1
|
Makhado BP, Oladipo AO, Gumbi NN, De Kock LA, Andraos C, Gulumian M, Nxumalo EN. Unravelling the toxicity of carbon nanomaterials - From cellular interactions to mechanistic understanding. Toxicol In Vitro 2024; 100:105898. [PMID: 39029601 DOI: 10.1016/j.tiv.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The application of carbon nanomaterials in diverse fields has substantially increased their demand for commercial usage. Within the earliest decade, the development of functional materials has further increased the significance of this element. Despite the advancements recorded, the potential harmful impacts of embracing carbon nanomaterials for biological applications must be balanced against their advantages. Interestingly, many studies have neglected the intriguing and dynamic cellular interaction of carbon nanomaterials and the mechanistic understanding of their property-driven behaviour, even though common toxicity profiles have been reported. Reiterating the toxicity issue, several researchers conclude that these materials have minimal toxicity and may be safe for contact with biological systems at certain dosages. Here, we aim to provide a report on the significance of some of the properties that influence their toxicity. After that, a description of the implication of nanotoxicology in humans and living systems, revealing piece by piece their exposure routes and possible risks, will be provided. Then, an extensive discussion of the mechanistic puzzle modulating the interface between various human cellular systems and carbon nanomaterials such as carbon nanotubes, carbon dots, graphene, fullerenes, and nanodiamonds will follow. Finally, this review also sheds light on the organization that handles the risk associated with nanomaterials.
Collapse
Affiliation(s)
- Bveledzani P Makhado
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort 1710, South Africa
| | - Nozipho N Gumbi
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Lueta A De Kock
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Charlene Andraos
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa; National Institute for Occupational Health (NIOH), National Health Laboratory Service (NHLS), Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa
| | - Edward N Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa.
| |
Collapse
|
2
|
Fan S, Lopez Llorens L, Perona Martinez FP, Schirhagl R. Quantum Sensing of Free Radical Generation in Mitochondria of Human Keratinocytes during UVB Exposure. ACS Sens 2024; 9:2440-2446. [PMID: 38743437 PMCID: PMC11129351 DOI: 10.1021/acssensors.4c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Ultraviolet (UV) radiation is known to cause skin issues, such as dryness, aging, and even cancer. Among UV rays, UVB stands out for its ability to trigger problems within cells, including mitochondrial dysfunction, oxidative stress, and DNA damage. Free radicals are implicated in these cellular responses, but they are challenging to measure due to their short lifetime and limited diffusion range. In our study, we used a quantum sensing technique (T1 relaxometry) involving fluorescent nanodiamonds (FNDs) that change their optical properties in response to magnetic noise. This allowed us to monitor the free radical presence in real time. To measure radicals near mitochondria, we coated FNDs with antibodies, targeting mitochondrial protein voltage-dependent anion channel 2 (anti-VDAC2). Our findings revealed a dynamic rise in radical levels on the mitochondrial membrane as cells were exposed to UVB (3 J/cm2), with a significant increase observed after 17 min.
Collapse
Affiliation(s)
- Siyu Fan
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lluna Lopez Llorens
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Felipe P Perona Martinez
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Romana Schirhagl
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
3
|
Dey T, Ghosh A, Sanyal A, Charles CJ, Pokharel S, Nair L, Singh M, Kaity S, Ravichandiran V, Kaur K, Roy S. Surface engineered nanodiamonds: mechanistic intervention in biomedical applications for diagnosis and treatment of cancer. Biomed Mater 2024; 19:032003. [PMID: 38574581 DOI: 10.1088/1748-605x/ad3abb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
In terms of biomedical tools, nanodiamonds (ND) are a more recent innovation. Their size typically ranges between 4 to 100 nm. ND are produced via a variety of methods and are known for their physical toughness, durability, and chemical stability. Studies have revealed that surface modifications and functionalization have a significant influence on the optical and electrical properties of the nanomaterial. Consequently, surface functional groups of NDs have applications in a variety of domains, including drug administration, gene delivery, immunotherapy for cancer treatment, and bio-imaging to diagnose cancer. Additionally, their biocompatibility is a critical requisite for theirin vivoandin vitrointerventions. This review delves into these aspects and focuses on the recent advances in surface modification strategies of NDs for various biomedical applications surrounding cancer diagnosis and treatment. Furthermore, the prognosis of its clinical translation has also been discussed.
