1
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Krysenko S. Current Approaches for Genetic Manipulation of Streptomyces spp.-Key Bacteria for Biotechnology and Environment. BIOTECH 2025; 14:3. [PMID: 39846552 PMCID: PMC11755657 DOI: 10.3390/biotech14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025] Open
Abstract
Organisms from the genus Streptomyces feature actinobacteria with complex developmental cycles and a great ability to produce a variety of natural products. These soil bacteria produce more than 2/3 of antibiotics used in medicine, and a large variety of bioactive compounds for industrial, medical and agricultural use. Although Streptomyces spp. have been studied for decades, the engineering of these bacteria remains challenging, and the available genetic tools are rather limited. Furthermore, most biosynthetic gene clusters in these bacteria are silent and require strategies to activate them and exploit their production potential. In order to explore, understand and manipulate the capabilities of Streptomyces spp. as a key bacterial for biotechnology, synthetic biology strategies emerged as a valuable component of Streptomyces research. Recent advancements in strategies for genetic manipulation of Streptomyces involving proposals of a large variety of synthetic components for the genetic toolbox, as well as new approaches for genome mining, assembly of genetic constructs and their delivery into the cell, allowed facilitation of the turnaround time of strain engineering and efficient production of new natural products at an industrial scale, but still have strain- and design-dependent limitations. A new perspective offered recently by technical advances in DNA sequencing, analysis and editing proposed strategies to overcome strain- and construct-specific difficulties in the engineering of Streptomyces. In this review, challenges and recent developments of approaches for Streptomyces engineering are discussed, an overview of novel synthetic biology strategies is provided and examples of successful application of new technologies in molecular genetic engineering of Streptomyces are highlighted.
Collapse
Affiliation(s)
- Sergii Krysenko
- Valent BioSciences, Biorational Research Center, 1910 Innovation Way, Suite 100, Libertyville, IL 60048, USA
| |
Collapse
|
3
|
Feng S, Xiao W, Yu Y, Liu G, Zhang Y, Chen T, Lu C. Linker-Mediated Inactivation of the SAM-II Domain in the Tandem SAM-II/SAM-V Riboswitch. Int J Mol Sci 2024; 25:11288. [PMID: 39457069 PMCID: PMC11508383 DOI: 10.3390/ijms252011288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Tandem SAM-II/SAM-V riboswitch belongs to a class of riboswitches found in the marine bacterium 'Candidatus Pelagibacter ubique'. Previous studies have demonstrated that these riboswitches have the potential for digital modulation of gene expression at both the transcriptional and translational levels. In this study, we investigate the conformational changes in the tandem SAM-II/SAM-V riboswitch binding to S-adenosylmethionine (SAM) using selective 2'-hydroxyl acylation analyzed by the primer extension (SHAPE) assay, small-angle X-ray scattering (SAXS), and oligos depressing probing. Our findings reveal that the linker between SAM-II/SAM-V aptamers blocks the SAM response of the SAM-II domain. This result proposes a new mechanism for gene expression regulation, where the ligand-binding functions of tandem riboswitches can be selectively masked or released through a linker.
Collapse
Affiliation(s)
- Shanshan Feng
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Wenwen Xiao
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Yingying Yu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
| | - Yunlong Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Ting Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Changrui Lu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| |
Collapse
|
4
|
Huang H, Lin Z, He D, Hong L, Li Y. RiboDiffusion: tertiary structure-based RNA inverse folding with generative diffusion models. Bioinformatics 2024; 40:i347-i356. [PMID: 38940178 PMCID: PMC11211841 DOI: 10.1093/bioinformatics/btae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
MOTIVATION RNA design shows growing applications in synthetic biology and therapeutics, driven by the crucial role of RNA in various biological processes. A fundamental challenge is to find functional RNA sequences that satisfy given structural constraints, known as the inverse folding problem. Computational approaches have emerged to address this problem based on secondary structures. However, designing RNA sequences directly from 3D structures is still challenging, due to the scarcity of data, the nonunique structure-sequence mapping, and the flexibility of RNA conformation. RESULTS In this study, we propose RiboDiffusion, a generative diffusion model for RNA inverse folding that can learn the conditional distribution of RNA sequences given 3D backbone structures. Our model consists of a graph neural network-based structure module and a Transformer-based sequence module, which iteratively transforms random sequences into desired sequences. By tuning the sampling weight, our model allows for a trade-off between sequence recovery and diversity to explore more candidates. We split test sets based on RNA clustering with different cut-offs for sequence or structure similarity. Our model outperforms baselines in sequence recovery, with an average relative improvement of 11% for sequence similarity splits and 16% for structure similarity splits. Moreover, RiboDiffusion performs consistently well across various RNA length categories and RNA types. We also apply in silico folding to validate whether the generated sequences can fold into the given 3D RNA backbones. Our method could be a powerful tool for RNA design that explores the vast sequence space and finds novel solutions to 3D structural constraints. AVAILABILITY AND IMPLEMENTATION The source code is available at https://github.com/ml4bio/RiboDiffusion.
Collapse
Affiliation(s)
- Han Huang
- Department of Computer Science and Engineering, CUHK, Hong Kong SAR, 999077, China
- School of Computer Science and Engineering, Beihang University, Beijing, 100191, China
| | - Ziqian Lin
- Department of Computer Science and Engineering, CUHK, Hong Kong SAR, 999077, China
- School of Artificial Intelligence, Nanjing University, Nanjing, 210023, China
| | - Dongchen He
- Department of Computer Science and Engineering, CUHK, Hong Kong SAR, 999077, China
| | - Liang Hong
- Department of Computer Science and Engineering, CUHK, Hong Kong SAR, 999077, China
| | - Yu Li
- Department of Computer Science and Engineering, CUHK, Hong Kong SAR, 999077, China
| |
Collapse
|
5
|
Peng A, Yin G, Zuo W, Zhang L, Du G, Chen J, Wang Y, Kang Z. Regulatory RNAs in Bacillus subtilis: A review on regulatory mechanism and applications in synthetic biology. Synth Syst Biotechnol 2024; 9:223-233. [PMID: 38385150 PMCID: PMC10877136 DOI: 10.1016/j.synbio.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Bacteria exhibit a rich repertoire of RNA molecules that intricately regulate gene expression at multiple hierarchical levels, including small RNAs (sRNAs), riboswitches, and antisense RNAs. Notably, the majority of these regulatory RNAs lack or have limited protein-coding capacity but play pivotal roles in orchestrating gene expression by modulating transcription, post-transcription or translation processes. Leveraging and redesigning these regulatory RNA elements have emerged as pivotal strategies in the domains of metabolic engineering and synthetic biology. While previous investigations predominantly focused on delineating the roles of regulatory RNA in Gram-negative bacterial models such as Escherichia coli and Salmonella enterica, this review aims to summarize the mechanisms and functionalities of endogenous regulatory RNAs inherent to typical Gram-positive bacteria, notably Bacillus subtilis. Furthermore, we explore the engineering and practical applications of these regulatory RNA elements in the arena of synthetic biology, employing B. subtilis as a foundational chassis.
