1
|
Zhu X, Xu X, Jiang F, Li Q, Zhang A, Li J, Zhang H. Insights into the aroma volatiles and the changes of expression of ester biosynthesis candidate genes during postharvest storage of European pear. FRONTIERS IN PLANT SCIENCE 2024; 15:1498658. [PMID: 39678004 PMCID: PMC11638670 DOI: 10.3389/fpls.2024.1498658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/07/2024] [Indexed: 12/17/2024]
Abstract
During the storage period after harvest, the presence of volatile esters is essential for European pear aroma. Nevertheless, the specific molecular process underlying the production of volatile esters in European pear remains elusive. In this research, head space solid phase microextraction and gas chromatography-mass spectrometry were employed to examine the volatile compounds of two varieties of European pear. The results revealed the identification of a collective of 149 volatile compounds, which were categorized into 8 groups: esters (37), alcohols (25), alkanes (24), aldehydes (22), terpenes (15), acids (8), ketones (6) and other categories (12). Notably, there were 79 volatile compounds that coexisted in both varieties, which esters are the primary group of volatile compounds found in both varieties. Through transcriptome analysis, we identified 12 candidate genes associated with ester biosynthesis and established their correlation with firmness, ethylene production, and predominant volatile esters. The results from gene expression analysis revealed significant up-regulation of PcFAD2 and PcLIP2 in both varieties and PcFAD6 exhibits low expression levels. The results indicate that the involvement of these three genes in the synthesis of esters in European pear may have a significant level of importance. This study enhances our understanding of the mechanisms involved in the formation of European pear flavor.
Collapse
Affiliation(s)
- Xinxin Zhu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
| | - Xiaofei Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
| | - Fudong Jiang
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Qingyu Li
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Aidi Zhang
- School of Food Engineering, Ludong University, Yantai, China
| | - Jianzhao Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang village, Fushan County, Zhaoyuan, Shandong, China
| |
Collapse
|
2
|
Qi H, Luo J, Wu X, Zhang C. Application of nondestructive techniques for peach (Prunus persica) quality inspection: A review. J Food Sci 2024; 89:6863-6887. [PMID: 39366769 DOI: 10.1111/1750-3841.17388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 10/06/2024]
Abstract
Peaches are highly valued for their rich nutritional content. Traditional fruit quality accessing methods (i.e., manual squeezing the fruit for firmness) are both subjective and destructive, which tend to diminish the integrity of fruit samples, consequently undermining their market value. Compared to traditional detection methods, nondestructive technology offers efficient and noninvasive solutions for rapidly and accurately assessing internal external quality of peaches. This can significantly enhance product classification and quality assurance while reducing the need for extensive human resources and minimizing potential physical damage to peaches. This review provided a comprehensive overview of nondestructive techniques for peach quality evaluation, including visible/near-infrared spectroscopy, machine vision technology, hyperspectral imaging, dielectric and optical properties, fluorescence spectroscopy, electronic nose/tongue, and acoustic vibration methods. It also evaluates the effectiveness of each technique in assessing internal quality, maturity, and disease detection of peaches. The advantages and limitations of each method were also summarized. This study focuses specifically on peaches and encompasses all existing nondestructive testing methods, providing valuable insights and references for future studies in the field of peach quality analysis using nondestructive testing methods.
Collapse
Affiliation(s)
- Hengnian Qi
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Jiahao Luo
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Xiaoping Wu
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Chu Zhang
- School of Information Engineering, Huzhou University, Huzhou, China
| |
Collapse
|
3
|
Zhang Y, Zhang B, Cai Z, Shen Z, Yu M, Ma R. Elucidating the influence of volatile compounds on aroma profiles across peach ( Prunus persica L.) cultivars and offspring exhibiting diverse flesh colors. Curr Res Food Sci 2024; 9:100901. [PMID: 39555025 PMCID: PMC11565541 DOI: 10.1016/j.crfs.2024.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
Yellow- and white-fleshed peach fruits are favored for their diverse flesh colors. While carotenoid accumulation primarily dictates flesh color differences, the influence of volatile compounds on their aromas remains largely unexplored. Here, multiple analytical methods including odor importance assessment, hierarchical clustering, and aroma characterization analysis were employed to investigate volatile compositions and aroma characteristics of the two types of peach, as well as the offspring with identical parentage. Dihydro-β-ionone was the sole volatile exhibiting content and odor importance disparities between the two types of peach, and in descendant cultivars such volatiles encompassed theaspirane additionally. Respectively 16 and 30 important volatiles were identified in the two peach types and in the offspring cultivars, and subsequently overview of their aroma characteristics was obtained from a graphical perspective. The two peach types and offspring cultivars all revealed prevalent floral, fruity and caramel notes, whereas the higher odor activity values and especially the woody odors in the white-fleshed cultivars, as well as the differential balance degrees of the main odor directions defined the distinct aromas. By delving into the pivotal differences in odor directions and aroma profiles between the two types of peach, this research elucidates the aroma distinctions rooted in flesh color variations and paves the way for uncovering aroma formation mechanisms in fruits with varied flesh colors.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, PR China