Collapse
Affiliation(s)
- Tanima Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar 751024, Odisha, India
| | - Anushikha Ghosh
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar 751024, Odisha, India
| | - Arka Sanyal
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar 751024, Odisha, India
| | | | - Sahas Pokharel
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar 751024, Odisha, India
| | - Lakshmi Nair
- Department of Pharmaceutical Sciences, Assam Central University, Silchar 788011, Assam, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam Central University, Silchar 788011, Assam, India
| | - Santanu Kaity
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical, Education and Research, Kolkata, West Bengal 700054, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical, Education and Research, Kolkata, West Bengal 700054, India
| | - Kulwinder Kaur
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons, Dublin 2 D02YN77, Ireland
- Department of Pharmacy & Biomolecular Science, Royal College of Surgeons, Dublin 2 D02YN77, Ireland
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical, Education and Research, Kolkata, West Bengal 700054, India
| |
Collapse
|
4
|
Fan S, Gao H, Zhang Y, Nie L, Bártolo R, Bron R, Santos HA, Schirhagl R. Quantum Sensing of Free Radical Generation in Mitochondria of Single Heart Muscle Cells during Hypoxia and Reoxygenation. ACS NANO 2024; 18:2982-2991. [PMID: 38235677 PMCID: PMC10832053 DOI: 10.1021/acsnano.3c07959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Cells are damaged during hypoxia (blood supply deprivation) and reoxygenation (oxygen return). This damage occurs in conditions such as cardiovascular diseases, cancer, and organ transplantation, potentially harming the tissue and organs. The role of free radicals in cellular metabolic reprogramming under hypoxia is under debate, but their measurement is challenging due to their short lifespan and limited diffusion range. In this study, we employed a quantum sensing technique to measure the real-time production of free radicals at the subcellular level. We utilize fluorescent nanodiamonds (FNDs) that exhibit changes in their optical properties based on the surrounding magnetic noise. This way, we were able to detect the presence of free radicals. To specifically monitor radical generation near mitochondria, we coated the FNDs with an antibody targeting voltage-dependent anion channel 2 (anti-VDAC2), which is located in the outer membrane of mitochondria. We observed a significant increase in the radical load on the mitochondrial membrane when cells were exposed to hypoxia. Subsequently, during reoxygenation, the levels of radicals gradually decreased back to the normoxia state. Overall, by applying a quantum sensing technique, the connections among hypoxia, free radicals, and the cellular redox status has been revealed.
Collapse
Affiliation(s)
- Siyu Fan
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Han Gao
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Yue Zhang
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Linyan Nie
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Raquel Bártolo
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Reinier Bron
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Hélder A. Santos
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Romana Schirhagl
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
5
|
Vo D, You T, Lin Y, Angela S, Le, T, Hsiao W. Toxicity Assessments of Nanodiamonds. NANODIAMONDS IN ANALYTICAL AND BIOLOGICAL SCIENCES 2023:73-94. [DOI: 10.1002/9781394202164.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
|
6
|
Li R, Vedelaar TA, Sigaeva A, Zhang Y, Wu K, Wang H, Wu X, Olinga P, Wlodarzyk-Biegun M, Schirhagl R. Fluorescent Nanodiamonds for Tracking Single Polymer Particles in Cells and Tissues. Anal Chem 2023; 95:13046-13054. [PMID: 37612789 PMCID: PMC10483464 DOI: 10.1021/acs.analchem.3c01452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Polymer nanoparticles are widely used in drug delivery and are also a potential concern due to the increased burden of nano- or microplastics in the environment. In order to use polymer nanoparticles safely and understand their mechanism of action, it is useful to know where within cells and tissues they end up. To this end, we labeled polymer nanoparticles with nanodiamond particles. More specifically, we have embedded nanodiamond particles in the polymer particles and characterized the composites. Compared to conventional fluorescent dyes, these labels have the advantage that nanodiamonds do not bleach or blink, thus allowing long-term imaging and tracking of polymer particles. We have demonstrated this principle both in cells and entire liver tissues.
Collapse
Affiliation(s)
- Runrun Li
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Thea A. Vedelaar
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Alina Sigaeva
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Yue Zhang
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Kaiqi Wu
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Hui Wang
- Zernike
Institute for Advanced Materials, Groningen
University, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Xixi Wu
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Groningen
University, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Peter Olinga
- Department
of Pharmaceutical Technology and Biopharmacy, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Małgorzata
K. Wlodarzyk-Biegun
- Zernike
Institute for Advanced Materials, Groningen
University, Nijenborgh
4, 9747 AG Groningen, The Netherlands
- Biotechnology
Centre, The Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Romana Schirhagl
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| |
Collapse
|
7
|
Fan S, Nie L, Zhang Y, Ustyantseva E, Woudstra W, Kampinga HH, Schirhagl R. Diamond Quantum Sensing Revealing the Relation between Free Radicals and Huntington's Disease. ACS CENTRAL SCIENCE 2023; 9:1427-1436. [PMID: 37521781 PMCID: PMC10375573 DOI: 10.1021/acscentsci.3c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 08/01/2023]
Abstract
Huntington's disease (HD) is a well-studied yet rare disease caused by a specific mutation that results in the expression of polyglutamine (PolyQ). The formation of aggregates of PolyQ leads to disease and increases the level of free radicals. However, it is unclear where free radicals are generated and how they impact cells. To address this, a new method called relaxometry was used to perform nanoscale MRI measurements with a subcellular resolution. The method uses a defect in fluorescent nanodiamond (FND) that changes its optical properties based on its magnetic surroundings, allowing for sensitive detection of free radicals. To investigate if radical generation occurs near PolyQ aggregates, stable tetracycline (tet)-inducible HDQ119-EGFP-expressing human embryonic kidney cells (HEK PQ) were used to induce the PolyQ formation and Huntington aggregation. The study found that NDs are highly colocalized with PolyQ aggregates at autolysosomes, and as the amount of PolyQ aggregation increased, so did the production of free radicals, indicating a relationship between PolyQ aggregation and autolysosome dysfunction.