Collapse
Affiliation(s)
- Anqi Peng
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guobin Yin
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wenjie Zuo
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Luyao Zhang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yang Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhen Kang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
6
|
Berzal-Herranz A, Romero-López C. Aptamers' Potential to Fill Therapeutic and Diagnostic Gaps. Pharmaceuticals (Basel) 2024; 17:105. [PMID: 38256938 PMCID: PMC10818422 DOI: 10.3390/ph17010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
More than 30 years ago, in 1990, three independent research groups published several papers demonstrating that genetics could be performed in vitro in the absence of living organisms or cells [...].
Collapse
Affiliation(s)
- Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas. PTS Granada, Av. del Conocimiento 17, 18016 Granada, Spain
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas. PTS Granada, Av. del Conocimiento 17, 18016 Granada, Spain
| |
Collapse
|
7
|
Wu Y, Zhu L, Zhang Y, Xu W. Multidimensional Applications and Challenges of Riboswitches in Biosensing and Biotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304852. [PMID: 37658499 DOI: 10.1002/smll.202304852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Riboswitches have received significant attention over the last two decades for their multiple functionalities and great potential for applications in various fields. This article highlights and reviews the recent advances in biosensing and biotherapy. These fields involve a wide range of applications, such as food safety detection, environmental monitoring, metabolic engineering, live cell imaging, wearable biosensors, antibacterial drug targets, and gene therapy. The discovery, origin, and optimization of riboswitches are summarized to help readers better understand their multidimensional applications. Finally, this review discusses the multidimensional challenges and development of riboswitches in order to further expand their potential for novel applications.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
8
|
Lee HK, Lee YT, Fan L, Wilt HM, Conrad CE, Yu P, Zhang J, Shi G, Ji X, Wang YX, Stagno JR. Crystal structure of Escherichia coli thiamine pyrophosphate-sensing riboswitch in the apo state. Structure 2023; 31:848-859.e3. [PMID: 37253356 PMCID: PMC10335363 DOI: 10.1016/j.str.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023]
Abstract
The thiamine pyrophosphate (TPP)-sensing riboswitch is one of the earliest discovered and most widespread riboswitches. Numerous structural studies have been reported for this riboswitch bound with various ligands. However, the ligand-free (apo) structure remains unknown. Here, we report a 3.1 Å resolution crystal structure of Escherichia coli TPP riboswitch in the apo state, which exhibits an extended, Y-shaped conformation further supported by small-angle X-ray scattering data and driven molecular dynamics simulations. The loss of ligand interactions results in helical uncoiling of P5 and disruption of the key tertiary interaction between the sensory domains. Opening of the aptamer propagates to the gene-regulatory P1 helix and generates the key conformational flexibility needed for the switching behavior. Much of the ligand-binding site at the three-way junction is unaltered, thereby maintaining a partially preformed pocket. Together, these results paint a dynamic picture of the ligand-induced conformational changes in TPP riboswitches that confer conditional gene regulation.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-Ray Scattering Core Facility of National Cancer Institute, Frederick, MD 21702, USA
| | - Haley M Wilt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Chelsie E Conrad
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Genbin Shi
- Biomolecular Structure Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Xinhua Ji
- Biomolecular Structure Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
9
|
Zhou T, Dai N, Li S, Ward M, Mathews DH, Huang L. RNA design via structure-aware multifrontier ensemble optimization. Bioinformatics 2023; 39:i563-i571. [PMID: 37387188 DOI: 10.1093/bioinformatics/btad252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION RNA design is the search for a sequence or set of sequences that will fold to desired structure, also known as the inverse problem of RNA folding. However, the sequences designed by existing algorithms often suffer from low ensemble stability, which worsens for long sequence design. Additionally, for many methods only a small number of sequences satisfying the MFE criterion can be found by each run of design. These drawbacks limit their use cases. RESULTS We propose an innovative optimization paradigm, SAMFEO, which optimizes ensemble objectives (equilibrium probability or ensemble defect) by iterative search and yields a very large number of successfully designed RNA sequences as byproducts. We develop a search method which leverages structure level and ensemble level information at different stages of the optimization: initialization, sampling, mutation, and updating. Our work, while being less complicated than others, is the first algorithm that is able to design thousands of RNA sequences for the puzzles from the Eterna100 benchmark. In addition, our algorithm solves the most Eterna100 puzzles among all the general optimization based methods in our study. The only baseline solving more puzzles than our work is dependent on handcrafted heuristics designed for a specific folding model. Surprisingly, our approach shows superiority on designing long sequences for structures adapted from the database of 16S Ribosomal RNAs. AVAILABILITY AND IMPLEMENTATION Our source code and data used in this article is available at https://github.com/shanry/SAMFEO.
Collapse
Affiliation(s)
- Tianshuo Zhou
- School of Electrical Engineering and Computer Science, Oregon State University, Corvalli OR 97330, United States
| | - Ning Dai
- School of Electrical Engineering and Computer Science, Oregon State University, Corvalli OR 97330, United States
| | - Sizhen Li
- School of Electrical Engineering and Computer Science, Oregon State University, Corvalli OR 97330, United States
| | - Max Ward
- Department of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia
| | - David H Mathews
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, United States
- Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, United States
- Department of Biostatistics & Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Liang Huang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvalli OR 97330, United States
| |
Collapse
|
10
|
Eladl O, Yamaoki Y, Kondo K, Nagata T, Katahira M. Detection of interaction between an RNA aptamer and its target compound in living human cells using 2D in-cell NMR. Chem Commun (Camb) 2022; 59:102-105. [PMID: 36475447 DOI: 10.1039/d2cc05576g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We introduced an isotopically labeled RNA aptamer for HIV-1 Tat prepared by E. coli transcription into HeLa cells. We successfully recorded the first heteronuclear 2D in-cell NMR spectra, which makes it possible to study the interaction of the RNA aptamer with argininamide in living human cells with higher resolution.
Collapse
Affiliation(s)
- Omar Eladl
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. .,Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan.,Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Yudai Yamaoki
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. .,Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Keiko Kondo
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. .,Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. .,Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
Vikram, Mishra V, Rana A, Ahire JJ. Riboswitch-mediated regulation of riboflavin biosynthesis genes in prokaryotes. 3 Biotech 2022; 12:278. [PMID: 36275359 PMCID: PMC9474784 DOI: 10.1007/s13205-022-03348-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/02/2022] [Indexed: 11/01/2022] Open
Abstract
Prokaryotic organisms frequently use riboswitches to quantify intracellular metabolite concentration via high-affinity metabolite receptors. Riboswitches possess a metabolite-sensing system that controls gene regulation in a cis-acting fashion at the initiation of transcriptional/translational level by binding with a specific metabolite and controlling various biochemical pathways. Riboswitch binds with flavin mononucleotide (FMN), a phosphorylated form of riboflavin and controls gene expression involved in riboflavin biosynthesis and transport pathway. The first step of the riboflavin biosynthesis pathway is initiated by the conversion of guanine nucleotide triphosphate (GTP), which is an intermediate of the purine biosynthesis pathway. An alternative pentose phosphate pathway of riboflavin biosynthesis includes the enzymatic conversion of ribulose-5-phosphate into 3, 4 dihydroxy-2-butanone-4-phosphates by DHBP synthase. The product of ribAB interferes with both GTP cyclohydrolase II as well as DHBP synthase activities, which catalyze the cleavage of GTP and converts DHBP Ribu5P in the initial steps of both riboflavin biosynthesis branches. Riboswitches are located in the 5' untranslated region (5' UTR) of messenger RNAs and contain an aptamer domain (highly conserved in sequence) where metabolite binding leads to a conformational change in an aptamer domain, which modulate the regulation of gene expression located on bacterial mRNA. In this review, we focus on how riboswitch regulates the riboflavin biosynthesis pathway in Bacillus subtilis and Lactobacillus plantarum.
