1
|
Lapitan LD, Felisilda BMB, Tiangco CE, Rosin Jose A. Advances in Bioreceptor Layer Engineering in Nanomaterial-based Sensing of Pseudomonas Aeruginosa and its Metabolites. Chem Asian J 2024; 19:e202400090. [PMID: 38781439 DOI: 10.1002/asia.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Pseudomonas aeruginosa is a pathogen that infects wounds and burns and causes severe infections in immunocompromised humans. The high virulence, the rise of antibiotic-resistant strains, and the easy transmissibility of P. aeruginosa necessitate its fast detection and control. The gold standard for detecting P. aeruginosa, the plate culture method, though reliable, takes several days to complete. Therefore, developing accurate, rapid, and easy-to-use diagnostic tools for P. aeruginosa is highly desirable. Nanomaterial-based biosensors are at the forefront of detecting P. aeruginosa and its secondary metabolites. This review summarises the biorecognition elements, biomarkers, immobilisation strategies, and current state-of-the-art biosensors for P. aeruginosa. The review highlights the underlying principles of bioreceptor layer engineering and the design of optical, electrochemical, mass-based, and thermal biosensors based on nanomaterials. The advantages and disadvantages of these biosensors and their future point-of-care applications are also discussed. This review outlines significant advancements in biosensors and sensors for detecting P. aeruginosa and its metabolites. Research efforts have identified biorecognition elements specific and selective towards P. aeruginosa. The stability, ease of preparation, cost-effectiveness, and integration of these biorecognition elements onto transducers are pivotal for their application in biosensors and sensors. At the same time, when developing sensors for clinically significant analytes such as P. aeruginosa, virulence factors need to be addressed, such as the sensor's sensitivity, reliability, and response time in samples obtained from patients. The point-of-care applicability of the developed sensor may be an added advantage since it enables onsite determination. In this context, optical methods developed for P. aeruginosa offer promising potential.
Collapse
Affiliation(s)
- Lorico Ds Lapitan
- Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines, Center for Advanced Materials and Technologies-CEZAMAT, Warsaw University of Technology, 02-822, Warsaw, Poland
| | - Bren Mark B Felisilda
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland, Department of Chemistry, College of Arts & Sciences, Xavier University-Ateneo de Cagayan, Corrales Street, Cagayan de Oro, Philippines
| | - Cristina E Tiangco
- Research Center for the Natural and Applied Sciences and, Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines
| | - Ammu Rosin Jose
- Department of Chemistry, Sacred Heart College (Autonomous), Pandit Karuppan Rd, Thevara, Ernakulam, Kerala, India
| |
Collapse
|
2
|
Saateh A, Ansaryan S, Gao J, de Miranda LO, Zijlstra P, Altug H. Long-Term and Continuous Plasmonic Oligonucleotide Monitoring Enabled by Regeneration Approach. Angew Chem Int Ed Engl 2024:e202410076. [PMID: 39146470 DOI: 10.1002/anie.202410076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
The demand for continuous monitoring of biochemical markers for diagnostic purposes is increasing as it overcomes the limitations of traditional intermittent measurements. This study introduces a method for long-term, continuous plasmonic biosensing of oligonucleotides with high temporal resolution. Our method is based on a regeneration-based reversibility approach that ensures rapid reversibility in less than 1 minute, allowing the sensor to fully reset after each measurement. We investigated label-free and AuNP enhancements for different dynamic ranges and sensitivities, achieving a limit of detection down to pM levels. We developed a regeneration-based reversibility approach for continuous biosensing, optimizing buffer conditions using the Taguchi method to achieve rapid, consistent reversibility, ensuring reliable performance for long-term monitoring. We detected oligonucleotides in buffered and complex solutions, including undiluted and unfiltered human serum, for up to 100 sampling cycles in a day. Moreover, we showed the long-term stability of the sensor for monitoring capabilities in buffered solutions and human serum, with minimal signal value drift and excellent sensor reversibility for up to 9 days. Our method opens the door to new prospects in continuous biosensing by providing insights beyond intermittent measurements for numerous analytical and diagnostic applications.
