual change in color, which allows easy interpretation of results. Therefore, many studies of gold nanoparticle-based colorimetric methods have been reported, and some review articles published over the past years. Most reviews focus exclusively on a single gold nanoparticle-based colorimetric technique for one analyte of interest. In this review, we focus on the current developments in different colorimetric assay designs for the sensing of various chemical and biological samples. We summarize and classify the sensing strategies and mechanism analyses of gold nanoparticle-based detection. Additionally, typical examples of recently developed gold nanoparticle-based colorimetric methods and their applications in the detection of various analytes are presented and discussed comprehensively.
Collapse
Affiliation(s)
- Chia-Chen Chang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.
| | - Chie-Pein Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| | - Tzu-Heng Wu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | - Ching-Hsu Yang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | - Chii-Wann Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
- Department of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| |
Collapse
|
25
|
Lanchuk YV, Ulasevich SA, Fedotova TA, Kolpashchikov DM, Skorb EV. Towards sustainable diagnostics: replacing unstable H 2O 2 by photoactive TiO 2 in testing systems for visible and tangible diagnostics for use by blind people. RSC Adv 2018; 8:37735-37739. [PMID: 35558580 PMCID: PMC9089394 DOI: 10.1039/c8ra06711b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/31/2018] [Indexed: 11/23/2022] Open
Abstract
Blind and color blind people cannot use colorimetric diagnostics; the problem is especially severe in rural areas where high temperatures and the absence of electricity challenge modern diagnostics. Here we propose to replace the unstable component of a diagnostic test, H2O2, with stable TiO2. Under UV irradiation, TiO2 forms reactive oxygen species that initiate polymerization of acrylamide causing liquid-to-gel transition in an analyte-dependent manner. We demonstrate that specific DNA sequences can be detected using this approach. This development may enable the detection of biological molecules by users with limited resources, for example in developing countries or for travelers in remote areas.
Collapse
Affiliation(s)
- Yulia V Lanchuk
- ITMO University Lomonosova St. 9 191002 St. Petersburg Russian Federation
| | | | | | - Dmitry M Kolpashchikov
- ITMO University Lomonosova St. 9 191002 St. Petersburg Russian Federation
- Chemistry Department University of Central Florida Orlando FL USA
| | - Ekaterina V Skorb
- ITMO University Lomonosova St. 9 191002 St. Petersburg Russian Federation
| |
Collapse
|
26
|
Li W, Chen S, Xu D, Wen Q, Yang T, Liu J. A DNA as a Substrate and an Enzyme: Direct Profiling of Methyltransferase Activity by Cytosine Methylation of a DNAzyme. Chemistry 2018; 24:14500-14505. [DOI: 10.1002/chem.201802822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Wang Li
- Hunan Key Laboratory of Processed Food for Special Medical Purpose; College of Food Science and Engineering; Central South University of Forestry and Technology; Changsha 410004 P. R. China
- Department of Chemistry, Water Institute and Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Siyi Chen
- Hunan Key Laboratory of Processed Food for Special Medical Purpose; College of Food Science and Engineering; Central South University of Forestry and Technology; Changsha 410004 P. R. China
| | - Dong Xu
- Hunan Key Laboratory of Processed Food for Special Medical Purpose; College of Food Science and Engineering; Central South University of Forestry and Technology; Changsha 410004 P. R. China
| | - Qian Wen
- Hunan Key Laboratory of Processed Food for Special Medical Purpose; College of Food Science and Engineering; Central South University of Forestry and Technology; Changsha 410004 P. R. China
| | - Tao Yang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose; College of Food Science and Engineering; Central South University of Forestry and Technology; Changsha 410004 P. R. China
| | - Juewen Liu
- Department of Chemistry, Water Institute and Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
27
|
Hui CY, Liu M, Li Y, Brennan JD. A Paper Sensor Printed with Multifunctional Bio/Nano Materials. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712903] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Christy Y. Hui
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4O3 Canada
| | - Meng Liu
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4O3 Canada
- Department of Biochemistry and Biomedical Sciences; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
- School of Environmental Science and Technology; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education); Dalian University of Technology; Dalian 116024 China
| | - Yingfu Li
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4O3 Canada
