1
|
Adiraju A, Jalasutram A, Al-Hamry A, Talbi M, Wang J, Tegenkamp C, Kanoun O. Laser-induced fibers and copper phthalocyanine modified laser-induced graphene electrodes for sensitive and selective electrochemical detection of nitrite. RSC Adv 2024; 14:28648-28658. [PMID: 39252996 PMCID: PMC11381946 DOI: 10.1039/d4ra03341h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
We have recently reported laser-induced fibers (LIF) as a promising nanomaterial that possesses good electrochemical activity and are easily manufacturable. In this paper, for the first time, the application of LIF as functionalization materials on laser-induced graphene (LIG) electrodes for the detection of nitrate is demonstrated. The as-fabricated LIF surfaces on Kapton were extracted by ultrasonication as a dispersion and were used to modify the surface of the LIG electrode. An enhancement in active surface area from 0.669 cm2 for bare LIG to 0.83 cm2 for LIF-modified LIG was observed. Similarly, the heterogeneous electron transfer rate increased from 0.190 to 0.346 cm s-1 for LIF/LIG electrodes. The electrochemical detection of nitrite was achieved by modifying the LIG with a nanocomposite of LIF and copper phthalocyanine (CuPc). The presence of CuPc provided the desired catalytic activity towards the oxidation of nitrite, and the LIF enhanced the electron transfer to the electrode. Such a synergetic combination of the LIF embedded with CuPc enabled reaching a low limit of detection (LoD) of 0.12 μM, a large linear range from 10 to 10 000 μM and good selectivity in the presence of potential interferants. The sensor had a long shelf life of 30 days and good analytical capability to detect nitrite in mineral, tap, and groundwater. The potential of LIF is largely unexplored and the findings reported here on the fibers would open manifold opportunities for realizing novel applications.
Collapse
Affiliation(s)
- Anurag Adiraju
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology 09107 Chemnitz Germany
| | - Aditya Jalasutram
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology 09107 Chemnitz Germany
| | - Ammar Al-Hamry
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology 09107 Chemnitz Germany
| | - Malak Talbi
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology 09107 Chemnitz Germany
| | - Junfei Wang
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology 09107 Chemnitz Germany
| | - Christoph Tegenkamp
- Analysis of Solid Surfaces, Institute for Physics, Chemnitz University of Technology 09107 Chemnitz Germany
| | - Olfa Kanoun
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology 09107 Chemnitz Germany
| |
Collapse
|
2
|
Morawska K, Wardak C. Application of ionic liquids in ion-selective electrodes and reference electrodes: A review. Chemphyschem 2024; 25:e202300818. [PMID: 38252078 DOI: 10.1002/cphc.202300818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
Ionic liquids (ILs) are organic chemical compounds that are composed only of ions, a large organic cation and a smaller inorganic or organic anion. These are salts whose melting point is lower than the boiling point of water. ILs have many interesting properties, thanks to which they find great practical applications in analytics, electrochemistry, separation techniques, catalysis and others. One of the many areas of application of ionic liquids is sensors especially electrochemical sensors including ion-selective electrodes. In this case, the properties of ILs that are particularly useful include very good electrical conductivity, high electrochemical stability, good extraction properties, hydrophobic character and compatibility with other materials, e. g. polyvinyl chloride plasticizers or carbon nanomaterials. ILs were used as components of ion-selective membranes, both polymeric ones based on PVC and membranes in carbon paste electrodes. ILs performed various functions in these membranes, including lipophilic ionic additive, ionophore/ion exchanger, plasticizer, transducer media and matrix. They were also used as a component of the intermediate layer in solid contact ISEs. The last chapter presents examples of the use of ILs in reference electrodes. This review discusses the use of ionic liquids in ion-selective electrodes (ISEs) and reference electrodes over the last ten years.
Collapse
Affiliation(s)
- Klaudia Morawska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Cecylia Wardak
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| |
Collapse
|
3
|
Hossain MI, Khaleque MA, Ali MR, Bacchu MS, Hossain MS, Shahed SMF, Saad Aly MA, Khan MZH. Development of electrochemical sensors for quick detection of environmental (soil and water) NPK ions. RSC Adv 2024; 14:9137-9158. [PMID: 38505387 PMCID: PMC10949039 DOI: 10.1039/d4ra00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024] Open
Abstract
All over the world, technology is becoming more and more prevalent in agriculture. Different types of instruments are already being used in this sector. For the time being, every farmer is trying to produce more crops on a piece of land. Eventually, soil loses its nutrients; however, to grow more crops, farmers use more fertilizers without knowing the proper conditions of the soil in real time. To overcome this issue, many scientists have recently focused on developing electrochemical sensors to detect macronutrients, i.e., nitrogen (N), phosphorus (P), and potassium (K), in soil or water rapidly. In this review, we focus mainly on the recent developments in electrochemical sensors used for the detection of nutrients (NPK) in different types of samples. As it is outlined, the use of smart and portable electrochemical sensors can be helpful for the reduction of excess fertilizer and can play a vital role in maintaining suitable conditions in soils and water. We are optimistic that this review can guide researchers in the development of a portable and suitable NPK detection system for soil nutrients.