Collapse
Affiliation(s)
- Abtin Saateh
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Saeid Ansaryan
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jiarui Gao
- Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Livio Oliveira de Miranda
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Peter Zijlstra
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
3
|
Lee T, Park J, Oh SH, Cheong DY, Roh S, You JH, Hong Y, Lee G. Glucose Oxidase Activity Colorimetric Assay Using Redox-Sensitive Electrochromic Nanoparticle-Functionalized Paper Sensors. ACS OMEGA 2024; 9:15493-15501. [PMID: 38585131 PMCID: PMC10993408 DOI: 10.1021/acsomega.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Glucose oxidase (GOx) activity assays are vital for various applications, including glucose metabolism estimation and fungal testing. However, conventional methods involve time-consuming and complex procedures. In this study, we present a colorimetric platform for in situ GOx activity measurement utilizing redox-sensitive electrochromic nanoparticles based on polyaniline (PAni). The glucose-adsorbed colorimetric paper sensor, herein termed Glu@CPS, is created by immobilizing ferrocene and glucose onto paper substrates that have been functionalized with PAni nanoparticles. Glu@CPS not only demonstrated rapid detection (within 5 min) but also exhibited remarkable selectivity for GOx and a limit of detection as low as 1.25 μM. Moreover, Glu@CPS demonstrated consistent accuracy in the measurement of GOx activity, exhibiting no deviations even after being stored at ambient temperature for a duration of one month. To further corroborate the effectiveness of this method, we applied Glu@CPS in the detection of GOx activity in a moldy red wine. The results highlight the promising potential of Glu@CPS as a convenient and precise platform for GOx activity measurement in diverse applications including food quality control, environmental monitoring, and early detection of fungal contamination.
Collapse
Affiliation(s)
- Taeha Lee
- Department
of Biotechnology and Bioinformatics, Korea
University, Sejong 30019, South Korea
- Interdisciplinary
Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Jeongmin Park
- Department
of Biotechnology and Bioinformatics, Korea
University, Sejong 30019, South Korea
| | - Seung Hyeon Oh
- Department
of Biotechnology and Bioinformatics, Korea
University, Sejong 30019, South Korea
- Interdisciplinary
Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Da Yeon Cheong
- Department
of Biotechnology and Bioinformatics, Korea
University, Sejong 30019, South Korea
- Interdisciplinary
Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Seokbeom Roh
- Department
of Biotechnology and Bioinformatics, Korea
University, Sejong 30019, South Korea
- Interdisciplinary
Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Jae Hyun You
- Division
of Convergence Business, Korea University, Sejong 30019, South Korea
| | - Yoochan Hong
- Department
of Medical Device, Korea Institute of Machinery
and Materials (KIMM), Daegu 42994, South Korea
| | - Gyudo Lee
- Department
of Biotechnology and Bioinformatics, Korea
University, Sejong 30019, South Korea
- Interdisciplinary
Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| |
Collapse
|
4
|
Matthews CJ, Patrick WM. An enzyme-centric approach for constructing an amperometric l-malate biosensor with a long and programmable linear range. Protein Sci 2023; 32:e4743. [PMID: 37515423 PMCID: PMC10451018 DOI: 10.1002/pro.4743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
l-Malate is a key flavor enhancer and acidulant in the food and beverage industry, particularly winemaking. Enzyme-based amperometric biosensors offer convenience for monitoring its concentration. However, only a small number of off-the-shelf malate-oxidizing enzymes have been used in previous devices. These typically have linear ranges poorly suited for the l-malate concentrations found in fruit processing and winemaking, making it necessary to use precisely diluted samples. Here, we describe a pipeline of database-mining, gene synthesis, recombinant expression, and spectrophotometric assays to characterize previously untested enzymes for their suitability in biosensors. The pipeline yielded a bespoke biocatalyst-the Ascaris suum malic enzyme carrying mutation R181Q [AsME(R181Q)]. Our first prototype with AsME(R181Q) had an ultra-wide linear range of 50-200 mM l-malate, corresponding to concentrations found in undiluted fruit juices (including grape). Changing the dication from Mg2+ to Mn2+ increased sensitivity five-fold and adding citrate (100 mM) increased it another six-fold, albeit decreasing the linear range to 1-10 mM. To our knowledge, this is the first time an l-malate biosensor with a tuneable combination of sensitivity and linear range has been described. The sensor response was also tested in the presence of various molecules abundant in juices and wines, with ascorbate shown to be a potent interferent. Interference was mitigated by the addition of ascorbate oxidase, allowing for differential measurements on an undiluted, untreated wine sample that corresponded well with commercial l-malate testing kits. Overall, this work demonstrates the power of an enzyme-centric approach for designing electrochemical biosensors with improved operational parameters and novel functionality.
