1
|
Nazir A, Hussain FHN, Raza A. Advancing microbiota therapeutics: the role of synthetic biology in engineering microbial communities for precision medicine. Front Bioeng Biotechnol 2024; 12:1511149. [PMID: 39698189 PMCID: PMC11652149 DOI: 10.3389/fbioe.2024.1511149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Over recent years, studies on microbiota research and synthetic biology have explored novel approaches microbial manipulation for therapeutic purposes. However, fragmented information is available on this aspect with key insights scattered across various disciplines such as molecular biology, genetics, bioengineering, and medicine. This review aims to the transformative potential of synthetic biology in advancing microbiome research and therapies, with significant implications for healthcare, agriculture, and environmental sustainability. By merging computer science, engineering, and biology, synthetic biology allows for precise design and modification of biological systems via cutting edge technologies like CRISPR/Cas9 gene editing, metabolic engineering, and synthetic oligonucleotide synthesis, thus paving the way for targeted treatments such as personalized probiotics and engineered microorganisms. The review will also highlight the vital role of gut microbiota in disorders caused by its dysbiosis and suggesting microbiota-based therapies and innovations such as biosensors for real-time gut health monitoring, non-invasive diagnostic tools, and automated bio foundries for better outcomes. Moreover, challenges including genetic stability, environmental safety, and robust regulatory frameworks will be discussed to understand the importance of ongoing research to ensure safe and effective microbiome interventions.
Collapse
Affiliation(s)
- Asiya Nazir
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | | | | |
Collapse
|
2
|
Cubells-Gómez A, Lucío MI, Bañuls MJ, Maquieira Á. Holographic surface relief diffraction gratings made of hydrogels for direct label-free biosensing of IgGs. Talanta 2024; 279:126563. [PMID: 39032462 DOI: 10.1016/j.talanta.2024.126563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/21/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
This work describes the development of a label-free (LF) biosensing platform for the direct detection of targets based on diffractive structures fabricated with acrylamide-based hydrogels biofunctionalized with proteins and antibodies. Hydrogels containing Bovine Serum Albumin protein (BSA) with different crosslinking degrees were synthesized and characterized to find the optimal conditions for the suitable fabrication of surface relief gratings (SRGs). The bioavailability of BSA-functionalized hydrogels for the specific recognition of anti-BSA antibodies was verified by fluorescence detection. After the hydrogel-based SRG fabrication, diffraction efficiency measures at two different laser wavelengths were used for the direct LF detection of anti-BSA antibodies. The limit of detection in the sub mg L-1 range was read. Additionally, SRGs were prepared with hydrogels biofunctionalized with anti-rabbit antibodies for the direct detection of IgGs from rabbit serum, obtaining similar analytical performance without the necessity of labeling or applying amplification strategies.
Collapse
Affiliation(s)
- Aitor Cubells-Gómez
- Instituto interuniversitario de investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - María Isabel Lucío
- Instituto interuniversitario de investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; Departamento de Química, Universitat politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - María-José Bañuls
- Instituto interuniversitario de investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; Departamento de Química, Universitat politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Ángel Maquieira
- Instituto interuniversitario de investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; Departamento de Química, Universitat politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
3
|
Panhwar S, Keerio HA, Ilhan H, Boyacı IH, Tamer U. Principles, Methods, and Real-Time Applications of Bacteriophage-Based Pathogen Detection. Mol Biotechnol 2024; 66:3059-3076. [PMID: 37914863 DOI: 10.1007/s12033-023-00926-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Bacterial pathogens in water, food, and the environment are spreading diseases around the world. According to a World Health Organization (WHO) report, waterborne pathogens pose the most significant global health risks to living organisms, including humans and animals. Conventional bacterial detection approaches such as colony counting, microscopic analysis, biochemical analysis, and molecular analysis are expensive, time-consuming, less sensitive, and require a pre-enrichment step. However, the bacteriophage-based detection of pathogenic bacteria is a robust approach that utilizes bacteriophages, which are viruses that specifically target and infect bacteria, for rapid and accurate detection of targets. This review shed light on cutting-edge technologies about the novel structure of phages and the immobilization process on the surface of electrodes to detect targeted bacterial cells. Similarly, the purpose of this study was to provide a comprehensive assessment of bacteriophage-based biosensors utilized for pathogen detection, as well as their trends, outcomes, and problems. This review article summaries current phage-based pathogen detection strategies for the development of low-cost lab-on-chip (LOC) and point-of-care (POC) devices using electrochemical and optical methods such as surface-enhanced Raman spectroscopy (SERS).