Collapse
Affiliation(s)
- M I Hossain
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 740S Bangladesh
- Department of Chemical Engineering, Jashore University of Science and Technology (JUST) Jashore 740S Bangladesh
| | - M A Khaleque
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 740S Bangladesh
- Department of Chemical Engineering, Jashore University of Science and Technology (JUST) Jashore 740S Bangladesh
| | - M R Ali
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 740S Bangladesh
- Department of Chemical Engineering, Jashore University of Science and Technology (JUST) Jashore 740S Bangladesh
| | - M S Bacchu
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 740S Bangladesh
- Department of Chemical Engineering, Jashore University of Science and Technology (JUST) Jashore 740S Bangladesh
| | - M S Hossain
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 740S Bangladesh
- Department of Chemical Engineering, Jashore University of Science and Technology (JUST) Jashore 740S Bangladesh
| | - S M F Shahed
- Department of ChemisOy, Graduate School of Science, Tohohi University Aramah'-Aza- Aoba, Aoba-Kii Sendai 9S0S57S Japan
| | - M Aly Saad Aly
- Department of Electrical and Computer Engineering at Georgia Tech Shenzhen Institute (GTSI), Tianjin University Shenzhen Guangdong 5ISO52 China
| | - Md Z H Khan
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 740S Bangladesh
- Department of Chemical Engineering, Jashore University of Science and Technology (JUST) Jashore 740S Bangladesh
| |
Collapse
|
4
|
Jantra J, Arsawiset S, Teepoo S, Keeratirawee K. Rapid colorimetric assay based on the oxidation of 2,2-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid-diammonium salt for nitrite detection in meat products. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:72-80. [PMID: 38146233 DOI: 10.1080/03601234.2023.2297639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
This work developed a rapid colorimetric method for nitrite detection in meat products. The detection was based on the reaction of nitrite with 60 mM HCl to produce radicals which further oxidized ABTS (50 µM) to form a water-soluble blue-green product (ABTS•+). The absorbance was measured at a maximum absorption wavelength of 412.5 nm. Parameters such as concentration of HCl, concentration of ABTS and reaction time were evaluated. The absorbance was linearly proportional to the concentration of nitrite (0.1-20 µM) with the limit of detection of 0.34 µM. The proposed method was a time-saving assay since it required only 2 min to complete one measurement. There was no effect of the interference produced by other ions. The assay was robust with 2.5%RSD (n = 50). In meat product samples, high accuracy was observed with the recoveries between 100 ± 2.2% and 105 ± 3.7%. The amount of nitrite in meat products detected by the ABTS method was found in the range of 5.41 - 7.62 mg/kg. The conventional Griess method was applied to determine nitrite in the same meat products. There was no statistically significant difference between the two methods (P = 0.05).
Collapse
Affiliation(s)
- Jongjit Jantra
- King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, Pathio, Chumphon, Thailand
| | - Supattra Arsawiset
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
| | - Siriwan Teepoo
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
| | - Kanchalar Keeratirawee
- King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, Pathio, Chumphon, Thailand
| |
Collapse
|
5
|
Algethami FK, Rabti A, Mastouri M, Abdulkhair BY, Ben Aoun S, Raouafi N. Highly sensitive capacitance-based nitrite sensing using polydopamine/AuNPs-modified screen-printed carbon electrode. RSC Adv 2023; 13:21336-21344. [PMID: 37465569 PMCID: PMC10350640 DOI: 10.1039/d3ra03898j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Regulatory bodies play a crucial role in establishing limits for food additives to ensure food quality and safety of food products, as excessive usage poses risks to consumers. In the context of processed animal-based foodstuffs, nitrite is commonly utilized as a means to slow down bacterial degradation. In this study, we have successfully leveraged the redox activity of an electrochemically deposited polydopamine (pDA) film onto gold nanoparticle (AuNP)-modified screen-printed electrodes (SPCE) to develop a sensitive and versatile methodology for the detection of nitrite using redox capacitance spectroscopy. By exploiting the interaction of the AuNPs/pDA electroactive interface with the target nitrite ions, we observed distinct changes in the redox distribution, subsequently leading to modifications in the associated redox capacitance. This alteration enables the successful detection of nitrite, exhibiting a linear response within the concentration range of 10 to 500 μM, with a limit of detection of 1.98 μM (S/N = 3). Furthermore, we applied the developed sensor to analyze nitrite levels in processed meats, yielding good recoveries. These results demonstrate the potential of our approach as a promising method for routine detection of ions.