Collapse
Affiliation(s)
- S. Fan
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| | - L. Nie
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| | - Y. Zhang
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| | - E. Ustyantseva
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| | - W. Woudstra
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| | - H. H. Kampinga
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| | - R. Schirhagl
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| |
Collapse
|
8
|
San-Martin CR, Zhang Y, Hamoh T, Berendse L, Klijn C, Li R, Sigaeva A, Kawałko J, Li HT, Tehrani J, Mzyk A, Schirhagl R. Fluorescent nanodiamond labels: Size and concentration matters for sperm cell viability. Mater Today Bio 2023; 20:100629. [PMID: 37441134 PMCID: PMC10333662 DOI: 10.1016/j.mtbio.2023.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 07/15/2023] Open
Abstract
Nanodiamonds are increasingly popular in biomedical applications, including optical labelling, drug delivery and nanoscale sensing. Potential new applications are in studying infertility or labelling sperm cells. However, for these applications, it is necessary that nanodiamonds are inert and do not alter sperm properties. In this article, we assessed the biocompatibility of nanodiamonds in detail. We investigated different sizes and concentrations of nanodiamonds and sperm preparation methods. We evaluated if the metabolic activity, membrane integrity, morphology and formation of reactive oxygen species were altered. These parameters were tested for sperm cells in their uncapacitated and capacitated states. Unfortunately, FNDs are not universally biocompatible. Generally, cells in the capacitated state are more prone to stress. Additionally, larger particles and lower concentrations are tolerated better than smaller and higher concentrated particles.
Collapse
Affiliation(s)
- Claudia Reyes San-Martin
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Yue Zhang
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Thamir Hamoh
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Lotte Berendse
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Carline Klijn
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Runrun Li
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Alina Sigaeva
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Jakub Kawałko
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Hui Ting Li
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Centre Groningen, 9700 RB, Groningen, Netherlands
| | - Jian Tehrani
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Aldona Mzyk
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059, Krakow, Poland
| | - Romana Schirhagl
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| |
Collapse
|
9
|
Niora M, Lerche MH, Dufva M, Berg-Sørensen K. Quantitative Evaluation of the Cellular Uptake of Nanodiamonds by Monocytes and Macrophages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205429. [PMID: 36638251 DOI: 10.1002/smll.202205429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Fluorescent nanodiamonds (FNDs) with negative nitrogen-vacancy (NV- ) defect centers are great probes for biosensing applications, with potential to act as biomarkers for cell differentiation. To explore this concept, uptake of FNDs (≈120 nm) by THP-1 monocytes and monocyte-derived M0-macrophages is studied. The time course analysis of FND uptake by monocytes confirms differing FND-cell interactions and a positive time-dependence. No effect on cell viability, proliferation, and differentiation potential into macrophages is observed, while cells saturated with FNDs, unload the FNDs completely by 25 cell divisions and subsequently take up a second dose effectively. FND uptake variations by THP-1 cells at early exposure-times indicate differing phagocytic capability. The cell fraction that exhibits relatively enhanced FND uptake is associated to a macrophage phenotype which derives from spontaneous monocyte differentiation. In accordance, chemical-differentiation of the THP-1 cells into M0-macrophages triggers increased and homogeneous FND uptake, depleting the fraction of cells that were non-responsive to FNDs. These observations imply that FND uptake allows for distinction between the two cell subtypes based on phagocytic capacity. Overall, FNDs demonstrate effective cell labeling of monocytes and macrophages, and are promising candidates for sensing biological processes that involve cell differentiation.
Collapse
Affiliation(s)
- Maria Niora
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, building 345C, 2800, Kgs. Lyngby, Denmark
| | - Mathilde Hauge Lerche
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, building 345C, 2800, Kgs. Lyngby, Denmark
| | - Martin Dufva
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, building 345C, 2800, Kgs. Lyngby, Denmark
| | - Kirstine Berg-Sørensen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, building 345C, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Fluorescent nanodiamond for nanotheranostic applications. Mikrochim Acta 2022; 189:447. [DOI: 10.1007/s00604-022-05545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
|
11
|
Sigaeva A, Norouzi N, Schirhagl R. Intracellular Relaxometry, Challenges, and Future Directions. ACS CENTRAL SCIENCE 2022; 8:1484-1489. [PMID: 36439313 PMCID: PMC9686197 DOI: 10.1021/acscentsci.2c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen vacancy (NV) centers change their optical properties on the basis of their magnetic surroundings. Since optical signals can be detected more sensitively than small magnetic signals, this technique allows unprecedented sensitivity. Recently, NV center-based relaxometry has been used for measurements in living cells with subcellular resolution. The aim of this Outlook is to identify challenges in the field, including controlling the location of sensing particles, limitations in reproducibility, and issues arising from biocompatibility. We further provide an outlook and point to new directions in the field. These include new diamond materials with NV centers, other defects, or even entirely new materials that might replace diamonds. We further discuss new and more challenging samples, such as tissues or even entire organisms, that might be investigated with NV centers. Then, we address future challenges that have to be resolved in order to achieve this goal. Finally, we discuss new quantities that could be measured with NV centers in the future.