Collapse
Affiliation(s)
- Vikram
- Department of Basic and Applied Sciences, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Sonipat, Haryana India
| | - Vijendra Mishra
- Department of Basic and Applied Sciences, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Sonipat, Haryana India
| | - Ananya Rana
- Department of Basic and Applied Sciences, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Sonipat, Haryana India
| | - Jayesh J. Ahire
- Centre for Research and Development, Unique Biotech Ltd., Plot No. 2, Phase II, MN Park, Hyderabad, Telangana India
| |
Collapse
|
12
|
Harbaugh SV, Silverman AD, Chushak YG, Zimlich K, Wolfe M, Thavarajah W, Jewett MC, Lucks JB, Chávez JL. Engineering a Synthetic Dopamine-Responsive Riboswitch for In Vitro Biosensing. ACS Synth Biol 2022; 11:2275-2283. [PMID: 35775197 DOI: 10.1021/acssynbio.1c00560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The detection of chemicals using natural allosteric transcription factors is a powerful strategy for point-of-use molecular sensing, particularly using fieldable cell-free gene expression (CFE) systems. However, the reliance of detection schemes on characterized protein-based sensors limits the number of measurable analytes. One alternative solution to this issue is to develop new sensors by generating RNA aptamers against the target analyte and then incorporating them directly into a riboswitch scaffold for ligand-inducible genetic control of a reporter protein. However, this strategy has not generated more than a handful of successful portable cell-free molecular sensors. To address this gap, here we convert dopamine-binding aptamers into functional dopamine-sensing riboswitches that regulate gene expression in a freeze-dried CFE reaction. We then develop an assay for direct detection and semi-quantification of dopamine in human urine. We anticipate that this work will be broadly applicable for converting many in vitro-generated RNA aptamers into fieldable molecular diagnostics.
Collapse
Affiliation(s)
- Svetlana V Harbaugh
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Adam D Silverman
- Sherlock Biosciences, Boston, Massachusetts 02135, United States
| | - Yaroslav G Chushak
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States.,Henry M. Jackson Foundation, Dayton, Ohio 45433, United States
| | - Kathryn Zimlich
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States.,Henry M. Jackson Foundation, Dayton, Ohio 45433, United States
| | - Monica Wolfe
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States.,UES, Inc., Dayton, Ohio 45432, United States
| | - Walter Thavarajah
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States.,International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States.,International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Jorge L Chávez
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| |
Collapse
|
13
|
An allosteric ribozyme generator and an inverse folding ribozyme generator: Two computer programs for automated computational design of oligonucleotide-sensing allosteric hammerhead ribozymes with YES Boolean logic function based on experimentally validated algorithms. Comput Biol Med 2022; 145:105469. [DOI: 10.1016/j.compbiomed.2022.105469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 11/18/2022]
|
14
|
Zhou S, Alper HS, Zhou J, Deng Y. Intracellular biosensor-based dynamic regulation to manipulate gene expression at the spatiotemporal level. Crit Rev Biotechnol 2022; 43:646-663. [PMID: 35450502 DOI: 10.1080/07388551.2022.2040415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of intracellular, biosensor-based dynamic regulation strategies to regulate and improve the production of useful compounds have progressed significantly over previous decades. By employing such an approach, it is possible to simultaneously realize high productivity and optimum growth states. However, industrial fermentation conditions contain a mixture of high- and low-performance non-genetic variants, as well as young and aged cells at all growth phases. Such significant individual variations would hinder the precise controlling of metabolic flux at the single-cell level to achieve high productivity at the macroscopic population level. Intracellular biosensors, as the regulatory centers of metabolic networks, can real-time sense intra- and extracellular conditions and, thus, could be synthetically adapted to balance the biomass formation and overproduction of compounds by individual cells. Herein, we highlight advances in the designing and engineering approaches to intracellular biosensors. Then, the spatiotemporal properties of biosensors associated with the distribution of inducers are compared. Also discussed is the use of such biosensors to dynamically control the cellular metabolic flux. Such biosensors could achieve single-cell regulation or collective regulation goals, depending on whether or not the inducer distribution is only intracellular.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.,McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
15
|
Advanced Design of Structural RNAs Using RNARedPrint. Methods Mol Biol 2021. [PMID: 33835434 DOI: 10.1007/978-1-0716-1307-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
RNA design addresses the need to build novel RNAs, e.g., for biotechnological applications in synthetic biology, equipped with desired functional properties. This chapter describes how to use the software RNARedPrint for the de novo rational design of RNA sequences adopting one or several desired secondary structures. Depending on the application, these structures could represent alternate configurations or kinetic pathways. The software makes such design convenient and sufficiently fast for practical routine, where it even overcomes notorious problems in the application of RNA design, e.g., it maintains realistic GC content.
Collapse
|
16
|
Liu Y, Yuan H, Ding D, Dong H, Wang Q, Zhang D. Establishment of a Biosensor-based High-Throughput Screening Platform for Tryptophan Overproduction. ACS Synth Biol 2021; 10:1373-1383. [PMID: 34081459 DOI: 10.1021/acssynbio.0c00647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the flexibility to fold into complex structures, RNA is well-suited to act as a cellular sensor to recognize environmental fluctuations and respond to changes by regulating the corresponding genes. In this study, we established a high-throughput screening platform to screen tryptophan high-producing strains from a large repertoire of candidate strains. This platform consists of a tryptophan-specific aptamer-based biosensor and fluorescence-activated droplet sorting technology. One mutant strain, with a 165.9% increase in Trp titer compared with the parental strain, was successfully screened from a random mutagenesis library. Sequencing results revealed that a total of 10 single-nucleotide polymorphisms were discovered in the genome of the mutant strain, among which CRP(T29K) was proven to significantly increase Trp production through improving the strain's tolerance of the harsh environment during the stationary phase of the fermentation process. Our results indicate that this strategy has great potential for improving the production of other amino acids in Escherichia coli.
Collapse
Affiliation(s)
- Yongfei Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, China
| | - Huiling Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, China
| | - Dongqin Ding
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, China
| | - Huina Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, China
| |
Collapse
|
17
|
Translational control of enzyme scavenger expression with toxin-induced micro RNA switches. Sci Rep 2021; 11:2462. [PMID: 33510250 PMCID: PMC7844233 DOI: 10.1038/s41598-021-81679-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/08/2021] [Indexed: 12/19/2022] Open
Abstract
Biological computation requires in vivo control of molecular behavior to progress development of autonomous devices. miRNA switches represent excellent, easily engineerable synthetic biology tools to achieve user-defined gene regulation. Here we present the construction of a synthetic network to implement detoxification functionality. We employed a modular design strategy by engineering toxin-induced control of an enzyme scavenger. Our miRNA switch results show moderate synthetic expression control over a biologically active detoxification enzyme molecule, using an established design protocol. However, following a new design approach, we demonstrated an evolutionarily designed miRNA switch to more effectively activate enzyme activity than synthetically designed versions, allowing markedly improved extrinsic user-defined control with a toxin as inducer. Our straightforward new design approach is simple to implement and uses easily accessible web-based databases and prediction tools. The ability to exert control of toxicity demonstrates potential for modular detoxification systems that provide a pathway to new therapeutic and biocomputing applications.