Collapse
Affiliation(s)
- Christopher J. Matthews
- Centre for Biodiscovery, School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Wayne M. Patrick
- Centre for Biodiscovery, School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| |
Collapse
|
5
|
Montero-Arevalo B, Seufert BI, Hossain MS, Bernardin E, Takshi A, Saddow SE, Schettini N. SiC Electrochemical Sensor Validation for Alzheimer Aβ 42 Antigen Detection. MICROMACHINES 2023; 14:1262. [PMID: 37374847 DOI: 10.3390/mi14061262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with only late-stage detection; thus, diagnosis is made when it is no longer possible to treat the disease, only its symptoms. Consequently, this often leads to caregivers who are the patient's relatives, which adversely impacts the workforce along with severely diminishing the quality of life for all involved. It is, therefore, highly desirable to develop a fast, effective and reliable sensor to enable early-stage detection in an attempt to reverse disease progression. This research validates the detection of amyloid-beta 42 (Aβ42) using a Silicon Carbide (SiC) electrode, a fact that is unprecedented in the literature. Aβ42 is considered a reliable biomarker for AD detection, as reported in previous studies. To validate the detection with a SiC-based electrochemical sensor, a gold (Au) electrode-based electrochemical sensor was used as a control. The same cleaning, functionalization and Aβ1-28 antibody immobilization steps were used on both electrodes. Sensor validation was carried out by means of Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) aiming to detect an 0.5 µg·mL-1 Aβ42 concentration in 0.1 M buffer solution as a proof of concept. A repeatable peak directly related to the presence of Aβ42 was observed, indicating that a fast SiC-based electrochemical sensor was constructed and may prove to be a useful approach for the early detection of AD.
Collapse
Affiliation(s)
- Brayan Montero-Arevalo
- Department of Electrical and Electronic Engineering, Universidad del Norte, Barranquilla 081007, Colombia
| | - Bianca I Seufert
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Mohammad S Hossain
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Evans Bernardin
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Arash Takshi
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Stephen E Saddow
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Norelli Schettini
- Department of Electrical and Electronic Engineering, Universidad del Norte, Barranquilla 081007, Colombia
| |
Collapse
|
6
|
Shetty SS, Moosa B, Zhang L, Alshankiti B, Baslyman W, Mani V, Khashab NM, Salama KN. Polyoxometalate-cyclodextrin supramolecular entities for real-time in situ monitoring of dopamine released from neuroblastoma cells. Biosens Bioelectron 2023; 229:115240. [PMID: 36963326 DOI: 10.1016/j.bios.2023.115240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
Optimized and sensitive biomarker detection has recently been shown to have a critical impact on quality of diagnosis and medical care options. In this research study, polyoxometalate-γ-cyclodextrin metal-organic framework (POM-γCD MOF) was utilized as an electrocatalyst to fabricate highly selective sensors to detect in-situ released dopamine. The POM-γCD MOF produced multiple modes of signals for dopamine including electrochemical, colorimetric, and smartphone read-outs. Real-time quantitative monitoring of SH-SY5Y neuroblastoma cellular dopamine production was successfully demonstrated under various stimuli at different time intervals. The POM-CD MOF sensor and linear regression model were used to develop a smartphone read-out platform, which converts dopamine visual signals to digital signals within a few seconds. Ultimately, POM-γCD MOFs can play a significant role in the diagnosis and treatment of various diseases that involve dopamine as a significant biomarker.
Collapse
Affiliation(s)
- Saptami Suresh Shetty
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials Research Group (SHMs), Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Li Zhang
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Buthainah Alshankiti
- Smart Hybrid Materials Research Group (SHMs), Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Walaa Baslyman
- Smart Hybrid Materials Research Group (SHMs), Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Veerappan Mani
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Niveen M Khashab
- Smart Hybrid Materials Research Group (SHMs), Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
| | - Khaled Nabil Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
7
|
Nuh S, Numnuam A, Thavarungkul P, Phairatana T. A Novel Microfluidic-Based OMC-PEDOT-PSS Composite Electrochemical Sensor for Continuous Dopamine Monitoring. BIOSENSORS 2022; 13:68. [PMID: 36671903 PMCID: PMC9855352 DOI: 10.3390/bios13010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Fast and precise analysis techniques using small sample volumes are required for next-generation clinical monitoring at the patient's bedside, so as to provide the clinician with relevant chemical data in real-time. The integration of an electrochemical sensor into a microfluidic chip allows for the achievement of real-time chemical monitoring due to the low consumption of analytes, short analysis time, low cost, and compact size. In this work, dopamine, used as a model, is an important neurotransmitter responsible for controlling various vital life functions. The aim is to develop a novel serpentine microfluidic-based electrochemical sensor, using a screen-printed electrode for continuous dopamine detection. The developed sensor employed the composite of ordered mesoporous carbon (OMC) and poly (3,4 ethylenedioxythiophene)-poly (styrene sulfonate) (PEDOT-PSS). The performance of a microfluidic, integrated with the sensor, was amperometrically evaluated using a computer-controlled microfluidic platform. The microfluidic-based dopamine sensor exhibited a sensitivity of 20.2 ± 0.6 μA μmol L-1, and a detection limit (LOD) of 21.6 ± 0.002 nmol L-1, with high selectivity. This microfluidic-based electrochemical sensor was successfully employed to determine dopamine continuously, which could overcome the problem of sensor fouling with more than 90% stability for over 24 h. This novel microfluidic sensor platform provides a powerful tool for the development of a continuous dopamine detection system for human clinical application.