Collapse
|
12
|
Tian Y, Nusantara AC, Hamoh T, Mzyk A, Tian X, Perona Martinez F, Li R, Permentier HP, Schirhagl R. Functionalized Fluorescent Nanodiamonds for Simultaneous Drug Delivery and Quantum Sensing in HeLa Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39265-39273. [PMID: 35984747 PMCID: PMC9437893 DOI: 10.1021/acsami.2c11688] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Here, we present multifunctional fluorescent nanodiamonds (FNDs) for simultaneous drug delivery and free radical detection. For this purpose, we modified FNDs containing nitrogen vacancy (NV) centers with a diazoxide derivative. We found that our particles enter cells more easily and are able to deliver this cancer drug into HeLa cells. The particles were characterized by infrared spectroscopy, dynamic light scattering, and secondary electron microscopy. Compared to the free drug, we observe a sustained release over 72 h rather than 12 h for the free drug. Apart from releasing the drug, with these particles, we can measure the drug's effect on free radical generation directly. This has the advantage that the response is measured locally, where the drug is released. These FNDs change their optical properties based on their magnetic surrounding. More specifically, we make use of a technique called relaxometry to detect spin noise from the free radical at the nanoscale with subcellular resolution. We further compared the results from our new technique with a conventional fluorescence assay for the detection of reactive oxygen species. This provides a new method to investigate the relationship between drug release and the response by the cell via radical formation or inhibition.
Collapse
Affiliation(s)
- Yuchen Tian
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Anggrek C. Nusantara
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Thamir Hamoh
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Aldona Mzyk
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
- Institute
of Metallurgy and Materials Science Polish Academy of Sciences, 25 Reymonta Street, 30-059, Cracow, Poland
| | - Xiaobo Tian
- Department
of Analytical Biochemistry, Interfaculty Mass Spectrometry Center,
Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Felipe Perona Martinez
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Runrun Li
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Hjalmar P. Permentier
- Department
of Analytical Biochemistry, Interfaculty Mass Spectrometry Center,
Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Romana Schirhagl
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| |
Collapse
|
13
|
Wu K, Vedelaar TA, Damle VG, Morita A, Mougnaud J, San Martin CR, Zhang Y, van der Pol DP, Ende-Metselaar H, Zybert IR, Schirhagl R. Applying NV center-based quantum sensing to study intracellular free radical response upon viral infections. Redox Biol 2022; 52:102279. [PMID: 35349928 PMCID: PMC8965164 DOI: 10.1016/j.redox.2022.102279] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
|
14
|
Gbetuwa M, Lu LS, Wang TJ, Chen YJ, Chiou JF, Su TY, Yang TS. Nucleus Near-Infrared (nNIR) Irradiation of Single A549 Cells Induces DNA Damage and Activates EGFR Leading to Mitochondrial Fission. Cells 2022; 11:cells11040624. [PMID: 35203275 PMCID: PMC8870661 DOI: 10.3390/cells11040624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
There has been great interest in identifying the biological substrate for light-cell interaction and their relations to cancer treatment. In this study, a near-infrared (NIR) laser is focused into the nucleus (nNIR) or cytoplasm (cNIR) of a single living cell by a high numerical aperture condenser to dissect the novel role of cell nucleus in mediating NIR effects on mitochondrial dynamics of A549 non-small cell lung cancer cells. Our analysis showed that nNIR, but not cNIR, triggered mitochondrial fission in 10 min. In contrast, the fission/fusion balance of mitochondria directly exposed to cNIR does not change. While the same phenomenon is also triggered by single molecular interactions between epidermal growth factor (EGF) and its receptor EGFR, pharmacological studies with cetuximab, PD153035, and caffeine suggest EGF signaling crosstalk to DNA damaging response to mediate rapid mitochondrial fission as a result of nNIR irradiation. These results suggest that nuclear DNA integrity is a novel biological target for cellular response to NIR.
Collapse
Affiliation(s)
- Momoh Gbetuwa
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.G.); (L.-S.L.); (Y.-J.C.)
| | - Long-Sheng Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.G.); (L.-S.L.); (Y.-J.C.)
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Center for Cell Therapy, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- International PhD Program for Cell Therapy and Regeneration, Taipei Medical University, Taipei 110, Taiwan
| | - Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 110, Taiwan;
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.G.); (L.-S.L.); (Y.-J.C.)
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Radiology, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tai-Yuan Su
- Department of Electrical Engineering, Yuan-Ze University, Chung-Li 32003, Taiwan;
| | - Tzu-Sen Yang
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan
- School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-27361661 (ext. 5206)
| |
Collapse
|
15
|
General Method to Increase Carboxylic Acid Content on Nanodiamonds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030736. [PMID: 35164002 PMCID: PMC8838522 DOI: 10.3390/molecules27030736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 01/30/2023]
Abstract
Carboxylic acid is a commonly utilized functional group for covalent surface conjugation of carbon nanoparticles that is typically generated by acid oxidation. However, acid oxidation generates additional oxygen containing groups, including epoxides, ketones, aldehydes, lactones, and alcohols. We present a method to specifically enrich the carboxylic acid content on fluorescent nanodiamond (FND) surfaces. Lithium aluminum hydride is used to reduce oxygen containing surface groups to alcohols. The alcohols are then converted to carboxylic acids through a rhodium (II) acetate catalyzed carbene insertion reaction with tert–butyl diazoacetate and subsequent ester cleavage with trifluoroacetic acid. This carboxylic acid enrichment process significantly enhanced nanodiamond homogeneity and improved the efficiency of functionalizing the FND surface. Biotin functionalized fluorescent nanodiamonds were demonstrated to be robust and stable single-molecule fluorescence and optical trapping probes.