Collapse
Affiliation(s)
- Sallahuddin Panhwar
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
- Department of Civil Engineering, National University of Sciences and Technology, Quetta, 24090, Balochistan, Pakistan.
| | - Hareef Ahmed Keerio
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hasan Ilhan
- Department of Chemistry, Faculty of Science, Ordu University, Altinordu, 52200, Ordu, Turkey
| | - Ismail Hakkı Boyacı
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
- Metu MEMS Center, Ankara, Turkey.
| |
Collapse
|
4
|
Dai J, Li J, Jiao Y, Yang X, Yang D, Zhong Z, Li H, Yang Y. Colorimetric-SERS dual-mode aptasensor for Staphylococcus aureus based on MnO 2@AuNPs oxidase-like activity. Food Chem 2024; 456:139955. [PMID: 38852453 DOI: 10.1016/j.foodchem.2024.139955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
The nanozyme-linked aptamer-sorbent assay (NLASA) is a rapid way to screen and characterize aptamer binding to targets. In this paper, a MnO2@AuNPs@aptamer (Apt) based NLASA coupled with colorimetric-SERS dual-mode for Staphylococcus aureus (S. aureus) detection is presented. Cu,Fe-CDs were used as the reducing agent to synthesize MnO2 and gold nanoparticles (AuNPs). Then, they were fabricated to obtain MnO2@AuNPs with oxidase (OXD)-like and SERS activities. The S. aureus aptamer was conjugated to MnO2@AuNPs and enhanced the OXD-like activity, which realized the specific capture of S. aureus in food matrices. In addition, S. aureus improves the oxidation of 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid (ABTS) but inhibits 3,3',5,5'-tetramethylbenzidine (TMB) to generate Raman-active oxTMB with MnO2@AuNPs@Apt. This sensor was used for detections of S. aureus in a concentration ranged from 101 to 107 CFU/mL with a detection limit of 0.926 CFU/mL (colorimetric) and 1.561 CFU/mL (SERS), and the recovery is 85%-105% in real samples.
Collapse
Affiliation(s)
- Jiahe Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650500, Yunnan, PR China
| | - Jitao Li
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, Yunnan Minzu University, Kunming 650500, Yunnan, PR China
| | - Yang Jiao
- Yunnan Lunyang Technology Co., Ltd., Kunming 650000, China
| | - Xiaolan Yang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, Yunnan Minzu University, Kunming 650500, Yunnan, PR China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Zitao Zhong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Hong Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650500, Yunnan, PR China.
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China.
| |
Collapse
|
5
|
Cheng CY, Varghese EV, Wang WJ, Yao CY, Chen CH, Li WP. Aggregation-induced emission silence-mediated pathogen detection using a rapidly degradable nanographene-embedded polymersome. J Mater Chem B 2024; 12:10028-10040. [PMID: 39253882 DOI: 10.1039/d4tb01379d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Typical pathogen detection processes are time-consuming and require expensive equipment and professional operators, limiting their practical applicability. Developing a rapid and easy-to-read method of accurately sensing pathogenic bacteria is critical for reducing the spread and risk of infection in high-risk areas. Herein, the synthesis of nanographene (nanoG) that exhibits aggregation-induced emission (AIE) is described. The nanoG was embedded into a hydrophobic shell of poly(lactic-co-glycolic acid) (PLGA) polymersome in a double-emulsion process, significantly enhancing the nanoG luminescence under irradiation at 330 nm due to the enrichment of nanoG between the inner and outer PLGA shells. Both Gram-positive and Gram-negative bacteria can rapidly degrade the PLGA vesicular structure, leading to dispersal of the nanoG inside the shell and silencing the AIE effect. A linear relationship between the bacterial concentration and emissivity was established, and the detection limit was identified. Moreover, the polymersome has excellent selectivity for methicillin-resistant Staphylococcus aureus (MRSA) detection after a screening pretreatment of a bacterial mixture with suitable antibiotics. The AIE silencing could be observed with the naked eye in an MRSA-infected wound treated with the polymersome after 1 h of incubation, demonstrating a high potential for clinical rapid screening applications.
Collapse
Affiliation(s)
- Chia-Yi Cheng
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Eldhose V Varghese
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Jyun Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chia-Yu Yao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chia-Hsiang Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-Peng Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
6
|
Yang H, Yan S, Yang T. Electrospun Nanofiber-Based Biosensors for Foodborne Bacteria Detection. Molecules 2024; 29:4415. [PMID: 39339410 PMCID: PMC11434534 DOI: 10.3390/molecules29184415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Food contamination has emerged as a significant global health concern, posing substantial challenges to the food industry. Bacteria are the primary cause of foodborne diseases. Consequently, it is crucial to develop accurate and efficient sensing platforms to detect foodborne bacteria in food products. Among various detection methods, biosensors have emerged as a promising solution due to their portability, affordability, simplicity, selectivity, sensitivity, and rapidity. Electrospun nanofibers have gained increasing popularity in enhancing biosensor performance. These nanofibers possess a distinctive three-dimensional structure, providing a large surface area and ease of preparation. This review provides an overview of the electrospinning technique, nanofibers and nanofiber-based biosensors. It also explores their mechanisms and applications in the detection of foodborne bacteria such as Salmonella, Listeria monocytogenes (L. monocytogenes), Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Pseudomonas putida (P. putida).