Collapse
Affiliation(s)
- Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) P.O. Box 90950 Riyadh 11623 Saudi Arabia @imamu.edu.sa
| | - Amal Rabti
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), Department of Chemistry, Faculty of Science, University of Tunis El Manar Tunis El Manar 2092 Tunis Tunisia
- National Institute of Research and Physicochemical Analysis (INRAP), Laboratory of Materials, Treatment, and Analysis (LMTA), Biotechpole Sidi Thabet 2020 Sidi Thabet Tunisia
| | - Mohamed Mastouri
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), Department of Chemistry, Faculty of Science, University of Tunis El Manar Tunis El Manar 2092 Tunis Tunisia
| | - Babiker Y Abdulkhair
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) P.O. Box 90950 Riyadh 11623 Saudi Arabia @imamu.edu.sa
| | - Sami Ben Aoun
- Department of Chemistry, Faculty of Science, Taibah University P.O. Box 30002 Al-Madinah Al-Munawwarah Saudi Arabia
| | - Noureddine Raouafi
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), Department of Chemistry, Faculty of Science, University of Tunis El Manar Tunis El Manar 2092 Tunis Tunisia
| |
Collapse
|
6
|
Al-Kadhi NS, Hefnawy MA, S. Nafee S, Alamro FS, Pashameah RA, Ahmed HA, Medany SS. Zinc Nanocomposite Supported Chitosan for Nitrite Sensing and Hydrogen Evolution Applications. Polymers (Basel) 2023; 15:2357. [DOI: https:/doi.org/10.3390/polym15102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Nanoparticles of ZnO-Chitosan (Zn-Chit) composite were prepared using precipitation methods. Several analytical techniques, such as scanning electron microscope (SEM), transmitted electron microscope (TEM), powder X-ray diffraction (XRD), infrared spectroscopy (IR), and thermal analysis, were used to characterize the prepared composite. The activity of the modified composite was investigated for nitrite sensing and hydrogen production applications using various electrochemical techniques. A comparative study was performed for pristine ZnO and ZnO loaded on chitosan. The modified Zn-Chit has a linear range of detection 1–150 µM and a limit of detection (LOD) = 0.402 µM (response time ~3 s). The activity of the modified electrode was investigated in a real sample (milk). Furthermore, the anti-interference capability of the surface was utilized in the presence of several inorganic salts and organic additives. Additionally, Zn-Chit composite was employed as an efficient catalyst for hydrogen production in an acidic medium. Thus, the electrode showed long-term stability toward fuel production and enhanced energy security. The electrode reached a current density of 50 mA cm−2 at an overpotential equal to −0.31 and −0.2 V (vs. RHE) for GC/ZnO and GC/Zn-Chit, respectively. Electrode durability was studied for long-time constant potential chronoamperometry for 5 h. The electrodes lost 8% and 9% of the initial current for GC/ZnO and GC/Zn-Chit, respectively.
Collapse
Affiliation(s)
- Nada S. Al-Kadhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mahmoud A. Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Sherif S. Nafee
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fowzia S. Alamro
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Hoda A. Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Shymaa S. Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
7
|
Al-Kadhi NS, Hefnawy MA, S. Nafee S, Alamro FS, Pashameah RA, Ahmed HA, Medany SS. Zinc Nanocomposite Supported Chitosan for Nitrite Sensing and Hydrogen Evolution Applications. Polymers (Basel) 2023; 15:2357. [PMID: 37242932 PMCID: PMC10221157 DOI: 10.3390/polym15102357] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nanoparticles of ZnO-Chitosan (Zn-Chit) composite were prepared using precipitation methods. Several analytical techniques, such as scanning electron microscope (SEM), transmitted electron microscope (TEM), powder X-ray diffraction (XRD), infrared spectroscopy (IR), and thermal analysis, were used to characterize the prepared composite. The activity of the modified composite was investigated for nitrite sensing and hydrogen production applications using various electrochemical techniques. A comparative study was performed for pristine ZnO and ZnO loaded on chitosan. The modified Zn-Chit has a linear range of detection 1-150 µM and a limit of detection (LOD) = 0.402 µM (response time ~3 s). The activity of the modified electrode was investigated in a real sample (milk). Furthermore, the anti-interference capability of the surface was utilized in the presence of several inorganic salts and organic additives. Additionally, Zn-Chit composite was employed as an efficient catalyst for hydrogen production in an acidic medium. Thus, the electrode showed long-term stability toward fuel production and enhanced energy security. The electrode reached a current density of 50 mA cm-2 at an overpotential equal to -0.31 and -0.2 V (vs. RHE) for GC/ZnO and GC/Zn-Chit, respectively. Electrode durability was studied for long-time constant potential chronoamperometry for 5 h. The electrodes lost 8% and 9% of the initial current for GC/ZnO and GC/Zn-Chit, respectively.
Collapse
Affiliation(s)
- Nada S. Al-Kadhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mahmoud A. Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Sherif S. Nafee
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fowzia S. Alamro
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Hoda A. Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Shymaa S. Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
8
|
Adiraju A, Munjal R, Viehweger C, Al-Hamry A, Brahem A, Hussain J, Kommisetty S, Jalasutram A, Tegenkamp C, Kanoun O. Towards Embedded Electrochemical Sensors for On-Site Nitrite Detection by Gold Nanoparticles Modified Screen Printed Carbon Electrodes. SENSORS (BASEL, SWITZERLAND) 2023; 23:2961. [PMID: 36991672 PMCID: PMC10054825 DOI: 10.3390/s23062961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The transition of electrochemical sensors from lab-based measurements to real-time analysis requires special attention to different aspects in addition to the classical development of new sensing materials. Several critical challenges need to be addressed including a reproducible fabrication procedure, stability, lifetime, and development of cost-effective sensor electronics. In this paper, we address these aspects exemplarily for a nitrite sensor. An electrochemical sensor has been developed using one-step electrodeposited (Ed) gold nanoparticles (EdAu) for the detection of nitrite in water, which shows a low limit of detection of 0.38 µM and excellent analytical capabilities in groundwater. Experimental investigations with 10 realized sensors show a very high reproducibility enabling mass production. A comprehensive investigation of the sensor drift by calendar and cyclic aging was carried out for 160 cycles to assess the stability of the electrodes. Electrochemical impedance spectroscopy (EIS) shows significant changes with increasing aging inferring the deterioration of the electrode surface. To enable on-site measurements outside the laboratory, a compact and cost-effective wireless potentiostat combining cyclic and square wave voltammetry, and EIS capabilities has been designed and validated. The implemented methodology in this study builds a basis for the development of further on-site distributed electrochemical sensor networks.