Collapse
|
18
|
Chushak Y, Harbaugh S, Zimlich K, Alfred B, Chávez J, Kelley-Loughnane N. Characterization of synthetic riboswitch in cell-free protein expression systems. RNA Biol 2021; 18:1727-1738. [PMID: 33427029 DOI: 10.1080/15476286.2020.1868149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Riboswitches are RNA-based regulatory elements that utilize ligand-induced structural changes in the 5'-untranslated region of mRNA to regulate the expression of associated genes. The majority of synthetic riboswitches have been selected and tested in cell-based systems. Cell-free protein expression systems (CFPS) have several advantages for the development and testing of synthetic riboswitches, including eliminating interactions with complex cellular networks, and the decoupling of transcription and translation processes. To gain a better understanding of the riboswitch regulatory mechanism, to allow for more efficient riboswitch optimization and use for biosensing applications, we studied the performance of a theophylline-responsive synthetic riboswitch coupled with the superfolder green fluorescent protein (sfGFP) reporter gene in E. coli cellular extract and PURE cell-free systems. To monitor the mRNA dynamics, a malachite green aptamer sequence was added to the 3'-untranslated region of sfGFP mRNA. Performance of the theophylline riboswitch was compared with a constitutively expressed sfGFP (control). Transcription dynamics of the riboswitch mRNA was very similar to the transcription of the control mRNA for all theophylline concentrations tested in both E. coli extract and PURE CFPS. However, sfGFP expression in the riboswitch construct was one order of magnitude lower, even at the highest concentration of theophylline. A mathematical model of riboswitch activation governed by the kinetic trapping mechanism was developed. Two factors - a reduced fraction of mRNA in the 'ON' state and a considerably lower translation initiation rate in the riboswitch - contribute to the much lower level of protein expression in the theophylline riboswitch compared to the control construct.
Collapse
Affiliation(s)
- Yaroslav Chushak
- Air Force Research Laboratory, Henry M Jackson Foundation, Dayton, USA.,711 Human Performance Wing, Air Force Research Laboratory, Dayton, OH, USA
| | - Svetlana Harbaugh
- 711 Human Performance Wing, Air Force Research Laboratory, Dayton, OH, USA
| | - Kathryn Zimlich
- Air Force Research Laboratory, Henry M Jackson Foundation, Dayton, USA.,711 Human Performance Wing, Air Force Research Laboratory, Dayton, OH, USA
| | - Bryan Alfred
- 711 Human Performance Wing, Air Force Research Laboratory, Dayton, OH, USA
| | - Jorge Chávez
- 711 Human Performance Wing, Air Force Research Laboratory, Dayton, OH, USA
| | | |
Collapse
|
19
|
Broft P, Dzatko S, Krafcikova M, Wacker A, Hänsel‐Hertsch R, Dötsch V, Trantirek L, Schwalbe H. In-Cell NMR Spectroscopy of Functional Riboswitch Aptamers in Eukaryotic Cells. Angew Chem Int Ed Engl 2021; 60:865-872. [PMID: 32975353 PMCID: PMC7839747 DOI: 10.1002/anie.202007184] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/22/2020] [Indexed: 12/14/2022]
Abstract
We report here the in-cell NMR-spectroscopic observation of the binding of the cognate ligand 2'-deoxyguanosine to the aptamer domain of the bacterial 2'-deoxyguanosine-sensing riboswitch in eukaryotic cells, namely Xenopus laevis oocytes and in human HeLa cells. The riboswitch is sufficiently stable in both cell types to allow for detection of binding of the ligand to the riboswitch. Most importantly, we show that the binding mode established by in vitro characterization of this prokaryotic riboswitch is maintained in eukaryotic cellular environment. Our data also bring important methodological insights: Thus far, in-cell NMR studies on RNA in mammalian cells have been limited to investigations of short (<15 nt) RNA fragments that were extensively modified by protecting groups to limit their degradation in the intracellular space. Here, we show that the in-cell NMR setup can be adjusted for characterization of much larger (≈70 nt) functional and chemically non-modified RNA.
Collapse
Affiliation(s)
- P. Broft
- Center for Biomolecular Magnetic Resonance (BMRZ)Institute for Organic Chemistry and Chemical BiologyGoethe UniversityMax-von-Laue-Str. 760438Frankfurt/M.Germany
| | - S. Dzatko
- National Centre for Biomolecular ResearchMasaryk UniversityKamenice 5625 00BrnoCzech Republic
- Central European Institute of Technology (CEITEC)Masaryk UniversityKamenice 753/5625 00BrnoCzech Republic
| | - M. Krafcikova
- National Centre for Biomolecular ResearchMasaryk UniversityKamenice 5625 00BrnoCzech Republic
- Institute of BiophysicsCzech Academy of SciencesKralovopolska 135612 65BrnoCzech Republic
| | - A. Wacker
- Center for Biomolecular Magnetic Resonance (BMRZ)Institute for Organic Chemistry and Chemical BiologyGoethe UniversityMax-von-Laue-Str. 760438Frankfurt/M.Germany
| | - Robert Hänsel‐Hertsch
- Present address: Center for Molecular Medicine CologneRobert-Koch-Str. 2150931CologneGermany
| | - Volker Dötsch
- Center for Biomolecular Magnetic Resonance (BMRZ)Institute of Biophysical ChemistryGoethe UniversityMax-von-Laue-Str. 960438Frankfurt/M.Germany
| | - L. Trantirek
- Central European Institute of Technology (CEITEC)Masaryk UniversityKamenice 753/5625 00BrnoCzech Republic
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ)Institute for Organic Chemistry and Chemical BiologyGoethe UniversityMax-von-Laue-Str. 760438Frankfurt/M.Germany
| |
Collapse
|
20
|
Drogalis LK, Batey RT. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli. PLoS One 2020; 15:e0243155. [PMID: 33259551 PMCID: PMC7707468 DOI: 10.1371/journal.pone.0243155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/16/2020] [Indexed: 11/18/2022] Open
Abstract
Riboswitches, generally located in the 5'-leader of bacterial mRNAs, direct expression via a small molecule-dependent structural switch that informs the transcriptional or translational machinery. While the structure and function of riboswitch effector-binding (aptamer) domains have been intensely studied, only recently have the requirements for efficient linkage between small molecule binding and the structural switch in the cellular and co-transcriptional context begun to be actively explored. To address this aspect of riboswitch function, we have performed a structure-guided mutagenic analysis of the B. subtilis pbuE adenine-responsive riboswitch, one of the simplest riboswitches that employs a strand displacement switching mechanism to regulate transcription. Using a cell-based fluorescent protein reporter assay to assess ligand-dependent regulatory activity in E. coli, these studies revealed previously unrecognized features of the riboswitch. Within the aptamer domain, local and long-range conformational dynamics influenced by sequences within helices have a significant effect upon efficient regulatory switching. Sequence features of the expression platform including the pre-aptamer leader sequence, a toehold helix and an RNA polymerase pause site all serve to promote strong ligand-dependent regulation. By optimizing these features, we were able to improve the performance of the B. subtilis pbuE riboswitch in E. coli from 5.6-fold induction of reporter gene expression by the wild type riboswitch to over 120-fold in the top performing designed variant. Together, these data point to sequence and structural features distributed throughout the riboswitch required to strike a balance between rates of ligand binding, transcription and secondary structural switching via a strand exchange mechanism and yield new insights into the design of artificial riboswitches.