| | - Binbin Zhang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, PR China
| | - Zhixiang Cai
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, PR China
| | - Zhijun Shen
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, PR China
| | - Mingliang Yu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, PR China
| | - Ruijuan Ma
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, PR China
| |
Collapse
|
4
|
Cao X, Su Y, Zhao T, Zhang Y, Cheng B, Xie K, Yu M, Allan A, Klee H, Chen K, Guan X, Zhang Y, Zhang B. Multi-omics analysis unravels chemical roadmap and genetic basis for peach fruit aroma improvement. Cell Rep 2024; 43:114623. [PMID: 39146179 DOI: 10.1016/j.celrep.2024.114623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Selection of fruits with enhanced health benefits and superior flavor is an important aspect of peach breeding. Understanding the genetic interplay between appearance and flavor chemicals remains a major challenge. We identify the most important volatiles contributing to consumer preferences for peach, thus establishing priorities for improving flavor quality. We quantify volatiles of a peach population consisting of 184 accessions and demonstrate major reductions in the important flavor volatiles linalool and Z-3-hexenyl acetate in red-fleshed accessions. We identify 474 functional gene regulatory networks (GRNs), among which GRN05 plays a crucial role in controlling both red flesh and volatile content through the NAM/ATAF1/2/CUC (NAC) transcription factor PpBL. Overexpressing PpBL results in reduced expression of PpNAC1, a positive regulator for Z-3-hexenyl acetate and linalool synthesis. Additionally, we identify haplotypes for three tandem PpAATs that are significantly correlated with reduced gene expression and ester content. We develop genetic resources for improvement of fruit quality.
Collapse
Affiliation(s)
- Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yike Su
- Laboratory of Fruit Quality Biology/Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China
| | - Yuanyuan Zhang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory of Horticultural Crop Genetic Improvement, Nanjing, Jiangsu 210014, China
| | - Bo Cheng
- Laboratory of Fruit Quality Biology/Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Kaili Xie
- Laboratory of Fruit Quality Biology/Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Mingliang Yu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory of Horticultural Crop Genetic Improvement, Nanjing, Jiangsu 210014, China
| | - Andrew Allan
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Auckland Mail Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Harry Klee
- Laboratory of Fruit Quality Biology/Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China
| | - Yuyan Zhang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory of Horticultural Crop Genetic Improvement, Nanjing, Jiangsu 210014, China.
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, China.
| |
Collapse
|
5
|
Li X, Liu C, Wu J, Xiao X, Zhang L, Chen C, Wilson AS, Song F. Ester-related volatile compounds reveal the diversity and commonalities of different types of late-ripening peaches. J Food Sci 2024; 89:1485-1497. [PMID: 38317483 DOI: 10.1111/1750-3841.16943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/15/2023] [Accepted: 01/01/2024] [Indexed: 02/07/2024]
Abstract
To recognize the key ester-related volatile compounds, 5 types of peaches including 54 late-ripening peach materials were examined by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry and E-nose. Here, a large number of esters were identified to be released by ripe peach fruits and were mainly characterized by fruity, green, and fatty notes. The variety and content of esters had greatly changed within or between cultivars, indicating that the fruit volatiles were highly differentiated depending on the specific genotypes and cultivation conditions. The ester types showed that fatty acid-derived C6 alcohols and methyl-/ethyl- short-chain alcohol were the main ester precursors, which were more likely to be utilized and well selected by alcohol acyltransferases, whereas the preference of acyl donors was not observed. The common peach type, which exhibited a unique volatile profile, displayed broader diversity and more abundant characteristics in ester-related volatiles than the other four types. A total of 19 key esters were identified as the main components and the content of most esters showed no significant difference among different peach types. Some key esters had even been enriched in nectarines. Moreover, the multiple discriminant analysis revealed a possible relationship between peach types and the domestication of the peach evolution. This study investigated ester-related volatiles released by different types of peach fruits and can be further used to evaluate the peach qualities, providing an important reference for peach breeding and processing.