Collapse
Affiliation(s)
- Anurag Adiraju
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Rohan Munjal
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Christian Viehweger
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Ammar Al-Hamry
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Amina Brahem
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Jawaid Hussain
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Sanhith Kommisetty
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Aditya Jalasutram
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Christoph Tegenkamp
- Analysis of Solid Surfaces, Institute for Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Olfa Kanoun
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| |
Collapse
|
9
|
Promising Novel Barium Carbonate One-Dimensional Nanostructures and Their Gas Sensing Application: Preparation and Characterization. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, barium carbonate-based nanomaterials have been used for sensor and catalysis applications. The sensing performance can be improved with a suitable one-dimensional nanostructure. In this regard, novel nanosized BaCO3 materials were fabricated by a one-pot designed thermal evaporation system. Ten milligrams of Ba as raw material were used to deposit BaCO3 nanostructures at a pressure of 0.85 torr and a temperature of 850 °C in a partial oxygen atmosphere of the ambient. This simple method for fabricating novel BaCO3 nanostructures is presented here. X-ray diffraction was indexed on the orthorhombic polycrystalline structure of the prepared BaCO3. The nanostructures deposited here could be described as Datura-like structures linked with nanowires of 20–50 nm in diameter and 5 µm in length. The BaCO3 nanostructure prepared by the current method exhibited a semiconductor-like behavior with an activation energy of 0.68 eV. This behavior was ascribed to the nature of the morphology, which may possess large defective points. Thus, this nanostructure was subjected to gas sensing measurements, showing high activity toward NO2 gas. The proposed sensor also underwent deep investigation toward NO2 at various gas concentrations and working. The response and recovery time constants were recorded in the ranges of 6–20 s and 30–150 s, respectively. The sensor showed its reversibility toward NO2 when the sensor signal was repeated at various cycles of various concentrations. The sensor was exposed to different levels of humidity, showing high performance toward NO2 gas at 250 °C. The sensor exhibited fast response and recovery toward NO2 gas.
Collapse
|
10
|
Xi SS, Sun YY, Wang ZW, Liu Y, Liu H, Chen X. Electrochemical Determination of 2,4,6-Trinitrotoluene by Linear Sweep Voltammetry Using a Gold Nanoparticle/Mesoporous Graphitic Carbon Nitride Modified Glassy Carbon Electrode. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2068565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Shan-Shan Xi
- School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, China
- AnHui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, China
| | - Yun-Yun Sun
- School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, China
- AnHui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, China
| | - Zhi-Wen Wang
- Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, China
| | - Yao Liu
- Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, China
| | - Hao Liu
- School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, China
- AnHui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, China
| | - Xing Chen
- Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, China
| |
Collapse
|
11
|
Alsaiari M, Saleem A, Alsaiari R, Muhammad N, Latif U, Tariq M, Almohana A, Rahim A. SiO 2/Al 2O 3/C grafted 3-n propylpyridinium silsesquioxane chloride-based non-enzymatic electrochemical sensor for determination of carcinogenic nitrite in food products. Food Chem 2022; 369:130970. [PMID: 34500207 DOI: 10.1016/j.foodchem.2021.130970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022]
Abstract
The excessive uptake of nitrite is perilous and detrimental for human health that prone to cancer disease. Herein, described the synthesis of SiO2/Al2O3/C material through the sol-gel procedure followed by grafting with 3-n propylpyridinium silsesquioxane chloride organic ligand for enhancing electrochemical activity. H-NMR, 13C NMR, and 29Si studies were performed for confirmation of surface functionalization through the grafting technique. The surface morphology was evaluated through SEM and TEM techniques. The material showed an irregular and flakes-like structure that exhibited more compactness and conglomerate structure with no segregation in phase was observed after grafting. The elemental composition was confirmed from EDX analysis. The electrochemical measurements were performed with cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and chronoamperometry. The prepared hybrid inorganic-organic composite Si/C/Al/SiPy+Cl- was applied for the modification of the glassy carbon (GC) electrode and assessed as a sensor for nitrite determination. The sensor showed the low limit of detection (0.01 μM), low limit of quantification (0.08 μM), wide linear response range (0.2-280 μM), and high sensitivity (410 μA·μM-1). It gave a quick response time of <1 s in the presence of 70 μM nitrite. The fabricated sensor showed high sensitivity, chemical stability, and insignificant interference from co-existing species present in sausage meat and food industry discharges. The repeatability of the sensor was evaluated as 2.5 % R.S.D.; for n = 10 at 50 μM nitrite.