Collapse
MESH Headings
- Adenine/metabolism
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/metabolism
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Escherichia coli K12/genetics
- Genes, Reporter
- Genetic Variation
- Ligands
- Models, Genetic
- Models, Molecular
- Mutagenesis
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- Riboswitch/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Lea K. Drogalis
- Department of Biochemistry, University of Colorado, Boulder, Colorado, United States of America
| | - Robert T. Batey
- Department of Biochemistry, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
21
|
Abbadi M, Spurgeon S, Warren M, Khan N, Kräutler B. Using sliding mode observers to estimate BtuB concentration from measured vitamin B 12 concentration. IET Syst Biol 2020; 14:334-342. [PMID: 33399097 PMCID: PMC8687388 DOI: 10.1049/iet-syb.2020.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/11/2020] [Accepted: 08/03/2020] [Indexed: 11/20/2022] Open
Abstract
A simple model for the B12-riboswitch regulatory network in Escherichia coli is first described and the same analysis is applied when changing the strain to Salmonella enterica. Model validation is undertaken by linking the dynamics of the riboswitch model to bacterial growth and comparing the results obtained with in vivo experimental measurements. Measurements of bacterial growth are relatively straightforward to obtain experimentally, but experimental measurements relating to the operation of the riboswitch are more difficult. Using the validated model, sliding mode observer design methods are used to estimate BtuB given measurements of the concentration of vitamin B12. The sliding mode approach is selected because of its inherent robustness properties as well as for the ease of implementation. Validation of the estimates of BtuB produced by the observer is undertaken by comparing the BtuB and vitamin B12 concentrations estimated from the observer with green fluorescent protein production and the concentration of vitamin B12 obtained experimentally. These experimental results also provide further validation of the underpinning mathematical model. The results establish that using a sliding mode observer as a soft sensor is a useful approach to explore the operation of a vitamin B12 riboswitch given measurements of the concentration of vitamin B12.
Collapse
Affiliation(s)
- Mohammad Abbadi
- Department of Electronic & Electrical Engineering, University College London, Gower St, Bloomsbury, London WC1E 6BT, UK
| | - Sarah Spurgeon
- Department of Electronic & Electrical Engineering, University College London, Gower St, Bloomsbury, London WC1E 6BT, UK.
| | | | - Naziyat Khan
- School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK
| | - Bernhard Kräutler
- Institute of Organic Chemistry & Center of Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
22
|
Buglak AA, Samokhvalov AV, Zherdev AV, Dzantiev BB. Methods and Applications of In Silico Aptamer Design and Modeling. Int J Mol Sci 2020; 21:E8420. [PMID: 33182550 PMCID: PMC7698023 DOI: 10.3390/ijms21228420] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Aptamers are nucleic acid analogues of antibodies with high affinity to different targets, such as cells, viruses, proteins, inorganic materials, and coenzymes. Empirical approaches allow the design of in vitro aptamers that bind particularly to a target molecule with high affinity and selectivity. Theoretical methods allow significant expansion of the possibilities of aptamer design. In this study, we review theoretical and joint theoretical-experimental studies dedicated to aptamer design and modeling. We consider aptamers with different targets, such as proteins, antibiotics, organophosphates, nucleobases, amino acids, and drugs. During nucleic acid modeling and in silico design, a full set of in silico methods can be applied, such as docking, molecular dynamics (MD), and statistical analysis. The typical modeling workflow starts with structure prediction. Then, docking of target and aptamer is performed. Next, MD simulations are performed, which allows for an evaluation of the stability of aptamer/ligand complexes and determination of the binding energies with higher accuracy. Then, aptamer/ligand interactions are analyzed, and mutations of studied aptamers made. Subsequently, the whole procedure of molecular modeling can be reiterated. Thus, the interactions between aptamers and their ligands are complex and difficult to understand using only experimental approaches. Docking and MD are irreplaceable when aptamers are studied in silico.
Collapse
Affiliation(s)
- Andrey A. Buglak
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
- Physical Faculty, St. Petersburg State University, 7/9 Universitetskaya naberezhnaya, 199034 St. Petersburg, Russia
| | - Alexey V. Samokhvalov
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
| | - Anatoly V. Zherdev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
| | - Boris B. Dzantiev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
| |
Collapse
|
23
|
Broft P, Dzatko S, Krafcikova M, Wacker A, Hänsel‐Hertsch R, Dötsch V, Trantirek L, Schwalbe H. In‐Cell NMR Spectroscopy of Functional Riboswitch Aptamers in Eukaryotic Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- P. Broft
- Center for Biomolecular Magnetic Resonance (BMRZ) Institute for Organic Chemistry and Chemical Biology Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M. Germany
| | - S. Dzatko
- National Centre for Biomolecular Research Masaryk University Kamenice 5 625 00 Brno Czech Republic
- Central European Institute of Technology (CEITEC) Masaryk University Kamenice 753/5 625 00 Brno Czech Republic
| | - M. Krafcikova
- National Centre for Biomolecular Research Masaryk University Kamenice 5 625 00 Brno Czech Republic
- Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 612 65 Brno Czech Republic
| | - A. Wacker
- Center for Biomolecular Magnetic Resonance (BMRZ) Institute for Organic Chemistry and Chemical Biology Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M. Germany
| | - Robert Hänsel‐Hertsch
- Present address: Center for Molecular Medicine Cologne Robert-Koch-Str. 21 50931 Cologne Germany
| | - Volker Dötsch
- Center for Biomolecular Magnetic Resonance (BMRZ) Institute of Biophysical Chemistry Goethe University Max-von-Laue-Str. 9 60438 Frankfurt/M. Germany
| | - L. Trantirek
- Central European Institute of Technology (CEITEC) Masaryk University Kamenice 753/5 625 00 Brno Czech Republic
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ) Institute for Organic Chemistry and Chemical Biology Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M. Germany
| |
Collapse
|
24
|
Jain S, Kaur J, Prasad S, Roy I. Nucleic acid therapeutics: a focus on the development of aptamers. Expert Opin Drug Discov 2020; 16:255-274. [PMID: 32990095 DOI: 10.1080/17460441.2021.1829587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Aptamers provide exciting opportunities for the development of specific and targeted therapeutic approaches. AREAS COVERED In this review, the authors discuss different therapeutic options available with nucleic acids, including aptamers, focussing on similarities and differences between them. The authors concentrate on case studies with specific aptamers, which exemplify their distinct advantages. The reasons for failure, wherever available, are deliberated upon. Attempts to accelerate the in vitro selection process have been discussed. Challenges with aptamers in terms of their specificity and targeted delivery and strategies to overcome these are described. Examples of precise regulation of systemic half-life of aptamers using antidotes are discussed. EXPERT OPINION Despite their nontoxic nature, a variety of reasons limit the therapeutic potential of aptamers in the clinic. The analysis of adverse effects observed with the pegnivacogin/anivamersen pair has highlighted the need to screen for preexisting PEG antibodies in any clinical trial involving pegylated molecules. Surprisingly, and promisingly, the ability of nucleic acid therapeutics to breach the blood brain barrier seems achievable. The recognition of specific motifs, e.g. G-quadruplex in thrombin-binding aptamers, or a 'nucleation' zone while designing aptamer-antidote pairs, is likely to accelerate the discovery of therapeutically efficacious molecules.