Collapse
Affiliation(s)
- Sofwan Nuh
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Apon Numnuam
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Songkhla 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Songkhla 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Tonghathai Phairatana
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
8
|
Timilsina SS, Ramasamy M, Durr N, Ahmad R, Jolly P, Ingber DE. Biofabrication of Multiplexed Electrochemical Immunosensors for Simultaneous Detection of Clinical Biomarkers in Complex Fluids. Adv Healthc Mater 2022; 11:e2200589. [PMID: 35678244 DOI: 10.1002/adhm.202200589] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/18/2022] [Indexed: 01/28/2023]
Abstract
Simultaneous detection of multiple disease biomarkers in unprocessed whole blood is considered the gold standard for accurate clinical diagnosis. Here, this study reports the development of a 4-plex electrochemical (EC) immunosensor with on-chip negative control capable of detecting a range of biomarkers in small volumes (15 µL) of complex biological fluids, including serum, plasma, and whole blood. A framework for fabricating and optimizing multiplexed sandwich immunoassays is presented that is enabled by use of EC sensor chips coated with an ultra-selective, antifouling, and nanocomposite coating. Cyclic voltammetry evaluation of sensor performance is carried out by monitoring the local precipitation of an electroactive product generated by horseradish peroxidase linked to a secondary antibody. EC immunosensors demonstrate high sensitivity and specificity without background signal with a limit of detection in single-digit picogram per milliliter in multiple complex biological fluids. These multiplexed immunosensors enable the simultaneous detection of four different biomarkers in plasma and whole blood with excellent sensitivity and selectivity. This rapid and cost-effective biosensor platform can be further adapted for use with different high affinity probes for any biomarker, and thereby create for a new class of highly sensitive and specific multiplexed diagnostics.
Collapse
Affiliation(s)
- Sanjay S Timilsina
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.,Current address: StataDX Inc., Boston, MA, 02215, USA
| | - Mohanraj Ramasamy
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.,Department of Bioengineering, University of Texas at Dallas, Dallas, TX, 75080, USA.,Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - Nolan Durr
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Rushdy Ahmad
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Pawan Jolly
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.,Vascular Biology Program, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Pre-equilibrium biosensors as an approach towards rapid and continuous molecular measurements. Nat Commun 2022; 13:7072. [PMID: 36400792 PMCID: PMC9674706 DOI: 10.1038/s41467-022-34778-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 11/07/2022] [Indexed: 11/20/2022] Open
Abstract
Almost all biosensors that use ligand-receptor binding operate under equilibrium conditions. However, at low ligand concentrations, the equilibration with the receptor (e.g., antibodies and aptamers) becomes slow and thus equilibrium-based biosensors are inherently limited in making measurements that are both rapid and sensitive. In this work, we provide a theoretical foundation for a method through which biosensors can quantitatively measure ligand concentration before reaching equilibrium. Rather than only measuring receptor binding at a single time-point, the pre-equilibrium approach leverages the receptor's kinetic response to instantaneously quantify the changing ligand concentration. Importantly, by analyzing the biosensor output in frequency domain, rather than in the time domain, we show the degree to which noise in the biosensor affects the accuracy of the pre-equilibrium approach. Through this analysis, we provide the conditions under which the signal-to-noise ratio of the biosensor can be maximized for a given target concentration range and rate of change. As a model, we apply our theoretical analysis to continuous insulin measurement and show that with a properly selected antibody, the pre-equilibrium approach could make the continuous tracking of physiological insulin fluctuations possible.