Collapse
|
16
|
Shirley AJ, Schweeberg S, Waag T, Peindl M, Dandekar G, Walles H, Jakob F, Krueger A, Ebert R. The influence of differently functionalized nanodiamonds on proliferation, apoptosis and EMT/MET phenomena in 2D and 3D tumor cell cultures. J Mater Chem B 2021; 9:9395-9405. [PMID: 34734960 DOI: 10.1039/d1tb01739j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nanodiamonds (ND) have been suggested to have several potential uses in biomedicine, since they are seemingly biocompatible. However, data about the biological effects of ND in physiological conditions are scarce. In this study, we observed that prostate cancer cells (LNCaP) and breast cancer cells (MDA-MB-231 and MCF-7) cultured with ND show morphological changes and altered gene and protein expression. In 2D we could detect only slight effects of ND on cell growth and apoptosis induction. Therefore, we applied different functionalized ND in a novel 3D cell culture model that reflects better tissue conditions compared to conventional 2D cell cultures. In 3D proliferation was reduced by all nanoparticles and benzoquinone functionalized ND induced cell death. As the used decellularized scaffold maintains the tissue architecture, we could also functionally investigate if nanoparticles induce cell migration into deeper layers and if they display markers of Mesenchymal Epithelial Transition (MET). We detected in more mesenchymal and invasive growing MDA-MB-231 cells less vimentin and increased levels of pan-cytokeratin expression after ND treatment, which indicates a MET induction. Our observations suggest that the presence of ND stimulates MET, with varying degrees of transition. The observation that ND do not support the opposite, EMT, is beneficial, since EMT is known to play a major role in tumor metastasis. However, a special focus should be placed on the characterization of biological effects to be able to guarantee the safety of ND in clinical use.
Collapse
Affiliation(s)
- Anup James Shirley
- Bernhard-Heine-Center for Locomotion Research, Department of Musculoskeletal Tissue Regeneration, Julius-Maximilians-Universität Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany. .,Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Sarah Schweeberg
- Institute for Organic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Thilo Waag
- Institute for Organic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Matthias Peindl
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Gudrun Dandekar
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Heike Walles
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany.,Core Facility Tissue Engineering, Otto-v. Guericke University Magdeburg, Pfälzerstraße 2, 39106 Magdeburg, Germany
| | - Franz Jakob
- Bernhard-Heine-Center for Locomotion Research and Department for Functional Materials in Medicine and Dentistry, Brettreichstraße 11, 97074 Würzburg, Germany
| | - Anke Krueger
- Institute for Organic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Wilhelm Conrad Röntgen Center for Complex Materials (RCCM), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Regina Ebert
- Bernhard-Heine-Center for Locomotion Research, Department of Musculoskeletal Tissue Regeneration, Julius-Maximilians-Universität Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany.
| |
Collapse
|
17
|
Zhang Y, Sharmin R, Sigaeva A, Klijn CWM, Mzyk A, Schirhagl R. Not all cells are created equal - endosomal escape in fluorescent nanodiamonds in different cells. NANOSCALE 2021; 13:13294-13300. [PMID: 34477735 DOI: 10.1039/d1nr02503a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Successful delivery of fluorescent nanodiamonds (FNDs) into the cytoplasm is essential to many biological applications. Other applications require FNDs to stay within the endosomes. The diversity of cellular uptake of FNDs and following endosomal escape are less explored. In this article, we quantify particle uptake at a single cell level. We report that FNDs enter into the cells gradually. The number of internalized FNDs per cell differs significantly for the cell lines we investigated at the same incubation time. In HeLa cells we do not see any significant endosomal escape. We also found a wide distribution of FND endosomal escape efficiency within the same cell type. However, compared with HeLa cells, FNDs in HUVECs can easily escape from the endosomes and less than 25% FNDs remained in the vesicles after 4 h incubation time. We believe this work can bring more attention to the diversity of the cells and provide potential guidelines for future studies.
Collapse
Affiliation(s)
- Yue Zhang
- University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands.
| | | | | | | | | | | |
Collapse
|
18
|
Nie L, Zhang Y, Li L, van Rijn P, Schirhagl R. pH Sensitive Dextran Coated Fluorescent Nanodiamonds as a Biomarker for HeLa Cells Endocytic Pathway and Increased Cellular Uptake. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1837. [PMID: 34361223 PMCID: PMC8308332 DOI: 10.3390/nano11071837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/04/2022]
Abstract
Fluorescent nanodiamonds are a useful for biosensing of intracellular signaling networks or environmental changes (such as temperature, pH or free radical generation). HeLa cells are interesting to study with these nanodiamonds since they are a model cell system that is widely used to study cancer-related diseases. However, they only internalize low numbers of nanodiamond particles very slowly via the endocytosis pathway. In this work, we show that pH-sensitive, dextran-coated fluorescent nanodiamonds can be used to visualise this pathway. Additionally, this coating improved diamond uptake in HeLa cells by 5.3 times (*** p < 0.0001) and decreased the required time for uptake to only 30 min. We demonstrated further that nanodiamonds enter HeLa cells via endolysosomes and are eventually expelled by cells.