Collapse
Affiliation(s)
- Swati Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Jaskirat Kaur
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Shivcharan Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| |
Collapse
|
25
|
Iwasaki RS, Batey RT. SPRINT: a Cas13a-based platform for detection of small molecules. Nucleic Acids Res 2020; 48:e101. [PMID: 32797156 PMCID: PMC7515716 DOI: 10.1093/nar/gkaa673] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/15/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Recent efforts in biological engineering have made detection of nucleic acids in samples more rapid, inexpensive and sensitive using CRISPR-based approaches. We expand one of these Cas13a-based methods to detect small molecules in a one-batch assay. Using SHERLOCK-based profiling of in vitrotranscription (SPRINT), in vitro transcribed RNA sequence-specifically triggers the RNase activity of Cas13a. This event activates its non-specific RNase activity, which enables cleavage of an RNA oligonucleotide labeled with a quencher/fluorophore pair and thereby de-quenches the fluorophore. This fluorogenic output can be measured to assess transcriptional output. The use of riboswitches or proteins to regulate transcription via specific effector molecules is leveraged as a coupled assay that transforms effector concentration into fluorescence intensity. In this way, we quantified eight different compounds, including cofactors, nucleotides, metabolites of amino acids, tetracycline and monatomic ions in samples. In this manner, hundreds of reactions can be easily quantified in a few hours. This increased throughput also enables detailed characterization of transcriptional regulators, synthetic compounds that inhibit transcription, or other coupled enzymatic reactions. These SPRINT reactions are easily adaptable to portable formats and could therefore be used for the detection of analytes in the field or at point-of-care situations.
Collapse
Affiliation(s)
- Roman S Iwasaki
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| |
Collapse
|
26
|
Li Y, Liu J. Highly Specific Recognition of Guanosine Using Engineered Base-Excised Aptamers. Chemistry 2020; 26:13644-13651. [PMID: 32700427 DOI: 10.1002/chem.202001835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Purines and their derivatives are highly important molecules in biology for nucleic acid synthesis, energy storage, and signaling. Although many DNA aptamers have been obtained for binding adenine derivatives such as adenosine, adenosine monophosphate, and adenosine triphosphate, success for the specific binding of guanosine has been limited. Instead of performing new aptamer selections, we report herein a base-excision strategy to engineer existing aptamers to bind guanosine. Both a Na+ -binding aptamer and the classical adenosine aptamer have been manipulated as base-excising scaffolds. A total of seven guanosine aptamers were designed, of which the G16-deleted Na+ aptamer showed the highest bindng specificity and affinity for guanosine with an apparent dissociation constant of 0.78 mm. Single monophosphate difference in the target molecule was also recognizable. The generality of both the aptamer scaffold and excised site were systematically studied. Overall, this work provides a few guanosine binding aptamers by using a non-SELEX method. It also provides deeper insights into the engineering of aptamers for molecular recognition.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
27
|
Mitousis L, Thoma Y, Musiol-Kroll EM. An Update on Molecular Tools for Genetic Engineering of Actinomycetes-The Source of Important Antibiotics and Other Valuable Compounds. Antibiotics (Basel) 2020; 9:E494. [PMID: 32784409 PMCID: PMC7460540 DOI: 10.3390/antibiotics9080494] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
The first antibiotic-producing actinomycete (Streptomyces antibioticus) was described by Waksman and Woodruff in 1940. This discovery initiated the "actinomycetes era", in which several species were identified and demonstrated to be a great source of bioactive compounds. However, the remarkable group of microorganisms and their potential for the production of bioactive agents were only partially exploited. This is caused by the fact that the growth of many actinomycetes cannot be reproduced on artificial media at laboratory conditions. In addition, sequencing, genome mining and bioactivity screening disclosed that numerous biosynthetic gene clusters (BGCs), encoded in actinomycetes genomes are not expressed and thus, the respective potential products remain uncharacterized. Therefore, a lot of effort was put into the development of technologies that facilitate the access to actinomycetes genomes and activation of their biosynthetic pathways. In this review, we mainly focus on molecular tools and methods for genetic engineering of actinomycetes that have emerged in the field in the past five years (2015-2020). In addition, we highlight examples of successful application of the recently developed technologies in genetic engineering of actinomycetes for activation and/or improvement of the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
| | | | - Ewa M. Musiol-Kroll
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (L.M.); (Y.T.)
| |
Collapse
|
28
|
Wu Y, Yang Z, Lu Y. Photocaged functional nucleic acids for spatiotemporal imaging in biology. Curr Opin Chem Biol 2020; 57:95-104. [PMID: 32652498 DOI: 10.1016/j.cbpa.2020.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/21/2020] [Accepted: 05/06/2020] [Indexed: 01/17/2023]
Abstract
Imaging of species in living organisms with high spatiotemporal resolution is essential for understanding biological processes. While functional nucleic acids (FNAs), such as catalytic nucleic acids and aptamers, have emerged as effective sensors for a wide range of molecules, photocaged control of these FNAs has played a key role in translating them into bioimaging agents with high spatiotemporal control. In this review, we summarize methods and results of photocaged FNAs based on photolabile modifications, photoisomerization, and photothermal activation. Future directions, including strategies to improve the performance of these photocaged FNAs, are also described.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Zhenglin Yang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
29
|
Endoh T, Sugimoto N. Signaling Aptamer Optimization through Selection Using RNA-Capturing Microsphere Particles. Anal Chem 2020; 92:7955-7963. [PMID: 32363852 DOI: 10.1021/acs.analchem.0c01338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An RNA signaling aptamer is composed of two units: a sensing aptamer that binds the input target molecule and a working aptamer that binds the output target molecule to result in a detectable signal. A conformational change of the signaling aptamer that induces an allosteric interaction with the output target molecule in response to the input target molecule depends on a junction region, which connects the two aptamer units. Efficient and effective optimization of the junction region remains a technical challenge. In this study, we demonstrate a simple strategy for optimizing the junction region through functional RNA selection using RNA-capturing microsphere particles. From approximately 0.2 million sequence variants, a signaling aptamer that enabled intracellular detection of S-adenosyl methionine with a high signal-to-noise ratio, which is approximately 2-fold higher relative fluorescence increment compared to the previously reported signaling aptamer, was obtained after single round of selection. The technology demonstrated here can be used to select RNA sequences that carry out specific functions in response to particular stimuli.
Collapse
Affiliation(s)
- Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe 650-0047, Japan.,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe 650-0047, Japan
| |
Collapse
|
30
|
Hoang Trung Chau T, Hoang Anh Mai D, Ngoc Pham D, Thi Quynh Le H, Yeol Lee E. Developments of Riboswitches and Toehold Switches for Molecular Detection-Biosensing and Molecular Diagnostics. Int J Mol Sci 2020; 21:E3192. [PMID: 32366036 PMCID: PMC7247568 DOI: 10.3390/ijms21093192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Riboswitches and toehold switches are considered to have potential for implementation in various fields, i.e., biosensing, metabolic engineering, and molecular diagnostics. The specific binding, programmability, and manipulability of these RNA-based molecules enable their intensive deployments in molecular detection as biosensors for regulating gene expressions, tracking metabolites, or detecting RNA sequences of pathogenic microorganisms. In this review, we will focus on the development of riboswitches and toehold switches in biosensing and molecular diagnostics. This review introduces the operating principles and the notable design features of riboswitches as well as toehold switches. Moreover, we will describe the advances and future directions of riboswitches and toehold switches in biosensing and molecular diagnostics.