Collapse
Affiliation(s)
- Xiaoying Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry, Beijing Technology and Business University, Beijing, China
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Chunsheng Liu
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Junkai Wu
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Xiao Xiao
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Libin Zhang
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Caixia Chen
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Annette S Wilson
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fuhang Song
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
6
|
Pieper JR, Anthony BM, Chaparro JM, Prenni JE, Minas IS. Rootstock vigor dictates the canopy light environment that regulates metabolite profile and internal fruit quality development in peach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108449. [PMID: 38503188 DOI: 10.1016/j.plaphy.2024.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
Five rootstock cultivars of differing vigor: vigorous ('Atlas™' and 'Bright's Hybrid® 5'), standard ('Krymsk® 86' and 'Lovell') and dwarfing ('Krymsk® 1') grafted with 'Redhaven' as the scion were studied for their impact on productivity, mid-canopy photosynthetic active radiation transmission (i.e., light availability) and internal fruit quality. Αverage yield (kg per tree) and fruit count increased significantly with increasing vigor (trunk cross sectional area, TCSA). Α detailed peach fruit quality analysis on fruit of equal maturity (based on the index of absorbance difference, IAD) coming from trees with equal crop load (no. of fruit cm-2 of TCSA) characterized the direct impact of rootstock vigor on peach internal quality [dry matter content (DMC) and soluble solids concentration (SSC)]. DMC and SSC increased significantly with decreasing vigor and increasing light availability, potentially due to reduced intra-tree shading and better light distribution within the canopy. Physiologically characterized peach fruit mesocarp was further analyzed by non-targeted metabolite profiling using gas chromatography mass spectrometry (GC-MS). Metabolite distribution was associated with rootstock vigor class, mid-canopy light availability and fruit quality characteristics. Fructose, glucose, sorbose, neochlorogenic and quinic acids, catechin and sorbitol were associated with high light environments and enhanced quality traits, while sucrose, butanoic and malic acids related to low light conditions and inferior fruit quality. These outcomes show that while rootstock genotype and vigor are influencing peach tree productivity and yield, their effect on manipulating the light environment within the canopy also plays a significant role in fruit quality development.
Collapse
Affiliation(s)
- Jeff R Pieper
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brendon M Anthony
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jacqueline M Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ioannis S Minas
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
7
|
Wu J, Cao J, Chen J, Huang L, Wang Y, Sun C, Sun C. Detection and classification of volatile compounds emitted by three fungi-infected citrus fruit using gas chromatography-mass spectrometry. Food Chem 2023; 412:135524. [PMID: 36736184 DOI: 10.1016/j.foodchem.2023.135524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Citrus fruit produced some characteristic volatile compounds when infected by fungi compared with the healthy fruit. In the present study, volatile metabolites of postharvest citrus fruit with three different diseases including stem-end rot, blue mold and green mold were detected. Multivariate analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were employed to classify the volatile compounds between the infected and non-infected citrus fruit. The results indicated that volatile compounds of unrotten, unrotten-rotten junction, and rotten tissues were successfully classified. Importantly, eight volatile compounds as biomarkers for stem-end rot and one biomarker for green mold of citrus were screened to discriminate the infected citrus fruit. This study offers the application potential of odor profiling of volatile compounds for detecting the fungi infection in postharvest citrus fruit.
Collapse
Affiliation(s)
- Jue Wu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, PR China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, PR China
| | - Jiebiao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, PR China
| | - Lingxia Huang
- College of Animal Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, PR China
| | - Cui Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, PR China.
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
8
|
Mihaylova D, Popova A, Dincheva I. Pattern Recognition of Varieties of Peach Fruit and Pulp from Their Volatile Components and Metabolic Profile Using HS-SPME-GC/MS Combined with Multivariable Statistical Analysis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3219. [PMID: 36501259 PMCID: PMC9737851 DOI: 10.3390/plants11233219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
A fruit's aroma profile, composed of a complex mixture of volatile organic compounds, is among the core attributes related to the overall taste and consumer preference. Prunus persica L. is a preferred summer fruit with a distinct, favorable olfactory characteristic. The volatile compositions of both peach fruits and fruit pulps from eight peach cultivars (four native and four introduced) was investigated to compare their composition and assess flavor-contributing compounds. In total, 65 compounds were profiled after a HS-SPME-GC-MS analysis: 16 esters, 14 aldehydes, 5 alcohols, 7 hydrocarbons, 7 ketones, 8 acids, and 8 terpenes. The most common compounds were esters, acids, and aldehydes. Although the same compounds were identified in both fruit and pulp, their %TIC (total ion current) differed in favor of the whole fruit. Following the metabolic profiling of the whole fruit and fruit pulp, a total of 44 compounds were identified from the studied varieties. Among them, amino acids, organic acids, sugar alcohols, saccharides, fatty acids, and phenolic acids were identified as existing groups. According to the provided principal component analysis (PCA) and hierarchical cluster analysis (HCA), the relative %TIC of the identified volatile compounds fluctuated depending on the studied cultivar. No differences were visible in the PCA biplots, which suggested that the polar and lipid metabolites do not provide significant variations when considering different parts of the fruit, contrary to the volatile compounds. The obtained results could successfully be applied in the metabolic chemotaxonomy of peaches and the differentiation of the metabolites present in different parts of the peach.