- Department of Biochemistry and Biomedical Sciences; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
| | - John D. Brennan
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4O3 Canada
| |
Collapse
|
28
|
Hui CY, Liu M, Li Y, Brennan JD. A Paper Sensor Printed with Multifunctional Bio/Nano Materials. Angew Chem Int Ed Engl 2018; 57:4549-4553. [PMID: 29504183 DOI: 10.1002/anie.201712903] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/12/2018] [Indexed: 01/08/2023]
Abstract
We report a paper-based aptasensor platform that uses two reaction zones and a connecting bridge along with printed multifunctional bio/nano materials to achieve molecular recognition and signal amplification. Upon addition of analyte to the first zone, a fluorescently labelled DNA or RNA aptamer is desorbed from printed graphene oxide, rapidly producing an initial fluorescence signal. The released aptamer then flows to the second zone where it reacts with printed reagents to initiate rolling circle amplification, generating DNA amplicons containing a peroxidase-mimicking DNAzyme, which produces a colorimetric readout that can be read in an equipment-free manner or with a smartphone. The sensor was demonstrated using an RNA aptamer for adenosine triphosphate (a bacterial marker) and a DNA aptamer for glutamate dehydrogenase (Clostridium difficile marker) with excellent sensitivity and specificity. These targets could be detected in spiked serum or feacal samples, demonstrating the potential for testing clinical samples.
Collapse
Affiliation(s)
- Christy Y Hui
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4O3, Canada
| | - Meng Liu
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4O3, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada.,School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4O3, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4O3, Canada
| |
Collapse
|
29
|
Kim SU, Batule BS, Mun H, Byun JY, Shim WB, Kim MG. Colorimetric molecular diagnosis of the HIV gag gene using DNAzyme and a complementary DNA-extended primer. Analyst 2018; 143:695-699. [PMID: 29299545 DOI: 10.1039/c7an01520h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have developed a novel strategy for the colorimetric detection of PCR products by utilizing a target-specific primer modified at the 5'-end with an anti-DNAzyme sequence. A single-stranded DNAzyme sequence folds into a G-quadruplex structure with hemin and shows strong peroxidase activity. When the complementary strand binds to the DNAzyme sequence, it blocks the formation of the G-quadraduplex structure and loses its peroxidase activity. In the presence of the target gene, PCR amplification proceeds, and anti-DNAzyme sequence modified primers present in the reaction mixture form a double strand through primer extension. Therefore, it does not block the DNAzyme sequence. Further, a colorimetric signal is generated by the addition of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and H2O2 at the end of the reaction. We have successfully detected a single copy of the HIV type 1 gag gene in buffer and 10 copies in human serum. The strategy developed could be used to detect DNA and RNA in complex biological samples by simple primer designing that includes DNAzyme and a DNA extended primer.
Collapse
Affiliation(s)
- Seong U Kim
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 261 Chemdan-gwagiro, Gwangju 500-712, Republic of Korea.
| | - Bhagwan S Batule
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Chemdan-gwagiro, Gwangju 500-712, Republic of Korea
| | - Hyoyoung Mun
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Chemdan-gwagiro, Gwangju 500-712, Republic of Korea
| | - Ju-Young Byun
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Chemdan-gwagiro, Gwangju 500-712, Republic of Korea
| | - Won-Bo Shim
- Department of Agricultural Chemistry and Food Science and Technology, Gyeongsang National University, 900 Gajwa-dong Jinju, Gyeongnam 660-701, Republic of Korea
| | - Min-Gon Kim
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 261 Chemdan-gwagiro, Gwangju 500-712, Republic of Korea. and Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Chemdan-gwagiro, Gwangju 500-712, Republic of Korea
| |
Collapse
|
30
|
Fedotova TA, Kolpashchikov DM. Liquid-to-gel transition for visual and tactile detection of biological analytes. Chem Commun (Camb) 2017; 53:12622-12625. [PMID: 29082399 PMCID: PMC5748337 DOI: 10.1039/c7cc07035g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
So far all visual and instrument-free methods have been based on a color change. However, colorimetric assays cannot be used by blind or color-blind people. Here we introduce a liquid-to-gel transition as a general output platform. The signal output (a piece of gel) can be unambiguously distinguished from liquid both visually and by touch. This approach promises to contribute to the development of an accessible environment for visually impaired persons.