Collapse
Affiliation(s)
- Haoming Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Song Yan
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tianxi Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
7
|
P A A, Ragunathan L, Sanjeevi T, Sasi AC, Kanniyan K, Yadav R, Sambandam R. Breaking boundaries in microbiology: customizable nanoparticles transforming microbial detection. NANOSCALE 2024; 16:13802-13819. [PMID: 38990141 DOI: 10.1039/d4nr01680g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The detection and identification of microorganisms are crucial in microbiology laboratories. Traditionally, detecting and identifying microbes require extended periods of incubation, significant manual effort, skilled personnel, and advanced laboratory facilities. Recent progress in nanotechnology has provided novel opportunities for detecting and identifying bacteria, viruses, and microbial metabolites using customized nanoparticles. These improvements are thought to have the ability to surpass the constraints of existing procedures and make a substantial contribution to the development of rapid microbiological diagnosis. This review article examines the customizability of nanoparticles for detecting bacteria, viruses, and microbial metabolites and discusses recent cutting-edge studies demonstrating the use of nanotechnology in biomedical research.
Collapse
Affiliation(s)
- Aboobacker P A
- Department of Microbiology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry 607402, India.
| | - Latha Ragunathan
- Department of Microbiology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry 607402, India.
| | - Thiyagarajan Sanjeevi
- Department of Medical Biotechnology, Aarupadai Veedu Medical College, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry 607402, India
| | - Aravind C Sasi
- Department of Microbiology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry 607402, India.
| | - Kavitha Kanniyan
- Department of Microbiology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry 607402, India.
| | - Richa Yadav
- Department of Microbiology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry 607402, India.
| | - Ravikumar Sambandam
- Department of Medical Biotechnology, Aarupadai Veedu Medical College, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry 607402, India
| |
Collapse
|
8
|
Parker DR, Nugen SR. Bacteriophage-Based Bioanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:393-410. [PMID: 39018352 DOI: 10.1146/annurev-anchem-071323-084224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Bacteriophages, which are viral predators of bacteria, have evolved to efficiently recognize, bind, infect, and lyse their host, resulting in the release of tens to hundreds of propagated viruses. These abilities have attracted biosensor developers who have developed new methods to detect bacteria. Recently, several comprehensive reviews have covered many of the advances made regarding the performance of phage-based biosensors. Therefore, in this review, we first describe the landscape of phage-based biosensors and then cover advances in other aspects of phage biology and engineering that can be used to make high-impact contributions to biosensor development. Many of these advances are in fields adjacent to analytical chemistry such as synthetic biology, machine learning, and genetic engineering and will allow those looking to develop phage-based biosensors to start taking alternative approaches, such as a bottom-up design and synthesis of custom phages with the singular task of detecting their host.
Collapse
Affiliation(s)
- David R Parker
- Department of Food Science, Cornell University, Ithaca, New York, USA;
| | - Sam R Nugen
- Department of Food Science, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
9
|
Taha BA, Ahmed NM, Talreja RK, Haider AJ, Al Mashhadany Y, Al-Jubouri Q, Huddin AB, Mokhtar MHH, Rustagi S, Kaushik A, Chaudhary V, Arsad N. Synergizing Nanomaterials and Artificial Intelligence in Advanced Optical Biosensors for Precision Antimicrobial Resistance Diagnosis. ACS Synth Biol 2024; 13:1600-1620. [PMID: 38842483 DOI: 10.1021/acssynbio.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Antimicrobial resistance (AMR) poses a critical global One Health concern, ensuing from unintentional and continuous exposure to antibiotics, as well as challenges in accurate contagion diagnostics. Addressing AMR requires a strategic approach that emphasizes early stage prevention through screening in clinical, environmental, farming, and livestock settings to identify nonvulnerable antimicrobial agents and the associated genes. Conventional AMR diagnostics, like antibiotic susceptibility testing, possess drawbacks, including high costs, time-consuming processes, and significant manpower requirements, underscoring the need for intelligent, prompt, and on-site diagnostic techniques. Nanoenabled artificial intelligence (AI)-supported smart optical biosensors present a potential solution by facilitating rapid point-of-care AMR detection with real-time, sensitive, and portable capabilities. This Review comprehensively explores various types of optical nanobiosensors, such as surface plasmon resonance sensors, whispering-gallery mode sensors, optical coherence tomography, interference reflection imaging sensors, surface-enhanced Raman