Collapse
Affiliation(s)
- Dasha Mihaylova
- Department of Biotechnology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Aneta Popova
- Department of Catering and Nutrition, Economics Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Ivayla Dincheva
- Department of Agrobiotechnologies, AgroBioInstitute, Agricultural Academy, 1164 Sofia, Bulgaria
| |
Collapse
|
9
|
Identification of the key genes contributing to the LOX-HPL volatile aldehyde biosynthesis pathway in jujube fruit. Int J Biol Macromol 2022; 222:285-294. [PMID: 36150569 DOI: 10.1016/j.ijbiomac.2022.09.155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Jujube (Ziziphus jujuba Mill.) is a traditional popular fruit widely grown in China. The volatiles in jujube determine its unique flavor and the high fruit quality required by consumers. However, the biosynthesis of volatiles in jujube were remain unknown. By using gas chromatography-mass spectrometry, there were 46 volatile compounds were identified and determined from three representative jujube fruit types at six developmental stages, including the dry-used (Z. jujuba cv. 'Junzao'), the fresh-used (Z. jujuba cv. 'Dongzao'), and wild jujube (Z. jujuba var. spinosa Hu. cv. 'Qingjiansuanzao'). The aldehydes were identified as major volatile contributors to flavor, of which (E)-2-hexenal was the primary volatile in jujube fruit. Then LOX and HPL gene family were identified in jujube, which were involved in aldehyde biosynthesis through the lipoxygenase-hydroperoxide lyase (LOX-HPL) pathway. Gene expression analysis suggested that ZjLOX3, ZjLOX4, and ZjHPL1 were highly correlated with the accumulation of (E)-2-hexenal, and their proteins were localized to the nucleus and cytoplasm. Transient over-expression of ZjLOX3, ZjLOX4, and ZjHPL1 in jujube fruit significantly enhanced the accumulation of (E)-2-hexenal. Our study provides valuable information on the major volatiles and their biosynthesis in different types of jujube fruit. These results will help determine flavor improvements for future breeding.
Collapse
|
10
|
Physicochemical Characteristics, Antioxidant Activities, and Aroma Compound Analysis of Seven Peach Cultivars (Prunus persica L. Batsch) in Shihezi, Xinjiang. Foods 2022; 11:foods11192944. [PMID: 36230020 PMCID: PMC9563965 DOI: 10.3390/foods11192944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Peaches are tasty and juicy, with a unique flavor. The flavors of peaches always vary with cultivars. To investigate the physicochemical and aroma characteristics of peaches, the sugars, organic acids, total flavonoids, phenols, antioxidant activities, and aroma compounds of seven peach cultivars in Xinjiang were determined using high-performance liquid chromatography (HPLC) and headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME–GC–MS). The results showed that sucrose (59.83 to 87.34%), malic acid (32.41 to 59.14%), and chlorogenic acid (10.43 to 45.50%) were the dominant sugar, organic acid, and phenolic compound in peaches, respectively. The antioxidant activity varied between 147.81 and 394.55 μmol TEs/100 g. The analysis of the aroma structure of peaches found that the volatile composition of peaches was relatively consistent, though the concentration of total aroma and certain separate compounds were different between cultivars. Meanwhile, the aroma fingerprint of the peaches consisted of hexyl acetate, cis-3-hexenyl acetate, γ-decalactone, n-hexanal, 2-hexenal, nonanal, decanal benzaldehyde and 6-pentylpyran-2-one, providing a clear green, sweet, floral, and fruity odor. These results provide complete information on the physicochemical properties, functional ingredients and aroma of the peaches.
Collapse
|
11
|
Luo Y, Wang K, Zhuang H, Li D, Meng X, Shi M, Yao L, Song S, Sun M, Wang H, Feng T. Elucidation of aroma compounds in passion fruit (Passiflora alata Ait) using a molecular sensory approach. J Food Biochem 2022; 46:e14224. [PMID: 35561053 DOI: 10.1111/jfbc.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Abstract
In this experiment, Guangxi passion fruit was used as the raw material for natural aroma extraction using the spinning cone column (Spinning Cone Column, SCC) technique. In combination with the semi-quantitative method, the aroma characteristics of the raw pulp (raw whole-fruit puree, PU) before SCC processing, residue (Residue, RS) and extract (Extract, EX) after SCC processing, and passion fruit juice (Juice, JU) were evaluated for their aroma characteristics using headspace gas chromatography-mass spectrometry (HS-SPME-GC-MS), gas chromatography-ion mobility spectrometry (GC-IMS), electronic nose, and sensory evaluation. As a result, a total of 110 aroma substances were detected in four samples, and 33, 38, 73, and 28 aroma components were detected from PU, RS, EX, and JU, respectively. There are 50 compounds in EX with concentrations greater than 10 μg/kg, and 19 of them had OAV values greater than 1, including β-Ionone and linalool, which contributed significantly to the aroma. The aroma profiles and characteristics were further analyzed for JU and EX using the e-nose sensor, and it was found that both showed similar aroma profiles. The sensory evaluation results were also in general agreement with the results obtained from the electronic nose, with EX having mainly "floral", "fruity," and "sweet" aromas. The results demonstrated that the spinning cone column technique can increase the fresh and natural fruity aroma of passion fruit in the extract, which has the effect of enriching the aroma and improving the aftertaste. This study will make a foundation for passion fruit SCC extract application in drinks. PRACTICAL APPLICATIONS: Compared with traditional extraction technology, spinning cone column technology has the advantages of high mass transfer efficiency, short extraction time, a wide range of temperature control, and the most complete extracted flavor substances, which greatly reduces the damage degree of heat-sensitive flavor substances and condense aroma. It is widely used in beverages, wine, dairy products, fruit and vegetable, spice essential oil, and other industries. Passion fruit flavor prepared by SCC technology has the advantages of high purity and high concentration, which can be used in solid drinks, baked food, convenience food, tobacco, perfume, and other products. Besides, GC-IMS is an efficient and rapid new analytical technique, which has been widely used in the flavor analysis of volatile organic compounds in food and traditional Chinese medicine samples.