Collapse
Affiliation(s)
- Tatiana A Fedotova
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA.
| | | |
Collapse
|
31
|
Zhou W, Saran R, Ding J, Liu J. Two Completely Different Mechanisms for Highly Specific Na + Recognition by DNAzymes. Chembiochem 2017; 18:1828-1835. [PMID: 28658518 DOI: 10.1002/cbic.201700184] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Indexed: 02/06/2023]
Abstract
Our view of the interaction between Na+ and nucleic acids was changed by a few recently discovered Na+ -specific RNA-cleaving DNAzymes. In addition to nonspecific electrostatic interactions, highly specific recognition is also possible. Herein, two such DNAzymes, named EtNa and Ce13d, are compared to elucidate their mechanisms of Na+ binding. Mutation studies indicate that they have different sequence requirements. Phosphorothioate (PS) substitution at the scissile phosphate drops the activity of EtNa 140-fold, and it cannot be rescued by thiophilic Cd2+ or Mn2+ , whereas the activity of PS-modified Ce13d can be rescued. Na+ -dependent activity assays indicate that two Na+ ions bind cooperatively in EtNa, and each Na+ likely interacts with a nonbridging oxygen atom in the scissile phosphate, whereas Ce13d binds only one Na+ ion in a well-defined Na+ aptamer, and this Na+ ion does not directly interact with the scissile phosphate. Both DNAzymes display a normal pH-rate profile, with a single deprotonation reaction required for catalysis. For EtNa, Na+ fails to protect the conserved nucleotides from dimethyl sulfate attack, and no specific Na+ binding is detected by 2-aminopurine fluorescence, both of which are different from those observed for Ce13d. This work suggests that EtNa binds Na+ mainly through its scissile phosphate without significant involvement of the nucleotides in the enzyme strand, whereas Ce13d has a well-defined aptamer for Na+ binding. Therefore, DNA has at least two distinct ways to achieve highly selective Na+ binding.
Collapse
Affiliation(s)
- Wenhu Zhou
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.,Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Runjhun Saran
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Juewen Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
32
|
Functional nucleic acids as in vivo metabolite and ion biosensors. Biosens Bioelectron 2017; 94:94-106. [DOI: 10.1016/j.bios.2017.02.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 12/27/2022]
|
33
|
Farzin L, Shamsipur M, Sheibani S. A review: Aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals. Talanta 2017; 174:619-627. [PMID: 28738631 DOI: 10.1016/j.talanta.2017.06.066] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 12/21/2022]
Abstract
Recent developments in biotechnology offer the new methods for the sensitive detection of heavy metals based on the affinity and specificity of aptamers, as nucleic acid ligands selected from random sequence pools in vitro. Heavy metals have received considerable importance as the most toxic metallic pollutants which may cause serious environmental damages. They are classified as trace elements because of their presence in trace concentrations in various environmental matrices. Thus, the precise and sensitive methods to detect heavy metals are important to ensure human and environment safety. Aptamers as the biological probes, show high binding affinity which can often be directly translated into high detection sensitivity. On the other hand, high selectivity and stability make them possible to detect a wide range of targets, especially metallic ions. This review provides current progress of aptamers for environmental and biological monitoring of heavy metals using the nanomaterials mainly in two groups: (i) aptamer based biosensors (aptasensors) and (ii) aptamer based biosorbents (aptasorbents). The introduction of nanomaterials can efficiently increase the immobilization quantity of aptamers. Furthermore, they play an important role in the orientation and assembly density controlling of aptamers for the optimized recognition ability.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-3486, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, P.O. Box 67149-67346, Kermanshah, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-3486, Tehran, Iran
| |
Collapse
|