Collapse
|
10
|
Singh T, Sharma S, Singh R, Pal DB, Ahmad I, Alam MM, Singh NL, Srivastava M, Srivastava N. Sustainable approaches towards green synthesis of TiO 2 nanomaterials and their applications in photo-catalysis mediated sensingtomonitor environmental pollutions. LUMINESCENCE 2022. [PMID: 35997211 DOI: 10.1002/bio.4370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/06/2022]
Abstract
Nanomaterials are gaining enormous interests owing to their novel applications that have been explored nearly in every field of our contemporary society. In this scenario, preparations of nanomaterials following green routes have attracted widespread attention in terms of sustainable, reliable and environmentally friendly practice to produce diverse nanostructures. In this review, we summarized the fundamental processes and mechanisms of green synthesis approaches of TiO2 NPs. We explore the role of plants and microbes as natural bioresources to prepare TiO2 NPs. Particularly, focused have been made to explore the potential of TiO2 based nanomaterials to design variety of sensing platforms by exploiting the photo-catalysis efficiency under the influence of light source. Such types of sensing can of massive importance to monitor the environmental pollutions and thereby to invent advanced strategies to remediate hazardous pollutants to offer clean environment.
Collapse
Affiliation(s)
- Tripti Singh
- School of Biosciences IMS Ghaziabad UC Campus, Ghaziabad, Uttar Pradesh, India
| | - Shalini Sharma
- School of Biosciences IMS Ghaziabad UC Campus, Ghaziabad, Uttar Pradesh, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Mahtab Alam
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Nand Lal Singh
- Department of chemistry, Banaras Hindu University (BHU), Varanasi, U.P., India
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
11
|
Zhang L, Wang L, Li J, Cui C, Zhou Z, Wen L. Surface Engineering of Laser-Induced Graphene Enables Long-Term Monitoring of On-Body Uric Acid and pH Simultaneously. NANO LETTERS 2022; 22:5451-5458. [PMID: 35731860 DOI: 10.1021/acs.nanolett.2c01500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Laser-induced graphene (LIG) suffers from serious decay in long-term biosensing, which greatly restricts its practical applications. Herein, we report a new strategy to engineer the LIG surface with Au clusters and chitosan sequentially to form a C-Au-LIG electrode with a superhydrophilic and highly conductive 3D graphene surface, which demonstrates superior performance and negligible decay in both long-term storage and practical usage in vitro and in vivo environments. Moreover, the C-Au-LIG electrode can be used for detecting uric acid (UA) and pH simultaneously from a single differential pulse voltammetry curve with low-detection limitation, high accuracy, and negligible interference with other sweat biomarkers. The integrated C-Au-LIG wearable biosensor was employed to continuously monitor the UA content in human sweat, which can well reflect the daily intake of purines for at least 10 days. Therefore, the C-Au-LIG electrode demonstrates significant application potential and provides inspiration for surface engineering of other biosensor materials and electrodes.
Collapse
Affiliation(s)
- Liqiang Zhang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Lang Wang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Jiye Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Can Cui
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States of America
| | - Ziqian Zhou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Liaoyong Wen
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| |
Collapse
|
12
|
Moro G, Severin Sfragano P, Ghirardo J, Mazzocato Y, Angelini A, Palchetti I, Polo F. Bicyclic peptide-based assay for uPA cancer biomarker. Biosens Bioelectron 2022; 213:114477. [PMID: 35751954 DOI: 10.1016/j.bios.2022.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
The use of synthetic bioreceptors to develop biosensing platforms has been recently gaining momentum. This case study compares the performance of a biosensing platform for the human biomarker urokinase-type plasminogen activator (h-uPA) when using two bicyclic peptides (P1 and P2) with different affinities for the target protein. The bioreceptors P1 and P2 were immobilized on magnetic microbeads and tested within a sandwich-type affinity electrochemical assay. Apart from enabling h-uPA quantification at nanomolar levels (105.8 ng/mL for P1 and 32.5 ng/mL for P2), this case study showed the potential of synthetic bicyclic peptides applicability and how bioreceptor affinity can influence the performance of the final sensing platform.
Collapse
Affiliation(s)
- Giulia Moro
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Patrick Severin Sfragano
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Jessica Ghirardo
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Ylenia Mazzocato
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy; European Centre for Living Technology (ECLT), Ca' Bottacin, Dorsoduro 3911, Calle Crosera, Venice, 30124, Italy
| | - Ilaria Palchetti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| | - Federico Polo
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy; European Centre for Living Technology (ECLT), Ca' Bottacin, Dorsoduro 3911, Calle Crosera, Venice, 30124, Italy.