Collapse
Affiliation(s)
- Yang Luo
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Kai Wang
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Haining Zhuang
- School of Health & Society Care, Shanghai Urban Construction Vocational College, Shanghai, China
| | - Dejun Li
- R&D Center of Shanghai Apple Flavor & Fragrance Group Co., Ltd., Shanghai, China
| | - Xianle Meng
- R&D Center of Shanghai Apple Flavor & Fragrance Group Co., Ltd., Shanghai, China
| | - Mingliang Shi
- R&D Center of Shanghai Apple Flavor & Fragrance Group Co., Ltd., Shanghai, China
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
12
|
Study on the Application of Electronic Nose Technology in the Detection for the Artificial Ripening of Crab Apples. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Ripening agents can accelerate the ripening of fruits and maintain a similar appearance to naturally ripe fruits, but the fruit flavor and quality will be changed compared to naturally ripe fruits. To find an efficient detection method to distinguish whether crab apples were artificial ripened, the naturally ripe and artificially ripe fruits were detected and analyzed using the electronic nose (e-nose) technique in this study. The fruit quality indexes of samples were determined by the traditional method as a reference. Significant differences were found between naturally ripe and artificially ripe fruits based on the analysis of soluble sugar content, titratable acidity content, sugar–acid ratio, soluble protein content, and soluble solids content. In addition, principal component analysis (PCA), linear discriminant analysis (LDA), support vector machine (SVM), and random forest (RF) analyses were performed on the electrical signals generated by the electronic nose sensor, respectively. The results showed that the RF is the best recognition algorithm for distinguishing which crab apples were naturally ripe or artificially ripe; the average recognition accuracy is 98.3%. On the other hand, the prediction models between the e-nose response data and fruit quality indexes were constructed by partial least squares regression (PLSR), which showed that the feature value of e-nose response curves extracted by wavelet transform was highly correlated with the quality indexes of fruits, the determination coefficients (R2) of regression models were higher than 0.91. The results demonstrated that the detection technology with an electronic nose could be used to test whether the fruit of the crab apple was artificially ripe, which is an economical and efficient method.
Collapse
|
13
|
Comparison of Aroma Trait of the White-Fleshed Peach ‘Hu Jing Mi Lu’ and the Yellow-Fleshed Peach ‘Jin Yuan’ Based on Odor Activity Value and Odor Characteristics. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Peach flesh colors and aromas impact greatly on consumer behaviors and these two traits are closely associated in white- and yellow-fleshed peaches. However, current understanding of their aromas is rather limited and confined to the concentration differences of some volatiles. Therefore, this study aims to compare the overall aromas of the white-fleshed peach ‘Hu Jing Mi Lu’ (HJML) and yellow-fleshed peach ‘Jin Yuan’ (JY), two fresh cultivars with intense aromas and industrial influence by applications such as HS-SPME/GC-MS analysis, odor activity value evaluations, and odor note analysis. The significant contributions of 26 odor-active compounds to their aromas were revealed. Among which, 15 compounds showed no concentration differences and contributed to the fruity, floral, sweet, etc., odors in both HJML and JY; (E)-2-nonenal, 1-pentanol, and styrene showed significantly higher concentrations in HJML and conveyed much stronger fusel-like and balsamic odors; likewise, (Z)-3-hexenyl acetate, octanal, nonanal, and 3,5-octadien-2-one showed significantly higher concentrations in JY and conveyed much stronger banana, citrus-like, and honey odors; besides, benzyl alcohol, 1-heptanol, 1-octen-3-ol, and 3-octanone with woody, earthy, mushroom, and lavender odors were exclusively detected in HJML. Overall, apart from the common and stronger specific odors in either the white- or yellow-fleshed peach cultivar, the white-fleshed peach was endowed with a unique aroma.