Collapse
Affiliation(s)
- Mabkhoot Alsaiari
- Promising Centre for sensors and electronic devices (PCSED), Advanced materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Empty Quarter Research Unit, Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran, Saudi Arabia.
| | - Amina Saleem
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road Lahore, 54000, Pakistan
| | - Raiedhah Alsaiari
- Promising Centre for sensors and electronic devices (PCSED), Advanced materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Empty Quarter Research Unit, Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran, Saudi Arabia
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University KPK, Pakistan
| | - Usman Latif
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road Lahore, 54000, Pakistan
| | - Muhammad Tariq
- National Centre of Excellence in Physical Chemistry, University of Peshawar, Pakistan
| | - Abdulaziz Almohana
- Department of Civil Engineering, College of Engineering, King Saud University, P.O.BOX 800, Riyadh, 11421, Saudi Arabia
| | - Abdur Rahim
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road Lahore, 54000, Pakistan.
| |
Collapse
|
12
|
Wang T, Xu X, Wang C, Li Z, Li D. A Novel Highly Sensitive Electrochemical Nitrite Sensor Based on a AuNPs/CS/Ti 3C 2 Nanocomposite. NANOMATERIALS 2022; 12:nano12030397. [PMID: 35159742 PMCID: PMC8840747 DOI: 10.3390/nano12030397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023]
Abstract
Nitrite is common inorganic poison, which widely exists in various water bodies and seriously endangers human health. Therefore, it is very necessary to develop a fast and online method for the detection of nitrite. In this paper, we prepared an electrochemical sensor for highly sensitive and selective detection of nitrite, based on AuNPs/CS/MXene nanocomposite. The characterization of the nanocomposite was demonstrated by scanning electron microscopy (SEM), a transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Under the optimized conditions, the fabricated electrode showed good performance with the linear range of 0.5–335.5 μM and 335.5–3355 μM, the limit of detection is 69 nM, and the sensitivity is 517.8 and 403.2 μA mM−1 cm−2. The fabricated sensors also show good anti-interference ability, repeatability, and stability, and have the potential for application in real samples.
Collapse
Affiliation(s)
- Tan Wang
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (X.X.); (C.W.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
| | - Xianbao Xu
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (X.X.); (C.W.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
| | - Cong Wang
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (X.X.); (C.W.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
| | - Zhen Li
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (X.X.); (C.W.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
| | - Daoliang Li
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (X.X.); (C.W.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
13
|
Liu X, Zhang T, Li X, Ai S, Zhou S. Non-enzymatic electrochemical sensor based on AuNPs/Cu-N-C composite for efficient nitrite sensing in sausage sample. NEW J CHEM 2022. [DOI: 10.1039/d2nj01640k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen-doped carbon materials have attracted enormous attention in the detection fields for the high catalytic activity. Herein, Cu-N-C materials were synthesized by template method and used for constructing non-enzymatic electrochemical...
Collapse
|
14
|
Durairaj S, Guo Q, Wang Q, Chen A. Sensitive electrochemical detection of metabisulphite in gastrointestinal fluids. Analyst 2022; 147:5508-5517. [DOI: 10.1039/d2an01352e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electrochemical detection of metabisulphite in simulated gastrointestinal fluids.
Collapse
Affiliation(s)
- Sharmila Durairaj
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G2W1, Canada
| | - Qian Guo
- Agriculture and Agri-Food Canada, 90 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Qi Wang
- Agriculture and Agri-Food Canada, 90 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G2W1, Canada
| |
Collapse
|
15
|
Olorunyomi JF, Geh ST, Caruso RA, Doherty CM. Metal-organic frameworks for chemical sensing devices. MATERIALS HORIZONS 2021; 8:2387-2419. [PMID: 34870296 DOI: 10.1039/d1mh00609f] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Metal-organic frameworks (MOFs) are exceptionally large surface area materials with organized porous cages that have been investigated for nearly three decades. Due to the flexibility in their design and predisposition toward functionalization, they have shown promise in many areas of application, including chemical sensing. Consequently, they are identified as advanced materials with potential for deployment in analytical devices for chemical and biochemical sensing applications, where high sensitivity is desirable, for example, in environmental monitoring and to advance personal diagnostics. To keep abreast of new research, which signposts the future directions in the development of MOF-based chemical sensors, this review examines studies since 2015 that focus on the applications of MOF films and devices in chemical sensing. Various examples that use MOF films in solid-state sensing applications were drawn from recent studies based on electronic, electrochemical, electromechanical and optical sensing methods. These examples underscore the readiness of MOFs to be integrated in optical and electronic analytical devices. Also, preliminary demonstrations of future sensors are indicated in the performances of MOF-based wearables and smartphone sensors. This review will inspire collaborative efforts between scientists and engineers working within the field of MOFs, leading to greater innovations and accelerating the development of MOF-based analytical devices for chemical and biochemical sensing applications.
Collapse
Affiliation(s)
- Joseph F Olorunyomi
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia.
| | - Shu Teng Geh
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia.
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | | |
Collapse
|
16
|
Wang T, Wang C, Xu X, Li Z, Li D. One-Step Electrodeposition Synthesized Aunps/Mxene/ERGO for Selectivity Nitrite Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1892. [PMID: 34443726 PMCID: PMC8401988 DOI: 10.3390/nano11081892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022]
Abstract
In this paper, a new nanocomposite AuNPs/MXene/ERGO was prepared for sensitive electrochemical detection of nitrite. The nanocomposite was prepared by a facile one-step electrodeposition, HAuCl4, GO and MXene mixed in PBS solution with the applied potential of -1.4 V for 600 s. The modified material was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and cyclic voltammetry (CV). The electrochemical behavior of nitrite at the modified electrode was performed by CV and chronoamperometry. The AuNPs/MXene/ERGO/GCE showed a well-defined oxidation peak for nitrite at +0.83 V (Vs. Ag/AgCl) in 0.1 M phosphate buffer solution (pH 7). The amperometric responses indicated the sensor had linear ranges of 0.5 to 80 μM and 80 to 780 μM with the LOD (0.15 μM and 0.015 μM) and sensitivity (340.14 and 977.89 μA mM-1 cm-2), respectively. Moreover, the fabricated sensor also showed good selectivity, repeatability, and long-term stability with satisfactory recoveries for a real sample. We also propose the work that needs to be done in the future for material improvements in the conclusion.