Collapse
Affiliation(s)
| | | | | | | | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (T.H.T.C.); (D.H.A.M.); (D.N.P.); (H.T.Q.L.)
| |
Collapse
|
31
|
In vivo evolutionary engineering of riboswitch with high-threshold for N-acetylneuraminic acid production. Metab Eng 2020; 59:36-43. [PMID: 31954846 DOI: 10.1016/j.ymben.2020.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/26/2019] [Accepted: 01/04/2020] [Indexed: 11/22/2022]
Abstract
Riboswitches with desired properties, such as sensitivity, threshold, dynamic range, is important for its application. However, the property change of a natural riboswitch is difficult due to the lack of the understanding of aptamer ligand binding properties and a proper screening method for both rational and irrational design. In this study, an effective method to change the threshold of riboswitch was established in vivo based on growth coupled screening by combining both positive and negative selections. The feasibility of the method was verified by the model library. Using this method, an N-acetylneuraminic acid (NeuAc) riboswitch was evolved and modified riboswitches with high threshold and large dynamic range were obtained. Then, using a new NeuAc riboswitch, both ribosome binding sites and key gene in NeuAc biosynthesis pathway were optimized. The highest NeuAc production of 14.32 g/l that has been reported using glucose as sole carbon source was obtained.
Collapse
|
32
|
Wang J, Yang D, Guo X, Song Q, Tan L, Dong L. A novel RNA aptamer-modified riboswitch as chemical sensor. Anal Chim Acta 2019; 1100:240-249. [PMID: 31987147 DOI: 10.1016/j.aca.2019.11.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 12/19/2022]
Abstract
In this study, a novel label- and immobilization-free RNA aptamer-modified riboswitch-based biosensor was developed by using RNA aptamer modified secondary-structural scaffolds to control the identity of the ribosomal binding sequence (RBS). In the developed sensor, the duplex RNA aptamers-modified cis-repressor sequence is introduced upstream to the RBS of the indicating gene (gfp gene), leading to formatting an RNA bubble due to the none-complementary state of the RNA aptamers in the hairpin structure of the cis-repressor sequence. Without the presence of the target molecule, the ribosome cannot identify the RBS of the indicating gene as the RBS is hidden by the introduced cis-repressor, consequently, the indicating gene in the sensor would not be expressed, demonstrating the absence of the target. On the contrary, with the presence of the target molecule, the binding of aptamer with the target would induce the enlargement of the RNA bubble, leading to the separation of the cis-repressor sequence and RBS. Hence, the indicating gene would be expressed, manifesting the existence of the target. In addition, the developed sensor can quantitatively report the target concentrations by measuring the gfp gene-encoded GFP (green fluorescent protein) concentration. The approach proposed in this study can be used to construct sensors for detecting various chemicals by introducing the corresponding aptamers, therefore, this strategy can potentially provide a new set of analytical tools in the field of analytical chemistry.
Collapse
Affiliation(s)
- Jing Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China; College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China; Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education, Chongqing University, Chongqing, 40004, PR China
| | - Dongmei Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Xiaogang Guo
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Qitao Song
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China; Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education, Chongqing University, Chongqing, 40004, PR China.
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China; Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education, Chongqing University, Chongqing, 40004, PR China.
| |
Collapse
|
33
|
Bervoets I, Charlier D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev 2019; 43:304-339. [PMID: 30721976 PMCID: PMC6524683 DOI: 10.1093/femsre/fuz001] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Gene expression occurs in two essential steps: transcription and translation. In bacteria, the two processes are tightly coupled in time and space, and highly regulated. Tight regulation of gene expression is crucial. It limits wasteful consumption of resources and energy, prevents accumulation of potentially growth inhibiting reaction intermediates, and sustains the fitness and potential virulence of the organism in a fluctuating, competitive and frequently stressful environment. Since the onset of studies on regulation of enzyme synthesis, numerous distinct regulatory mechanisms modulating transcription and/or translation have been discovered. Mostly, various regulatory mechanisms operating at different levels in the flow of genetic information are used in combination to control and modulate the expression of a single gene or operon. Here, we provide an extensive overview of the very diverse and versatile bacterial gene regulatory mechanisms with major emphasis on their combined occurrence, intricate intertwinement and versatility. Furthermore, we discuss the potential of well-characterized basal expression and regulatory elements in synthetic biology applications, where they may ensure orthogonal, predictable and tunable expression of (heterologous) target genes and pathways, aiming at a minimal burden for the host.
Collapse
Affiliation(s)
- Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
34
|
Kulik M, Mori T, Sugita Y, Trylska J. Molecular mechanisms for dynamic regulation of N1 riboswitch by aminoglycosides. Nucleic Acids Res 2019; 46:9960-9970. [PMID: 30239867 PMCID: PMC6212780 DOI: 10.1093/nar/gky833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/07/2018] [Indexed: 01/14/2023] Open
Abstract
A synthetic riboswitch N1, inserted into the 5'-untranslated mRNA region of yeast, regulates gene expression upon binding ribostamycin and neomycin. Interestingly, a similar aminoglycoside, paromomycin, differing from neomycin by only one substituent (amino versus hydroxyl), also binds to the N1 riboswitch, but without affecting gene expression, despite NMR evidence that the N1 riboswitch binds all aminoglycosides in a similar way. Here, to explore the details of structural dynamics of the aminoglycoside-N1 riboswitch complexes, we applied all-atom molecular dynamics (MD) and temperature replica-exchange MD simulations in explicit solvent. Indeed, we found that ribostamycin and neomycin affect riboswitch dynamics similarly but paromomycin allows for more flexibility because its complex lacks the contact between the distinctive 6' hydroxyl group and the G9 phosphate. Instead, a transient hydrogen bond of 6'-OH with A17 is formed, which partially diminishes interactions between the bulge and apical loop of the riboswitch, likely contributing to riboswitch inactivity. In many ways, the paromomycin complex mimics the conformations, interactions, and Na+ distribution of the free riboswitch. The MD-derived interaction network helps understand why riboswitch activity depends on aminoglycoside type, whereas for another aminoglycoside-binding site, aminoacyl-tRNA site in 16S rRNA, activity is not discriminatory.
Collapse
Affiliation(s)
- Marta Kulik
- RIKEN, Hirosawa, Wako City, Saitama 351-0198, Japan.,Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | | | - Yuji Sugita
- RIKEN, Hirosawa, Wako City, Saitama 351-0198, Japan
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
35
|
Evolving methods for rational de novo design of functional RNA molecules. Methods 2019; 161:54-63. [PMID: 31059832 DOI: 10.1016/j.ymeth.2019.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022] Open
Abstract
Artificial RNA molecules with novel functionality have many applications in synthetic biology, pharmacy and white biotechnology. The de novo design of such devices using computational methods and prediction tools is a resource-efficient alternative to experimental screening and selection pipelines. In this review, we describe methods common to many such computational approaches, thoroughly dissect these methods and highlight open questions for the individual steps. Initially, it is essential to investigate the biological target system, the regulatory mechanism that will be exploited, as well as the desired components in order to define design objectives. Subsequent computational design is needed to combine the selected components and to obtain novel functionality. This process can usually be split into constrained sequence sampling, the formulation of an optimization problem and an in silico analysis to narrow down the number of candidates with respect to secondary goals. Finally, experimental analysis is important to check whether the defined design objectives are indeed met in the target environment and detailed characterization experiments should be performed to improve the mechanistic models and detect missing design requirements.