Collapse
|
14
|
Zhou Y, Abbas F, Wang Z, Yu Y, Yue Y, Li X, Yu R, Fan Y. HS-SPME-GC-MS and Electronic Nose Reveal Differences in the Volatile Profiles of Hedychium Flowers. Molecules 2021; 26:5425. [PMID: 34500858 PMCID: PMC8433901 DOI: 10.3390/molecules26175425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Floral fragrance is one of the most important characteristics of ornamental plants and plays a pivotal role in plant lifespan such as pollinator attraction, pest repelling, and protection against abiotic and biotic stresses. However, the precise determination of floral fragrance is limited. In the present study, the floral volatile compounds of six Hedychium accessions exhibiting from faint to highly fragrant were comparatively analyzed via gas chromatography-mass spectrometry (GC-MS) and Electronic nose (E-nose). A total of 42 volatile compounds were identified through GC-MS analysis, including monoterpenoids (18 compounds), sesquiterpenoids (12), benzenoids/phenylpropanoids (8), fatty acid derivatives (2), and others (2). In Hedychium coronarium 'ZS', H. forrestii 'Gaoling', H. 'Jin', H. 'Caixia', and H. 'Zhaoxia', monoterpenoids were abundant, while sesquiterpenoids were found in large quantities in H. coccineum 'KMH'. Hierarchical clustering analysis (HCA) divided the 42 volatile compounds into four different groups (I, II, III, IV), and Spearman correlation analysis showed these compounds to have different degrees of correlation. The E-nose was able to group the different accessions in the principal component analysis (PCA) corresponding to scent intensity. Furthermore, the pattern-recognition findings confirmed that the E-nose data validated the GC-MS results. The partial least squares (PLS) analysis between floral volatile compounds and sensors suggested that specific sensors were highly sensitive to terpenoids. In short, the E-nose is proficient in discriminating Hedychium accessions of different volatile profiles in both quantitative and qualitative aspects, offering an accurate and rapid reference technique for future applications.
Collapse
Affiliation(s)
- Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (F.A.); (Z.W.); (Y.Y.); (Y.Y.); (X.L.)
| | - Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (F.A.); (Z.W.); (Y.Y.); (Y.Y.); (X.L.)
| | - Zhidong Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (F.A.); (Z.W.); (Y.Y.); (Y.Y.); (X.L.)
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (F.A.); (Z.W.); (Y.Y.); (Y.Y.); (X.L.)
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (F.A.); (Z.W.); (Y.Y.); (Y.Y.); (X.L.)
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (F.A.); (Z.W.); (Y.Y.); (Y.Y.); (X.L.)
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (F.A.); (Z.W.); (Y.Y.); (Y.Y.); (X.L.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
15
|
Cao X, Wei C, Duan W, Gao Y, Kuang J, Liu M, Chen K, Klee H, Zhang B. Transcriptional and epigenetic analysis reveals that NAC transcription factors regulate fruit flavor ester biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:785-800. [PMID: 33595854 DOI: 10.1111/tpj.15200] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 05/27/2023]
Abstract
Flavor-associated volatile chemicals make major contributions to consumers' perception of fruits. Although great progress has been made in establishing the metabolic pathways associated with volatile synthesis, much less is known about the regulation of those pathways. Knowledge of how those pathways are regulated would greatly facilitate efforts to improve flavor. Volatile esters are major contributors to fruity flavor notes in many species, providing a good model to investigate the regulation of volatile synthesis pathways. Here we initiated a study of peach (Prunus persica L. Batsch) fruits, and identified that the alcohol acyltransferase PpAAT1 contributes to ester formation. We next identified the transcription factor (TF) PpNAC1 as an activator of PpAAT1 expression and ester production. These conclusions were based on in vivo and in vitro experiments and validated by correlation in a panel of 30 different peach cultivars. Based on homology between PpNAC1 and the tomato (Solanum lycopersicum) TF NONRIPENING (NOR), we identified a parallel regulatory pathway in tomato. Overexpression of PpNAC1 enhances ripening in a nor mutant and restores synthesis of volatile esters in tomato fruits. Furthermore, in the NOR-deficient mutant tomatoes generated by CRISPR/Cas9, lower transcript levels of SlAAT1 were detected. The apple (Malus domestica) homolog MdNAC5 also stimulates MdAAT1 expression via binding to this gene's promoter. In addition to transcriptional control, epigenetic analysis showed that increased expression of NACs and AATs is associated with removal of the repressive mark H3K27me3 during fruit ripening. Our results support a conserved molecular mechanism in which NAC TFs activate ripening-related AAT expression, which in turn catalyzes volatile ester formation in multiple fruit species.
Collapse
Affiliation(s)
- Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Chunyan Wei
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Wenyi Duan
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Ying Gao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jianfei Kuang
- Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Harry Klee
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Horticultural Sciences, Plant Innovation Center, Genetic Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
16
|
Exploring the Lipids Involved in the Formation of Characteristic Lactones in Japanese Black Cattle. Metabolites 2021; 11:metabo11040203. [PMID: 33805322 PMCID: PMC8067244 DOI: 10.3390/metabo11040203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
The meat from Japanese Black cattle (Japanese Wagyu) is finely marbled and exhibits a rich and sweet aroma known as Wagyu beef aroma. To clarify the key metabolites involved in the aroma, we analyzed the correlation between lactone and lipid composition in Japanese Black cattle. Using gas chromatography-olfactometry, we identified 39 characteristic odorants of the intermuscular fat. Seven characteristic lactones considered to be involved in Wagyu beef aroma were quantified and compared in the marbled area and intermuscular fat using a stable isotope dilution assay. Among them, γ-hexalactone was the only lactone whose level was significantly higher in the marbled area. To explore the lipid species involved in lactone formation, we analyzed samples with different aroma characteristics. Liquid chromatography-mass spectrometry revealed eight lipid classes and showed significant differences in triacylglycerides (TAGs). To determine the molecular species of TAGs, we performed high-performance liquid chromatography analysis and identified 14 TAG species. However, these analyses showed that seven lactones had a low correlation with the TAGs. However, γ-hexalactone showed a positive correlation with linoleic acid. This study suggests that lipid composition affects the characteristic lactone profile involved in the Wagyu beef aroma.