| |
Collapse
|
13
|
Assess heavy metals-induced oxidative stress of microalgae by Electro-Raman combined technique. Anal Chim Acta 2022; 1208:339791. [PMID: 35525583 DOI: 10.1016/j.aca.2022.339791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 01/16/2023]
|
14
|
Chauhan N, Saxena K, Jain U. Single molecule detection; from microscopy to sensors. Int J Biol Macromol 2022; 209:1389-1401. [PMID: 35413320 DOI: 10.1016/j.ijbiomac.2022.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 01/31/2023]
Abstract
Single molecule detection is necessary to find out physical, chemical properties and their mechanism involved in the normal functioning of body cells. In this way, they can provide a new direction to the healthcare system. Various techniques have been developed and employed for their successful detection. Herein, we have emphasized various traditional methods as well as biosensing technology which offer single molecule sensitivity. The various methods including plasmonic resonance, nanopores, whispering gallery mode, Simoa assay and recognition tunneling are discussed in the initial part which has been followed by a discussion about biosensor-based detection. Plasmonic, SERS, CRISPR/Cas, and other types of biosensors are focused in this review and found to be highly sensitive for single molecule detection. This review provides an overview of progression in different techniques employed for single molecule detection.
Collapse
Affiliation(s)
- Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, U.P., India
| | - Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, U.P., India
| | - Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, U.P., India.
| |
Collapse
|
15
|
Paun IA, Calin BS, Popescu RC, Tanasa E, Moldovan A. Laser Direct Writing of Dual-Scale 3D Structures for Cell Repelling at High Cellular Density. Int J Mol Sci 2022; 23:3247. [PMID: 35328668 PMCID: PMC8950975 DOI: 10.3390/ijms23063247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
The fabrication of complex, reproducible, and accurate micro-and nanostructured interfaces that impede the interaction between material's surface and different cell types represents an important objective in the development of medical devices. This can be achieved by topographical means such as dual-scale structures, mainly represented by microstructures with surface nanopatterning. Fabrication via laser irradiation of materials seems promising. However, laser-assisted fabrication of dual-scale structures, i.e., ripples relies on stochastic processes deriving from laser-matter interaction, limiting the control over the structures' topography. In this paper, we report on laser fabrication of cell-repellent dual-scale 3D structures with fully reproducible and high spatial accuracy topographies. Structures were designed as micrometric "mushrooms" decorated with fingerprint-like nanometric features with heights and periodicities close to those of the calamistrum, i.e., 200-300 nm. They were fabricated by Laser Direct Writing via Two-Photon Polymerization of IP-Dip photoresist. Design and laser writing parameters were optimized for conferring cell-repellent properties to the structures, even for high cellular densities in the culture medium. The structures were most efficient in repelling the cells when the fingerprint-like features had periodicities and heights of ≅200 nm, fairly close to the repellent surfaces of the calamistrum. Laser power was the most important parameter for the optimization protocol.
Collapse
Affiliation(s)
- Irina Alexandra Paun
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, RO-077125 Măgurele, Romania; (B.S.C.); (E.T.)
- Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 Bucharest, Romania
| | - Bogdan Stefanita Calin
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, RO-077125 Măgurele, Romania; (B.S.C.); (E.T.)
- Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 Bucharest, Romania
| | - Roxana Cristina Popescu
- Horia Hulubei National Institute for Physics and Nuclear Engineering IFIN-HH, RO-077125 Măgurele, Romania;
| | - Eugenia Tanasa
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, RO-077125 Măgurele, Romania; (B.S.C.); (E.T.)
- Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 Bucharest, Romania
| | - Antoniu Moldovan
- National Institute for Laser, Plasma and Radiation Physics, RO-077125 Măgurele, Romania;
| |
Collapse
|
16
|
DeBrosse M, Yuan Y, Brothers M, Karajic A, van Duren J, Kim S, Hussain S, Heikenfeld J. A Dual Approach of an Oil-Membrane Composite and Boron-Doped Diamond Electrode to Mitigate Biofluid Interferences. SENSORS 2021; 21:s21238063. [PMID: 34884067 PMCID: PMC8659581 DOI: 10.3390/s21238063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022]
Abstract
Electrochemical biosensors promise a simple method to measure analytes for both point-of-care diagnostics and continuous, wearable biomarker monitors. In a liquid environment, detecting the analyte of interest must compete with other solutes that impact the background current, such as redox-active molecules, conductivity changes in the biofluid, water electrolysis, and electrode fouling. Multiple methods exist to overcome a few of these challenges, but not a comprehensive solution. Presented here is a combined boron-doped diamond electrode and oil–membrane protection approach that broadly mitigates the impact of biofluid interferents without a biorecognition element. The oil–membrane blocks the majority of interferents in biofluids that are hydrophilic while permitting passage of important hydrophobic analytes such as hormones and drugs. The boron-doped diamond then suppresses water electrolysis current and maintains peak electrochemical performance due to the foulant-mitigation benefits of the oil–membrane protection. Results show up to a 365-fold reduction in detection limits using the boron-doped diamond electrode material alone compared with traditional gold in the buffer. Combining the boron-doped diamond material with the oil–membrane protection scheme maintained these detection limits while exposed to human serum for 18 h.