Collapse
Affiliation(s)
- Tan Wang
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (C.W.); (X.X.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing 100083, China
| | - Cong Wang
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (C.W.); (X.X.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing 100083, China
| | - Xianbao Xu
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (C.W.); (X.X.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing 100083, China
| | - Zhen Li
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (C.W.); (X.X.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing 100083, China
| | - Daoliang Li
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (C.W.); (X.X.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
17
|
Cassani MC, Castagnoli R, Gambassi F, Nanni D, Ragazzini I, Masciocchi N, Boanini E, Ballarin B. A Cu(II)-MOF Based on a Propargyl Carbamate-Functionalized Isophthalate Ligand as Nitrite Electrochemical Sensor. SENSORS (BASEL, SWITZERLAND) 2021; 21:4922. [PMID: 34300663 PMCID: PMC8309846 DOI: 10.3390/s21144922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
This paper investigates the electrochemical properties of a new Cu(II)-based metal-organic framework (MOF). Noted as Cu-YBDC, it is built upon a linker containing the propargyl carbamate functionality and immobilized on a glassy carbon electrode by drop-casting (GC/Cu-YBDC). Afterward, GC/Cu-YBDC was treated with HAuCl4 and the direct electro-deposition of Au nanoparticles was carried at 0.05 V for 600 s (GC/Au/Cu-YBDC). The performance of both electrodes towards nitrite oxidation was tested and it was found that GC/Au/Cu-YBDC exhibited a better electrocatalytic behavior toward the oxidation of nitrite than GC/Cu-YBDC with enhanced catalytic currents and a reduced nitrite overpotential from 1.20 to 0.90 V. Additionally GC/Au/Cu-YBDC showed a low limit of detection (5.0 μM), an ultrafast response time (<2 s), and a wide linear range of up to 8 mM in neutral pH.
Collapse
Affiliation(s)
- Maria Cristina Cassani
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, Via Risorgimento 4, I-40136 Bologna, Italy; (R.C.); (F.G.); (D.N.); (I.R.)
| | - Riccardo Castagnoli
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, Via Risorgimento 4, I-40136 Bologna, Italy; (R.C.); (F.G.); (D.N.); (I.R.)
| | - Francesca Gambassi
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, Via Risorgimento 4, I-40136 Bologna, Italy; (R.C.); (F.G.); (D.N.); (I.R.)
| | - Daniele Nanni
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, Via Risorgimento 4, I-40136 Bologna, Italy; (R.C.); (F.G.); (D.N.); (I.R.)
| | - Ilaria Ragazzini
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, Via Risorgimento 4, I-40136 Bologna, Italy; (R.C.); (F.G.); (D.N.); (I.R.)
| | - Norberto Masciocchi
- Department of Science and High Technology & To.Sca.Lab., University of Insubria, Via Valleggio 11, I-22100 Como, Italy;
| | - Elisa Boanini
- Department of Chemistry “Giacomo Ciamician”, Bologna University, Via Selmi 2, I-40126 Bologna, Italy;
| | - Barbara Ballarin
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, Via Risorgimento 4, I-40136 Bologna, Italy; (R.C.); (F.G.); (D.N.); (I.R.)
| |
Collapse
|
18
|
Kanoun O, Lazarević-Pašti T, Pašti I, Nasraoui S, Talbi M, Brahem A, Adiraju A, Sheremet E, Rodriguez RD, Ben Ali M, Al-Hamry A. A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring. SENSORS (BASEL, SWITZERLAND) 2021; 21:4131. [PMID: 34208587 PMCID: PMC8233775 DOI: 10.3390/s21124131] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors play a significant role in detecting chemical ions, molecules, and pathogens in water and other applications. These sensors are sensitive, portable, fast, inexpensive, and suitable for online and in-situ measurements compared to other methods. They can provide the detection for any compound that can undergo certain transformations within a potential window. It enables applications in multiple ion detection, mainly since these sensors are primarily non-specific. In this paper, we provide a survey of electrochemical sensors for the detection of water contaminants, i.e., pesticides, nitrate, nitrite, phosphorus, water hardeners, disinfectant, and other emergent contaminants (phenol, estrogen, gallic acid etc.). We focus on the influence of surface modification of the working electrodes by carbon nanomaterials, metallic nanostructures, imprinted polymers and evaluate the corresponding sensing performance. Especially for pesticides, which are challenging and need special care, we highlight biosensors, such as enzymatic sensors, immunobiosensor, aptasensors, and biomimetic sensors. We discuss the sensors' overall performance, especially concerning real-sample performance and the capability for actual field application.