Collapse
Affiliation(s)
| | | | | | | | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands; (L.N.); (Y.Z.); (L.L.); (P.v.R.)
| |
Collapse
|
19
|
Nie L, Nusantara AC, Damle VG, Sharmin R, Evans EPP, Hemelaar SR, van der Laan KJ, Li R, Perona Martinez FP, Vedelaar T, Chipaux M, Schirhagl R. Quantum monitoring of cellular metabolic activities in single mitochondria. SCIENCE ADVANCES 2021; 7:7/21/eabf0573. [PMID: 34138746 PMCID: PMC8133708 DOI: 10.1126/sciadv.abf0573] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/17/2021] [Indexed: 05/08/2023]
Abstract
Free radicals play a vital role in all kinds of biological processes including immune responses. However, free radicals have short lifetimes and are highly reactive, making them difficult to measure using current methods. Here, we demonstrate that relaxometry measurement, or T1, inherited from the field of diamond magnetometry can be used to detect free radicals in living cells with subcellular resolution. This quantum sensing technique is based on defects in diamond, which convert a magnetic signal into an optical signal, allowing nanoscale magnetic resonance measurements. We functionalized fluorescent nanodiamonds (FNDs) to target single mitochondria within macrophage cells to detect the metabolic activity. In addition, we performed measurements on single isolated mitochondria. We were able to detect free radicals generated by individual mitochondria in either living cells or isolated mitochondria after stimulation or inhibition.
Collapse
Affiliation(s)
- L Nie
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - A C Nusantara
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - V G Damle
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - R Sharmin
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - E P P Evans
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - S R Hemelaar
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - K J van der Laan
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - R Li
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - F P Perona Martinez
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - T Vedelaar
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - M Chipaux
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - R Schirhagl
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands.
| |
Collapse
|
20
|
Suarez-Kelly L, Sun SH, Ren C, Rampersaud IV, Albertson D, Duggan MC, Noel TC, Courtney N, Buteyn NJ, Moritz C, Yu L, Yildiz VO, Butchar JP, Tridandapani S, Rampersaud AA, Carson WE. Antibody Conjugation of Fluorescent Nanodiamonds for Targeted Innate Immune Cell Activation. ACS APPLIED NANO MATERIALS 2021; 4:3122-3139. [PMID: 34027313 PMCID: PMC8136585 DOI: 10.1021/acsanm.1c00256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND fluorescent nanodiamonds (FND) are nontoxic, infinitely photostable nanoparticles that emit near-infrared fluorescence and have a modifiable surface allowing for the generation of protein-FND conjugates. FND-mediated immune cell targeting may serve as a strategy to visualize immune cells and promote immune cell activation. METHODS uncoated-FND (uFND) were fabricated, coated with glycidol (gFND), and conjugated with immunoglobulin G (IgG-gFND). In vitro studies were performed using a breast cancer/natural killer/monocyte co-culture system, and in vivo studies were performed using a breast cancer mouse model. RESULTS in vitro studies demonstrated the targeted immune cell uptake of IgG-gFND, resulting in significant immune cell activation and no compromise in immune cell viability. IgG-gFND remained at the tumor site following intratumoral injection compared to uFND which migrated to the liver and kidneys. CONCLUSION antibody-conjugated FND may serve as immune drug delivery vehicles with "track and trace capabilities" to promote directed antitumor activity and minimize systemic toxicities.
Collapse
Affiliation(s)
- Lorena
P. Suarez-Kelly
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steven H. Sun
- Department
of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Casey Ren
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Isaac V. Rampersaud
- Columbus
NanoWorks, Inc., 1507
Chambers Road, Columbus, Ohio 43212, United
States
| | - David Albertson
- Columbus
NanoWorks, Inc., 1507
Chambers Road, Columbus, Ohio 43212, United
States
| | - Megan C. Duggan
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tiffany C. Noel
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas Courtney
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathaniel J. Buteyn
- Division
of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Charles Moritz
- Columbus
NanoWorks, Inc., 1507
Chambers Road, Columbus, Ohio 43212, United
States
| | - Lianbo Yu
- Department
of Biomedical Informatics, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Vedat O. Yildiz
- Department
of Biomedical Informatics, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Jonathan P. Butchar
- Division
of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Susheela Tridandapani
- Division
of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Arfaan A. Rampersaud
- Columbus
NanoWorks, Inc., 1507
Chambers Road, Columbus, Ohio 43212, United
States
| | - William E. Carson
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
- Department
of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
- . Phone: (614)
293-6306. Fax: (614) 293-3465
| |
Collapse
|
21
|
Titanium Dioxide Nanoparticles Induced HeLa Cell Necrosis under UVA Radiation through the ROS-mPTP Pathway. NANOMATERIALS 2020; 10:nano10102029. [PMID: 33076304 PMCID: PMC7602383 DOI: 10.3390/nano10102029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/16/2022]
Abstract
Titanium dioxide nanoparticles (nano-TiO2), as a common nanomaterial, are widely used in water purification, paint, skincare and sunscreens. Its safety has always been a concern. Prior studies have shown that ultraviolet A (UVA) can exacerbate the toxicity of nano-TiO2, including inducing cell apoptosis, changing glycosylation levels, arresting cell cycle, inhibiting tumor cell and bacterial growth. However, whether the combination of UVA and nano-TiO2 cause cell necrosis and its mechanism are still rarely reported. In this study, we investigated the cytotoxicity and phototoxicity of mixture crystalline nano-TiO2 (25% rutile and 75% anatase, 21 nm) under UVA irradiation in HeLa cells. Our results showed that the abnormal membrane integrity and the ultrastructure of HeLa cells, together with the decreased viability induced by nano-TiO2 under UVA irradiation, were due to cell necrosis rather than caspase-dependent apoptosis. Furthermore, nano-TiO2 and UVA generated the reactive oxygen species (ROS) and caused the mitochondrial permeability transition pore (mPTP) of HeLa cells to abnormally open. Cell viability was significantly increased after adding vitamin C (VC) or cyclosporin A (CsA) individually to inhibit ROS and mPTP. Clearance of ROS could not only impede the opening of mPTP but also reduce the rate of cell necrosis. The results suggest the possible mechanism of HeLa cell necrosis caused by nano-TiO2 under UVA irradiation through the ROS-mPTP pathway.