Collapse
|
36
|
Hammer S, Wang W, Will S, Ponty Y. Fixed-parameter tractable sampling for RNA design with multiple target structures. BMC Bioinformatics 2019; 20:209. [PMID: 31023239 PMCID: PMC6482512 DOI: 10.1186/s12859-019-2784-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/28/2019] [Indexed: 01/09/2023] Open
Abstract
Background The design of multi-stable RNA molecules has important applications in biology, medicine, and biotechnology. Synthetic design approaches profit strongly from effective in-silico methods, which substantially reduce the need for costly wet-lab experiments. Results We devise a novel approach to a central ingredient of most in-silico design methods: the generation of sequences that fold well into multiple target structures. Based on constraint networks, our approach supports generic Boltzmann-weighted sampling, which enables the positive design of RNA sequences with specific free energies (for each of multiple, possibly pseudoknotted, target structures) and GC-content. Moreover, we study general properties of our approach empirically and generate biologically relevant multi-target Boltzmann-weighted designs for an established design benchmark. Our results demonstrate the efficacy and feasibility of the method in practice as well as the benefits of Boltzmann sampling over the previously best multi-target sampling strategy—even for the case of negative design of multi-stable RNAs. Besides empirically studies, we finally justify the algorithmic details due to a fundamental theoretic result about multi-stable RNA design, namely the #P-hardness of the counting of designs. Conclusion introduces a novel, flexible, and effective approach to multi-target RNA design, which promises broad applicability and extensibility. Our free software is available at: https://github.com/yannponty/RNARedPrint
Supplementary data are available online. Electronic supplementary material The online version of this article (10.1186/s12859-019-2784-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Hammer
- Dept. Computer Science, and Interdisciplinary Center for Bioinformatics, Univ. Leipzig, Härtelstr. 16-18, Leipzig, D-04107, Germany.,Dept. Theoretical Chemistry, Univ. Vienna, Währingerstr. 17, Wien, A-1090, Austria.,Bioinformatics and Computational Biology Research Group, Univ. Vienna, Währingerstr. 17, Wien, A-1090, Austria
| | - Wei Wang
- CNRS UMR 7161 LIX, Ecole Polytechnique, Bat. Alan Turing, Palaiseau, 91120, France
| | - Sebastian Will
- Dept. Theoretical Chemistry, Univ. Vienna, Währingerstr. 17, Wien, A-1090, Austria. .,Bioinformatics and Computational Biology Research Group, Univ. Vienna, Währingerstr. 17, Wien, A-1090, Austria.
| | - Yann Ponty
- CNRS UMR 7161 LIX, Ecole Polytechnique, Bat. Alan Turing, Palaiseau, 91120, France.
| |
Collapse
|
37
|
Wang X, Nie Y, Xu Y. Industrially produced pullulanases with thermostability: Discovery, engineering, and heterologous expression. BIORESOURCE TECHNOLOGY 2019; 278:360-371. [PMID: 30709762 DOI: 10.1016/j.biortech.2019.01.098] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Pullulanases (EC 3.2.1.41) are well-known starch-debranching enzymes widely used to hydrolyze α-1,6-glucosidic linkages in starch, pullulan, amylopectin, and other oligosaccharides, with application potentials in food, brewing, and pharmaceutical industries. Although extensive studies are done to discover and express pullulanases, only few are available with desirable characteristics for industrial applications. This raises the challenge to mine new enzyme sources, engineer proteins based on sequence/structure, and regulate expressions. We review here the identification of extremophilic and mesophilic microbes as sources of industrial pullulanases with desirable characteristics, including acid-resistance, thermostability, and psychrotrophism. We present current advances in site-directed mutagenesis and sequence/structure-guided protein engineering of pullulanases. In addition, we discuss heterologous expression of pullulanases in prokaryotic and eukaryotic microbial systems, and address the effectiveness of the expression elements and their regulation of enzyme production. Finally, we indicate future research needs to develop desired industrial pullulanases.
Collapse
Affiliation(s)
- Xinye Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; The 2011 Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
38
|
Villa F, Panel N, Chen X, Simonson T. Adaptive landscape flattening in amino acid sequence space for the computational design of protein:peptide binding. J Chem Phys 2018; 149:072302. [PMID: 30134674 DOI: 10.1063/1.5022249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
For the high throughput design of protein:peptide binding, one must explore a vast space of amino acid sequences in search of low binding free energies. This complex problem is usually addressed with either simple heuristic scoring or expensive sequence enumeration schemes. Far more efficient than enumeration is a recent Monte Carlo approach that adaptively flattens the energy landscape in sequence space of the unbound peptide and provides formally exact binding free energy differences. The method allows the binding free energy to be used directly as the design criterion. We propose several improvements that allow still more efficient sampling and can address larger design problems. They include the use of Replica Exchange Monte Carlo and landscape flattening for both the unbound and bound peptides. We used the method to design peptides that bind to the PDZ domain of the Tiam1 signaling protein and could serve as inhibitors of its activity. Four peptide positions were allowed to mutate freely. Almost 75 000 peptide variants were processed in two simulations of 109 steps each that used 1 CPU hour on a desktop machine. 96% of the theoretical sequence space was sampled. The relative binding free energies agreed qualitatively with values from experiment. The sampled sequences agreed qualitatively with an experimental library of Tiam1-binding peptides. The main assumption limiting accuracy is the fixed backbone approximation, which could be alleviated in future work by using increased computational resources and multi-backbone designs.
Collapse
Affiliation(s)
- Francesco Villa
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
| | - Nicolas Panel
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
| | - Xingyu Chen
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
| | - Thomas Simonson
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
39
|
Carpenter AC, Paulsen IT, Williams TC. Blueprints for Biosensors: Design, Limitations, and Applications. Genes (Basel) 2018; 9:E375. [PMID: 30050028 PMCID: PMC6115959 DOI: 10.3390/genes9080375] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Biosensors are enabling major advances in the field of analytics that are both facilitating and being facilitated by advances in synthetic biology. The ability of biosensors to rapidly and specifically detect a wide range of molecules makes them highly relevant to a range of industrial, medical, ecological, and scientific applications. Approaches to biosensor design are as diverse as their applications, with major biosensor classes including nucleic acids, proteins, and transcription factors. Each of these biosensor types has advantages and limitations based on the intended application, and the parameters that are required for optimal performance. Specifically, the choice of biosensor design must consider factors such as the ligand specificity, sensitivity, dynamic range, functional range, mode of output, time of activation, ease of use, and ease of engineering. This review discusses the rationale for designing the major classes of biosensor in the context of their limitations and assesses their suitability to different areas of biotechnological application.
Collapse
Affiliation(s)
- Alexander C Carpenter
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia.
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Thomas C Williams
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia.
| |
Collapse
|