Collapse
Affiliation(s)
- Olfa Kanoun
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| | - Tamara Lazarević-Pašti
- Department of Physical Chemistry, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Salem Nasraoui
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Malak Talbi
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Amina Brahem
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Anurag Adiraju
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| | - Evgeniya Sheremet
- Research School of Physics, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Raul D. Rodriguez
- Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Mounir Ben Ali
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Ammar Al-Hamry
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| |
Collapse
|
19
|
Yang Z, Zhou X, Yin Y, Fang W. Determination of Nitrite by Noble Metal Nanomaterial-Based Electrochemical Sensors: A Minireview. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1897134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Zhengfei Yang
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyong Zhou
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yongqi Yin
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weiming Fang
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
20
|
Ansari SA, Lopa NS, Parveen N, Shaikh AA, Rahman MM. A highly sensitive poly(chrysoidine G)-gold nanoparticle composite based nitrite sensor for food safety applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5562-5571. [PMID: 33226391 DOI: 10.1039/d0ay01761b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work demonstrated the development of conducting poly(chrysoidine G) (PCG)-gold nanoparticle (AuNP)-modified fluorine-doped tin oxide (F : SnO2, FTO) film-coated glass electrodes for the sensitive electrochemical detection of nitrite (NO2-). The homogeneously distributed PCG nanoparticle layer was deposited onto the FTO electrode by cyclic voltammetry sweeping. AuNPs were then anchored onto the PCG/FTO electrode by the chemical reduction of pre-adsorbed Au3+ ions. The as-prepared AuNP/PCG/FTO electrode exhibited excellent electrocatalytic activity for the oxidation of NO2- with high sensitivity (approximately 0.63 μA cm-2μM-1) and a low limit of detection (0.095 μM), which is relevant within the normal concentration range of NO2- in human bodily fluids. The AuNP/PCG/FTO sensor showed sufficient reproducibility, repeatability, low interference, and strong recovery for NO2- detection in food samples. These results indicate that the AuNP/PCG nanocomposites have immense potential for the electrochemical detection of other biologically important compounds.
Collapse
Affiliation(s)
- Sajid Ali Ansari
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Hofuf, Al-Ahsa 31982, Saudi Arabia.
| | | | | | | | | |
Collapse
|
21
|
Zaitsev BD, Teplykh AA, Fedorov FS, Grebenko AK, Nasibulin AG, Semyonov AP, Borodina IA. Evaluation of Elastic Properties and Conductivity of Chitosan Acetate Films in Ammonia and Water Vapors Using Acoustic Resonators. SENSORS 2020; 20:s20082236. [PMID: 32326578 PMCID: PMC7218904 DOI: 10.3390/s20082236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 11/24/2022]
Abstract
Novel bio-materials, like chitosan and its derivatives, appeal to finding a new niche in room temperature gas sensors, demonstrating not only a chemoresistive response, but also changes in mechanical impedance due to vapor adsorption. We determined the coefficients of elasticity and viscosity of chitosan acetate films in air, ammonia, and water vapors by acoustic spectroscopy. The measurements were carried out while using a resonator with a longitudinal electric field at the different concentrations of ammonia (100–1600 ppm) and air humidity (20–60%). It was established that, in the presence of ammonia, the longitudinal and shear elastic modules significantly decreased, whereas, in water vapor, they changed slightly. At that, the viscosity of the films increased greatly upon exposure to both vapors. We found that the film’s conductivity increased by two and one orders of magnitude, respectively, in ammonia and water vapors. The effect of analyzed vapors on the resonance properties of a piezoelectric resonator with a lateral electric field that was loaded by a chitosan film on its free side was also experimentally studied. In these vapors, the parallel resonance frequency and maximum value of the real part of the electrical impedance decreased, especially in ammonia. The results of a theoretical analysis of the resonance properties of such a sensor in the presence of vapors turned out to be in a good agreement with the experimental data. It has been also found that with a growth in the concentration of the studied vapors, a decrease in the elastic constants, and an increase in the viscosity factor and conductivity lead to reducing the parallel resonance frequency and the maximum value of the real part of the electric impedance of the piezoelectric resonator with a lateral electric field that was loaded with a chitosan film. This leads to an increase in the sensitivity of such a sensor during exposure to these gas vapors.
Collapse
Affiliation(s)
- Boris D. Zaitsev
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, 410019 Saratov, Russia; (A.A.T.); (A.P.S.); (I.A.B.)
- Correspondence: ; Tel.: +791-7304-7418
| | - Andrey A. Teplykh
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, 410019 Saratov, Russia; (A.A.T.); (A.P.S.); (I.A.B.)
| | - Fedor S. Fedorov
- Skolkovo Institute of Science and Technology, 3 Nobel St., 121205 Moscow, Russia; (F.S.F.); (A.K.G.); (A.G.N.)
| | - Artem K. Grebenko
- Skolkovo Institute of Science and Technology, 3 Nobel St., 121205 Moscow, Russia; (F.S.F.); (A.K.G.); (A.G.N.)
- Moscow Institute of Physics and Technology, Institute Lane 9, 141701 Dolgoprudniy, Russia
| | - Albert G. Nasibulin
- Skolkovo Institute of Science and Technology, 3 Nobel St., 121205 Moscow, Russia; (F.S.F.); (A.K.G.); (A.G.N.)