Collapse
|
22
|
Morita A, Hamoh T, Sigaeva A, Norouzi N, Nagl A, van der Laan KJ, Evans EPP, Schirhagl R. Targeting Nanodiamonds to the Nucleus in Yeast Cells. NANOMATERIALS 2020; 10:nano10101962. [PMID: 33023102 PMCID: PMC7601435 DOI: 10.3390/nano10101962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 01/01/2023]
Abstract
Nanodiamonds are widely used for drug delivery, labelling or nanoscale sensing. For all these applications it is highly beneficial to have control over the intracellular location of the particles. For the first time, we have achieved targeting the nucleus of yeast cells. In terms of particle uptake, these cells are challenging due to their rigid cell wall. Thus, we used a spheroplasting protocol to remove the cell wall prior to uptake. To achieve nuclear targeting we used nanodiamonds, which were attached to antibodies. When using non-targeted particles, only 20% end up at the nucleus. In comparison, by using diamonds linked to antibodies, 70% of the diamond particles reach the nucleus.
Collapse
Affiliation(s)
- Aryan Morita
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Thamir Hamoh
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Alina Sigaeva
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Neda Norouzi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Andreas Nagl
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Kiran J. van der Laan
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Emily P. P. Evans
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
- Correspondence:
| |
Collapse
|
23
|
Brand SJ, Botha TL, Wepener V. Behavioural response as a reliable measure of acute nanomaterial toxicity in zebrafish larvae exposed to a carbon-based versus a metal-based nanomaterial. AFRICAN ZOOLOGY 2020. [DOI: 10.1080/15627020.2019.1702098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sarel J Brand
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- South African Research Chair in Nanotechnology for Water, Department of Applied Chemistry, University of Johannesburg, South Africa
| | - Tarryn L Botha
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Victor Wepener
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
24
|
Morita A, Hamoh T, Perona Martinez FP, Chipaux M, Sigaeva A, Mignon C, van der Laan KJ, Hochstetter A, Schirhagl R. The Fate of Lipid-Coated and Uncoated Fluorescent Nanodiamonds during Cell Division in Yeast. NANOMATERIALS 2020; 10:nano10030516. [PMID: 32178407 PMCID: PMC7153471 DOI: 10.3390/nano10030516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 11/18/2022]
Abstract
Fluorescent nanodiamonds are frequently used as biolabels. They have also recently been established for magnetic resonance and temperature sensing at the nanoscale level. To properly use them in cell biology, we first have to understand their intracellular fate. Here, we investigated, for the first time, what happens to diamond particles during and after cell division in yeast (Saccharomyces cerevisiae) cells. More concretely, our goal was to answer the question of whether nanodiamonds remain in the mother cells or end up in the daughter cells. Yeast cells are widely used as a model organism in aging and biotechnology research, and they are particularly interesting because their asymmetric cell division leads to morphologically different mother and daughter cells. Although yeast cells have a mechanism to prevent potentially harmful substances from entering the daughter cells, we found an increased number of diamond particles in daughter cells. Additionally, we found substantial excretion of particles, which has not been reported for mammalian cells. We also investigated what types of movement diamond particles undergo in the cells. Finally, we also compared bare nanodiamonds with lipid-coated diamonds, and there were no significant differences in respect to either movement or intracellular fate.