Collapse
Affiliation(s)
- Madeleine DeBrosse
- Novel Device Lab., University of Cincinnati, Cincinnati, OH 45221, USA; (M.D.); (Y.Y.); (A.K.)
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433, USA; (M.B.); (S.K.); (S.H.)
| | - Yuchan Yuan
- Novel Device Lab., University of Cincinnati, Cincinnati, OH 45221, USA; (M.D.); (Y.Y.); (A.K.)
| | - Michael Brothers
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433, USA; (M.B.); (S.K.); (S.H.)
| | - Aleksandar Karajic
- Novel Device Lab., University of Cincinnati, Cincinnati, OH 45221, USA; (M.D.); (Y.Y.); (A.K.)
| | | | - Steve Kim
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433, USA; (M.B.); (S.K.); (S.H.)
| | - Saber Hussain
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433, USA; (M.B.); (S.K.); (S.H.)
| | - Jason Heikenfeld
- Novel Device Lab., University of Cincinnati, Cincinnati, OH 45221, USA; (M.D.); (Y.Y.); (A.K.)
- Correspondence:
| |
Collapse
|
17
|
Fapanni T, Sardini E, Serpelloni M, Tonello S. 3D Electrochemical Sensor and Microstructuration Using Aerosol Jet Printing. SENSORS (BASEL, SWITZERLAND) 2021; 21:7820. [PMID: 34883822 PMCID: PMC8659431 DOI: 10.3390/s21237820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
Electrochemical sensors are attracting great interest for their different applications. To improve their performances, basic research focuses on two main issues: improve their metrological characteristics (e.g., repeatability, reusability and sensitivity) and investigate innovative fabrication processes. In this work, we demonstrate an innovative microstructuration technique aimed at increasing electrochemical sensor sensitivity to improve electrode active area by an innovative fabrication technique. The process is empowered by aerosol jet printing (AJP), an additive-manufacturing and non-contact printing technique that allows depositing functional inks in precise patterns such as parallel lines and grids. The 3D printed microstructures increased the active surface area by up to 130% without changing the substrate occupancy. Further, electrochemical detection of ferro/ferri-cyanide was used to evaluate the sensitivity of the electrodes. This evaluation points out a sensitivity increase of 2.3-fold on average between bare and fully microstructured devices. The increase of surface area and sensitivity are well linearly correlated as expected, verifying the fitness of our production process. The proposed microstructuration is a viable solution for many applications that requires high sensitivity, and the proposed technique, since it does not require masks or complex procedures, turns out to be flexible and applicable to infinite construction geometries.
Collapse
Affiliation(s)
- Tiziano Fapanni
- Department of Information Engineering, University of Brescia, 25123 Brescia, Italy; (E.S.); (M.S.)
| | - Emilio Sardini
- Department of Information Engineering, University of Brescia, 25123 Brescia, Italy; (E.S.); (M.S.)
| | - Mauro Serpelloni
- Department of Information Engineering, University of Brescia, 25123 Brescia, Italy; (E.S.); (M.S.)
| | - Sarah Tonello
- Department of Information Engineering, University of Padova, 35131 Padova, Italy;
| |
Collapse
|
18
|
Campuzano S, Pedrero M, Yáñez‐Sedeño P, Pingarrón JM. Contemporary electrochemical sensing and affinity biosensing to assist traces metal ions determination in clinical samples. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Susana Campuzano
- Analytical Chemistry Department Faculty of Chemistry Complutense University of Madrid Madrid Spain
| | - María Pedrero
- Analytical Chemistry Department Faculty of Chemistry Complutense University of Madrid Madrid Spain
| | - Paloma Yáñez‐Sedeño
- Analytical Chemistry Department Faculty of Chemistry Complutense University of Madrid Madrid Spain
| | - José M. Pingarrón
- Analytical Chemistry Department Faculty of Chemistry Complutense University of Madrid Madrid Spain
| |
Collapse
|
19
|
Rhouati A, Marty JL, Vasilescu A. Electrochemical biosensors combining aptamers and enzymatic activity: Challenges and analytical opportunities. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Pérez DJ, Patiño EB, Orozco J. Electrochemical Nanobiosensors as Point‐of‐Care Testing Solution to Cytokines Measurement Limitations. ELECTROANAL 2021. [DOI: 10.1002/elan.202100237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- David J. Pérez
- Max Planck Tandem Group in Nanobioengineering University of Antioquia Complejo Ruta N Calle 67, N° 52–20 050010 Medellín Colombia
- Grupo de Bioquímica Estructural de Macromoléculas Chemistry Institute University of Antioquia Lab 1–314 Calle 67, N° 53–108 050010 Medellín Colombia
| | - Edwin B. Patiño
- Grupo de Bioquímica Estructural de Macromoléculas Chemistry Institute University of Antioquia Lab 1–314 Calle 67, N° 53–108 050010 Medellín Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering University of Antioquia Complejo Ruta N Calle 67, N° 52–20 050010 Medellín Colombia