- Department of Chemistry and Materials Science, Aalto University, 00076 Espoo, Finland
| | - Alexander P. Semyonov
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, 410019 Saratov, Russia; (A.A.T.); (A.P.S.); (I.A.B.)
| | - Irina A. Borodina
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, 410019 Saratov, Russia; (A.A.T.); (A.P.S.); (I.A.B.)
| |
Collapse
|
22
|
Li D, Wang T, Li Z, Xu X, Wang C, Duan Y. Application of Graphene-Based Materials for Detection of Nitrate and Nitrite in Water-A Review. SENSORS 2019; 20:s20010054. [PMID: 31861855 PMCID: PMC6983230 DOI: 10.3390/s20010054] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
Nitrite and nitrate are widely found in various water environments but the potential toxicity of nitrite and nitrate poses a great threat to human health. Recently, many methods have been developed to detect nitrate and nitrite in water. One of them is to use graphene-based materials. Graphene is a two-dimensional carbon nano-material with sp2 hybrid orbital, which has a large surface area and excellent conductivity and electron transfer ability. It is widely used for modifying electrodes for electrochemical sensors. Graphene based electrochemical sensors have the advantages of being low cost, effective and efficient for nitrite and nitrate detection. This paper reviews the application of graphene-based nanomaterials for electrochemical detection of nitrate and nitrite in water. The properties and advantages of the electrodes were modified by graphene, graphene oxide and reduced graphene oxide nanocomposite in the development of nitrite sensors are discussed in detail. Based on the review, the paper summarizes the working conditions and performance of different sensors, including working potential, pH, detection range, detection limit, sensitivity, reproducibility, repeatability and long-term stability. Furthermore, the challenges and suggestions for future research on the application of graphene-based nanocomposite electrochemical sensors for nitrite detection are also highlighted.
Collapse
Affiliation(s)
- Daoliang Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Correspondence:
| | - Tan Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Zhen Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Xianbao Xu
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Cong Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Yanqing Duan
- Business school, University of Bedfordshire, Luton LU1 3BE, UK;
| |
Collapse
|
23
|
Li S, Wang T, Yue R, Wang H, Bai Q, Xiao H, Sui N, Wang L, Liu M, Yu WW. PdFe Ultrathin Nanosheets for Highly Sensitive Detection of Nitrite. ELECTROANAL 2019. [DOI: 10.1002/elan.201900589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shuai Li
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Tao Wang
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Ruiping Yue
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Hongshuai Wang
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Qiang Bai
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Hailian Xiao
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Ning Sui
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Lina Wang
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Manhong Liu
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - William W. Yu
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
- Department of Chemistry and Physics Louisiana State University Shreveport, LA 71115 USA
| |
Collapse
|
24
|
Badiee H, Zanjanchi MA, Zamani A, Fashi A. Solvent stir bar microextraction technique with three-hollow fiber configuration for trace determination of nitrite in river water samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32967-32976. [PMID: 31512131 DOI: 10.1007/s11356-019-06336-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
In this work, trace determination of nitrite in river water samples was studied using solvent stir bar microextraction system with three-hollow fiber configuration (3HF-SSBME) as a preconcentration step prior to UV-Vis spectrophotometry. The obtained results showed that the increase in the number of solvent bars can improve the extraction performance by increasing the contact area between acceptor and sample solutions. The extraction process relies on the well-known oxidation-reduction reaction of nitrite with iodide excess in acidic donor phase to form triiodide, and then its extraction into organic acceptor phase using a cationic surfactant. Various extraction parameters affecting the method were optimized and examined in detail. Detection limit of 1.6 μg L-1 and preconcentration factor of 282 can be attained after an extraction time of 8 min under the optimum conditions of this technique. The proposed method showed a linear response up to 1000 μg L-1 (r2 = 0.996) with relative standard deviation values less than 4.0%. The accuracy of the developed method was assessed using the Griess technique. Finally, the proposed method was successfully employed for quantification of nitrite in river water samples (Ghezelozan, Zanjan, Iran).
Collapse
Affiliation(s)
- Hamid Badiee
- Department of Chemistry, Faculty of Science, University of Guilan, University Campus 2, Rasht, Iran
- Environmental Science Research Laboratory, Department of Environmental Science, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Mohammad Ali Zanjanchi
- Department of Chemistry, Faculty of Science, University of Guilan, University Campus 2, Rasht, Iran
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, 41335-1914, Iran
| | - Abbasali Zamani
- Environmental Science Research Laboratory, Department of Environmental Science, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran.
| | - Armin Fashi
- Environmental Science Research Laboratory, Department of Environmental Science, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| |
Collapse
|
25
|
Bibi S, Zaman MI, Niaz A, Rahim A, Nawaz M, Bilal Arian M. Voltammetric determination of nitrite by using a multiwalled carbon nanotube paste electrode modified with chitosan-functionalized silver nanoparticles. Mikrochim Acta 2019; 186:595. [DOI: 10.1007/s00604-019-3699-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/13/2019] [Indexed: 02/06/2023]
|
26
|
Wang Y, Cao W, Yin C, Zhuang Q, Ni Y. Nonenzymatic Amperometric Sensor for Nitrite Detection Based on a Nanocomposite Consisting of Nickel Hydroxide and Reduced Graphene Oxide. ELECTROANAL 2018. [DOI: 10.1002/elan.201800627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yong Wang
- College of ChemistryNanchang University Nanchang 330031, Jiangxi China
| | - Wei Cao
- College of ChemistryNanchang University Nanchang 330031, Jiangxi China
| | - Chang Yin
- College of ChemistryNanchang University Nanchang 330031, Jiangxi China
| | - Qianfen Zhuang
- College of ChemistryNanchang University Nanchang 330031, Jiangxi China
| | - Yongnian Ni
- College of ChemistryNanchang University Nanchang 330031, Jiangxi China
| |
Collapse
|