Collapse
Affiliation(s)
- Aryan Morita
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Thamir Hamoh
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
| | - Felipe P. Perona Martinez
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
| | - Mayeul Chipaux
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
| | - Alina Sigaeva
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
| | - Charles Mignon
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
| | - Kiran J. van der Laan
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
| | - Axel Hochstetter
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK;
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
- Correspondence:
| |
Collapse
|
25
|
Evaluation of the Oxidative Stress Response of Aging Yeast Cells in Response to Internalization of Fluorescent Nanodiamond Biosensors. NANOMATERIALS 2020; 10:nano10020372. [PMID: 32093318 PMCID: PMC7075316 DOI: 10.3390/nano10020372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/31/2022]
Abstract
Fluorescent nanodiamonds (FNDs) are proposed to be used as free radical biosensors, as they function as magnetic sensors, changing their optical properties depending on their magnetic surroundings. Free radicals are produced during natural cell metabolism, but when the natural balance is disturbed, they are also associated with diseases and aging. Sensitive methods to detect free radicals are challenging, due to their high reactivity and transiency, providing the need for new biosensors such as FNDs. Here we have studied in detail the stress response of an aging model system, yeast cells, upon FND internalization to assess whether one can safely use this biosensor in the desired model. This was done by measuring metabolic activity, the activity of genes involved in different steps and the locations of the oxidative stress defense systems and general free radical activity. Only minimal, transient FND-related stress effects were observed, highlighting excellent biocompatibility in the long term. This is a crucial milestone towards the applicability of FNDs as biosensors in free radical research.
Collapse
|
26
|
Torelli MD, Nunn NA, Shenderova OA. A Perspective on Fluorescent Nanodiamond Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902151. [PMID: 31215753 PMCID: PMC6881523 DOI: 10.1002/smll.201902151] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Indexed: 05/28/2023]
Abstract
The field of fluorescent nanodiamonds (FNDs) has advanced greatly over the past few years. Though historically limited primarily to red fluorescence, the wavelengths available for nanodiamonds have increased due to continuous technical advancement. This Review summarizes the strides made in the synthesis, functionalization, and application of FNDs to bioimaging. Highlights range from super-resolution microscopy, through cellular and whole animal imaging, up to constantly emerging fields including sensing and hyperpolarized magnetic resonance imaging.
Collapse
Affiliation(s)
- Marco D. Torelli
- Adámas Nanotechnologies, Inc., 8100 Brownleigh Dr, Suite 120, Raleigh, NC 27617
| | - Nicholas A. Nunn
- Adámas Nanotechnologies, Inc., 8100 Brownleigh Dr, Suite 120, Raleigh, NC 27617
| | - Olga A. Shenderova
- Adámas Nanotechnologies, Inc., 8100 Brownleigh Dr, Suite 120, Raleigh, NC 27617
| |
Collapse
|
27
|
Sigaeva A, Morita A, Hemelaar SR, Schirhagl R. Nanodiamond uptake in colon cancer cells: the influence of direction and trypsin-EDTA treatment. NANOSCALE 2019; 11:17357-17367. [PMID: 31517372 DOI: 10.1039/c9nr04228h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanoparticles are routinely used in cell biology. They deliver drugs or function as labels or sensors. For many of these applications it is essential that the nanoparticles enter the cells. While some cell types readily ingest all kinds of particles, others just don't. We report that uptake can be enhanced for some cells if the particles are administered from the basolateral side of the cells (in this case from below). Compared to apical uptake (from above), we report an 8-fold increase in the number of fluorescent nanodiamonds internalized by the colon cancer cell line HT29. Up to 96% of the cells treated by a modified protocol contain at least one nanodiamond, whereas in the control group we could observe nanodiamonds in less than half of the cells. We were also able to show that simple treatment of cell clusters with trypsin-EDTA leads to the same enhancement of the nanodiamond uptake as seeding the cells on top of the nanoparticles. Although our study is focused on nanodiamonds in HT29 cells, we believe that this method could also be applicable for other nanoparticles and cells with a specific directionality.
Collapse
Affiliation(s)
- Alina Sigaeva
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands.
| | - Aryan Morita
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands. and Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah, Mada, Jl Denta 1, 55281 Yogyakarta, Indonesia
| | - Simon R Hemelaar
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands.
| | - R Schirhagl
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands.
| |
Collapse
|
28
|
Chipaux M, van der Laan KJ, Hemelaar SR, Hasani M, Zheng T, Schirhagl R. Nanodiamonds and Their Applications in Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704263. [PMID: 29573338 DOI: 10.1002/smll.201704263] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/25/2018] [Indexed: 05/21/2023]
Abstract
Diamonds owe their fame to a unique set of outstanding properties. They combine a high refractive index, hardness, great stability and inertness, and low electrical but high thermal conductivity. Diamond defects have recently attracted a lot of attention. Given this unique list of properties, it is not surprising that diamond nanoparticles are utilized for numerous applications. Due to their hardness, they are routinely used as abrasives. Their small and uniform size qualifies them as attractive carriers for drug delivery. The stable fluorescence of diamond defects allows their use as stable single photon sources or biolabels. The magnetic properties of the defects make them stable spin qubits in quantum information. This property also allows their use as a sensor for temperature, magnetic fields, electric fields, or strain. This Review focuses on applications in cells. Different diamond materials and the special requirements for the respective applications are discussed. Methods to chemically modify the surface of diamonds and the different hurdles one has to overcome when working with cells, such as entering the cells and biocompatibility, are described. Finally, the recent developments and applications in labeling, sensing, drug delivery, theranostics, antibiotics, and tissue engineering are critically discussed.
Collapse
Affiliation(s)
- Mayeul Chipaux
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - Kiran J van der Laan
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - Simon R Hemelaar
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - Masoumeh Hasani
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital & Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, 518036, Shenzhen, China
| | - Romana Schirhagl
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| |
Collapse
|