Collapse
|
17
|
Fei C, Ren C, Wang Y, Li L, Li W, Yin F, Lu T, Yin W. Identification of the raw and processed Crataegi Fructus based on the electronic nose coupled with chemometric methods. Sci Rep 2021; 11:1849. [PMID: 33473146 PMCID: PMC7817683 DOI: 10.1038/s41598-020-79717-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022] Open
Abstract
Crataegi Fructus (CF) is widely used as a medicinal and edible material around the world. Currently, different types of processed CF products are commonly found in the market. Quality evaluation of them mainly relies on chemical content determination, which is time and money consuming. To rapidly and nondestructively discriminate different types of processed CF products, an electronic nose coupled with chemometrics was developed. The odour detection method of CF was first established by single-factor investigation. Then, the sensor array was optimised by a stepwise discriminant analysis (SDA) and analysis of variance (ANOVA). Based on the best-optimised sensor array, the digital and mode standard were established, realizing the odour quality control of samples. Meanwhile, mathematical prediction models including the discriminant formula and back-propagation neural network (BPNN) model exhibited good evaluation with a high accuracy rate. These results suggest that the developed electronic nose system could be an alternative way for evaluating the odour of different types of processed CF products.
Collapse
Affiliation(s)
- Chenghao Fei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenchen Ren
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yulin Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangzhou Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wu Yin
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
18
|
Rao J, Zhang Y, Yang Z, Li S, Wu D, Sun C, Chen K. Application of electronic nose and GC–MS for detection of strawberries with vibrational damage. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
This study evaluated the potential of using electronic nose (e-nose) technology to non-destructively detect strawberry fruits with vibrational damage based on their volatile substances (VOCs).
Materials and methods
Four groups of strawberries with different durations of vibrations (0, 0.5, 1, and 2 h) were prepared, and their e-nose signals were collected at 0, 1, 2, and 3 days after vibration treatment.
Results
The results showed that when the samples from all four sampling days during storage were used for modelling, both the levels of vibrational damage and the day after the damage happened were accurately predicted. The best models had residual prediction deviation values of 2.984 and 5.478. The discrimination models for damaged strawberries also obtained good classification results, with an average correct answer rate of calibration and prediction of 99.24%. When the samples from each sampling day or vibration time were used for modelling, better results were obtained, but these models were not suitable for an actual situation. The gas chromatography–mass spectrophotometry results showed that the VOCs of the strawberries varied after experiencing vibrations, which was the basis for e-nose detection.
Limitations
The changes in VOCs released by other forces should be studied in the future.
Conclusions
The above results showed the potential use of e-nose technology to detect strawberries that have suffered vibrational damage.
Collapse
Affiliation(s)
- Jingshan Rao
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Yuchen Zhang
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Zhichao Yang
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Shaojia Li
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Di Wu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Zhejiang University Zhongyuan Institute, Zhengzhou, China
| | - Chongde Sun
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Kunsong Chen
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Lin L, Xu M, Ma L, Zeng J, Zhang F, Qiao Y, Wu Z. A rapid analysis method of safflower (Carthamus tinctorius L.) using combination of computer vision and near-infrared. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118360. [PMID: 32330825 DOI: 10.1016/j.saa.2020.118360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
The quality of safflower (Carthamus tinctorius L.) in the market is uneven due to the problems of dyeing and adulteration of safflower, and there is no perfect standard for the classification of quality grade of safflower at present. In this study, computer vision (CV) and near-infrared (NIR) were combined to realize the rapid and nondestructive analysis of safflower. First, the partial least squares discrimination analysis (PLS-DA) model was used to qualitatively identify the dyed safflower from 150 samples. Then the partial least squares (PLS) model was used for quantitative analysis of the hydroxy safflower yellow pigment A (HSYA) and water extract of undyed safflower. Herein, the discrimination rate of PLS-DA model reached 100%, and the residual predictive deviation (RPD) values of the PLS models for HSYA and water extract were 2.5046 and 5.6195, respectively. It indicated that the rapid analysis method combining CV and NIR was reliable, and its results can provide important reference for the formulation of safflower quality classification standards in the market.