| |
Collapse
|
21
|
Musa AM, Kiely J, Luxton R, Honeychurch KC. Recent progress in screen-printed electrochemical sensors and biosensors for the detection of estrogens. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Chen ZM, Wang Y, Du XY, Sun JJ, Yang S. Temperature-Alternated Electrochemical Aptamer-Based Biosensor for Calibration-Free and Sensitive Molecular Measurements in an Unprocessed Actual Sample. Anal Chem 2021; 93:7843-7850. [PMID: 34029050 DOI: 10.1021/acs.analchem.1c00289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Frequently calibrating electrochemical biosensors (ECBs) to obtain acceptable accuracy can be cumbersome for the users. Thus, the achievement of calibration-free operation would effectively lead to commercial applications for ECBs in the real world. Herein, we fabricated a temperature-alternated electrochemical aptamer-based (TAEAB) sensor, producing a cycle of "enhanced-responsive and ∼nonresponsive" state at rapidly alternated interface temperatures (5 and 30 °C, respectively). The ratio of peak currents collected at two temperatures overcomes sensor-to-sensor fabrication variations, obviating sensor calibration prior to use due to its good reproducibility. We then demonstrated the capability of TAEAB sensors for improved, sensitive, and calibration-free measurement of different targets within 7 min, which respectively achieved a detection limit of 0.5 μM procaine in undiluted urine and 1.0 μM adenosine triphosphate in undiluted serum. This generalizable approach ameliorates sensitivity without the complicated amplification step, thus simplifying the operation procedure and reducing the detection time, which will effectively improve the clinical utility of biosensors.
Collapse
Affiliation(s)
- Zhi-Min Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yi Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xing-Yuan Du
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jian-Jun Sun
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Sen Yang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
23
|
Revisiting Electrochemical Biosensing in the 21st Century Society for Inflammatory Cytokines Involved in Autoimmune, Neurodegenerative, Cardiac, Viral and Cancer Diseases. SENSORS 2020; 21:s21010189. [PMID: 33396710 PMCID: PMC7795835 DOI: 10.3390/s21010189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022]
Abstract
The multifaceted key roles of cytokines in immunity and inflammatory processes have led to a high clinical interest for the determination of these biomolecules to be used as a tool in the diagnosis, prognosis, monitoring and treatment of several diseases of great current relevance (autoimmune, neurodegenerative, cardiac, viral and cancer diseases, hypercholesterolemia and diabetes). Therefore, the rapid and accurate determination of cytokine biomarkers in body fluids, cells and tissues has attracted considerable attention. However, many currently available techniques used for this purpose, although sensitive and selective, require expensive equipment and advanced human skills and do not meet the demands of today’s clinic in terms of test time, simplicity and point-of-care applicability. In the course of ongoing pursuit of new analytical methodologies, electrochemical biosensing is steadily gaining ground as a strategy suitable to develop simple, low-cost methods, with the ability for multiplexed and multiomics determinations in a short time and requiring a small amount of sample. This review article puts forward electrochemical biosensing methods reported in the last five years for the determination of cytokines, summarizes recent developments and trends through a comprehensive discussion of selected strategies, and highlights the challenges to solve in this field. Considering the key role demonstrated in the last years by different materials (with nano or micrometric size and with or without magnetic properties), in the design of analytical performance-enhanced electrochemical biosensing strategies, special attention is paid to the methods exploiting these approaches.
Collapse
|
24
|
Biosensors-Recent Advances and Future Challenges. SENSORS 2020; 20:s20226645. [PMID: 33233539 PMCID: PMC7699460 DOI: 10.3390/s20226645] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022]
|
25
|
Kintzios S. Bioelectric Sensors: On the Road for the 4.0 Diagnostics and Biomedtech Revolution. BIOSENSORS-BASEL 2020; 10:bios10080096. [PMID: 32796701 PMCID: PMC7460287 DOI: 10.3390/bios10080096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Spyridon Kintzios
- Laboratory of Cell Technology, Faculty of Biotechnology, Agricultural University of Athens/EU-CONEXUS European University, 11855 Athens, Greece
| |
Collapse
|