Collapse
Affiliation(s)
- Ling Lin
- Beijing University of Chinese Medicine, Beijing 100102, China
| | - Manfei Xu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lijuan Ma
- Beijing University of Chinese Medicine, Beijing 100102, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, Beijing 100102, China
| | - Jingqi Zeng
- Fujian University of Traditional Chinese Medicine, College of Pharmacy, Fuzhou 350122, Fujian, China
| | - Fangyu Zhang
- Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yanjiang Qiao
- Beijing University of Chinese Medicine, Beijing 100102, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, Beijing 100102, China
| | - Zhisheng Wu
- Beijing University of Chinese Medicine, Beijing 100102, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, Beijing 100102, China.
| |
Collapse
|
20
|
Ruengdech A, Siripatrawan U. Visualization of mulberry tea quality using an electronic sensor array, SPME-GC/MS, and sensory evaluation. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Fish meal freshness detection by GBDT based on a portable electronic nose system and HS-SPME–GC–MS. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03462-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Liu C, Qiao X, Li Q, Zeng W, Wei S, Wang X, Chen Y, Wu X, Wu J, Yin H, Zhang S. Genome-wide comparative analysis of the BAHD superfamily in seven Rosaceae species and expression analysis in pear (Pyrus bretschneideri). BMC PLANT BIOLOGY 2020; 20:14. [PMID: 31914928 PMCID: PMC6950883 DOI: 10.1186/s12870-019-2230-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/30/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND The BAHD acyltransferase superfamily exhibits various biological roles in plants, including regulating fruit quality, catalytic synthesizing of terpene, phenolics and esters, and improving stress resistance. However, the copy numbers, expression characteristics and associations with fruit aroma formation of the BAHD genes remain unclear. RESULTS In total, 717 BAHD genes were obtained from the genomes of seven Rosaceae, (Pyrus bretschneideri, Malus domestica, Prunus avium, Prunus persica, Fragaria vesca, Pyrus communis and Rubus occidentalis). Based on the detailed phylogenetic analysis and classifications in model plants, we divided the BAHD family genes into seven groups, I-a, I-b, II-a, II-b, III-a, IV and V. An inter-species synteny analysis revealed the ancient origin of BAHD superfamily with 78 syntenic gene pairs were detected among the seven Rosaceae species. Different types of gene duplication events jointly drive the expansion of BAHD superfamily, and purifying selection dominates the evolution of BAHD genes supported by the small Ka/Ks ratios. Based on the correlation analysis between the ester content and expression levels of BAHD genes at different developmental stages, four candidate genes were selected for verification as assessed by qRT-PCR. The result implied that Pbr020016.1, Pbr019034.1, Pbr014028.1 and Pbr029551.1 are important candidate genes involved in aroma formation during pear fruit development. CONCLUSION We have thoroughly identified the BAHD superfamily genes and performed a comprehensive comparative analysis of their phylogenetic relationships, expansion patterns, and expression characteristics in seven Rosaceae species, and we also obtained four candidate genes involved in aroma synthesis in pear fruit. These results provide a theoretical basis for future studies of the specific biological functions of BAHD superfamily members and the improvement of pear fruit quality.
Collapse
Affiliation(s)
- Chunxin Liu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xin Qiao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Qionghou Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Weiwei Zeng
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shuwei Wei
- Shandong Institute of Pomology, Taian, 271000, Shandong, China
| | - Xin Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yangyang Chen
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jun Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hao Yin
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
23
|
Cao X, Xie K, Duan W, Zhu Y, Liu M, Chen K, Klee H, Zhang B. Peach Carboxylesterase PpCXE1 Is Associated with Catabolism of Volatile Esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5189-5196. [PMID: 30997798 DOI: 10.1021/acs.jafc.9b01166] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Peach fruit volatile acetate esters impact consumer sensory preference and contribute to defense against biotic stresses. Previous studies showed that alcohol acyltransferase (AAT) family PpAAT1 is correlated with volatile ester formation in peach fruits. However, fruits also contain carboxylesterase (CXE) enzymes that hydrolyze esters. The functions of this family with regard to volatile ester content has not been explored. Here, we observed that content of acetate ester was negatively correlated with expression of PpCXE1. Recombinant PpCXE1 protein exhibited hydrolytic activity toward acetate esters present in peach fruit. Kinetic analysis showed that PpCXE1 showed the highest catalytic activity toward E-2-hexenyl acetate. Subcellular localization demonstrated that PpCXE1 is present in the cytoplasm. Transient expression in peach fruit and stable overexpression in tomato fruit resulted in significant reduction of volatile esters in vivo. Taken together, the results indicate that PpCXE1 expression is associated with catabolism of volatile acetate esters in peach fruit.
Collapse
Affiliation(s)
- Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology , Zhejiang University , Zijingang Campus , Hangzhou 310058 , China
| | - Kaili Xie
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology , Zhejiang University , Zijingang Campus , Hangzhou 310058 , China
| | - Wenyi Duan
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology , Zhejiang University , Zijingang Campus , Hangzhou 310058 , China
| | - Yunqi Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences , Sichuan University , Chengdu 610065 , China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences , Sichuan University , Chengdu 610065 , China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology , Zhejiang University , Zijingang Campus , Hangzhou 310058 , China
| | - Harry Klee
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology , Zhejiang University , Zijingang Campus , Hangzhou 310058 , China
- Horticultural Sciences, Plant Innovation Center, Genetic Institute , University of Florida , Gainesville , Florida 32611 , United States
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology , Zhejiang University , Zijingang Campus , Hangzhou 310058 , China
| |
Collapse
|