spectroscopy, fluorescence spectroscopy, microring resonance sensors, and optical tweezer biosensors, for AMR diagnostics. By harnessing the unique advantages of these nanoenabled smart biosensors, a revolutionary paradigm shift in AMR diagnostics can be achieved, characterized by rapid results, high sensitivity, portability, and integration with Internet-of-Things (IoT) technologies. Moreover, nanoenabled optical biosensors enable personalized monitoring and on-site detection, significantly reducing turnaround time and eliminating the human resources needed for sample preservation and transportation. Their potential for holistic environmental surveillance further enhances monitoring capabilities in diverse settings, leading to improved modern-age healthcare practices and more effective management of antimicrobial treatments. Embracing these advanced diagnostic tools promises to bolster global healthcare capacity to combat AMR and safeguard One Health.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Malaysia
| | - Naser M Ahmed
- Department of Laser and Optoelectronics Engineering, Dijlah University College, 00964 Baghdad, Iraq
| | - Rishi Kumar Talreja
- Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi 110029, India
| | - Adawiya J Haider
- Applied Sciences Department/Laser Science and Technology Branch, University of Technology, 00964 Baghdad, Iraq
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, University of Anbar, Anbar 00964, Iraq
| | - Qussay Al-Jubouri
- Department of Communication Engineering, University of Technology, 00964 Baghdad, Iraq
| | - Aqilah Baseri Huddin
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Malaysia
| | - Mohd Hadri Hafiz Mokhtar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Malaysia
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttrakhand 248007, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, United States
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, New Delhi 110045, India
| | - Norhana Arsad
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Malaysia
| |
Collapse
|
10
|
Capuano GE, Corso D, Farina R, Pezzotti Escobar G, Screpis GA, Coniglio MA, Libertino S. Miniaturizable Chemiluminescence System for ATP Detection in Water. SENSORS (BASEL, SWITZERLAND) 2024; 24:3921. [PMID: 38931704 PMCID: PMC11207618 DOI: 10.3390/s24123921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
We present the design, fabrication, and testing of a low-cost, miniaturized detection system that utilizes chemiluminescence to measure the presence of adenosine triphosphate (ATP), the energy unit in biological systems, in water samples. The ATP-luciferin chemiluminescent solution was faced to a silicon photomultiplier (SiPM) for highly sensitive real-time detection. This system can detect ATP concentrations as low as 0.2 nM, with a sensitivity of 79.5 A/M. Additionally, it offers rapid response times and can measure the characteristic time required for reactant diffusion and mixing within the reaction volume, determined to be 0.3 ± 0.1 s. This corresponds to a diffusion velocity of approximately 44 ± 14 mm2/s.
Collapse
Affiliation(s)
- Giuseppe E. Capuano
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
| | - Domenico Corso
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
| | - Roberta Farina
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Gianni Pezzotti Escobar
- URT “LabSens of Beyond Nano” of the Department of Physical Sciences and Technologies of Matter, National Research Council (CNR-DSFTM-ME), Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy;
| | - Giuseppe A. Screpis
- Department of Medical, Surgical Sciences and Advanced Technologies, University of Catania, Via S. Sofia 78, 95123 Catania, Italy
| | - Maria Anna Coniglio
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
- Department of Medical, Surgical Sciences and Advanced Technologies, University of Catania, Via S. Sofia 78, 95123 Catania, Italy
| | - Sebania Libertino
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
| |
Collapse
|
11
|
Kassem S, Hamdy ME, Selim KM, Elmasry DMA, Shahein MA, El-Husseini DM. Development of Paper-Based Fluorescent Molecularly Imprinted Polymer Sensor for Rapid Detection of Lumpy Skin Disease Virus. Molecules 2024; 29:1676. [PMID: 38611955 PMCID: PMC11013595 DOI: 10.3390/molecules29071676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 04/14/2024] Open
Abstract
Lumpy Skin Disease (LSD) is a notifiable viral disease caused by Lumpy Skin Disease virus (LSDV). It is usually associated with high economic losses, including a loss of productivity, infertility, and death. LSDV shares genetic and antigenic similarities with Sheep pox virus (SPV) and Goat pox (GPV) virus. Hence, the LSDV traditional diagnostic tools faced many limitations regarding sensitivity, specificity, and cross-reactivity. Herein, we fabricated a paper-based turn-on fluorescent Molecularly Imprinted Polymer (MIP) sensor for the rapid detection of LSDV. The LSDV-MIPs sensor showed strong fluorescent intensity signal enhancement in response to the presence of the virus within minutes. Our sensor showed a limit of detection of 101 log10 TCID50/mL. Moreover, it showed significantly higher specificity to LSDV relative to other viruses, especially SPV. To our knowledge, this is the first record of a paper-based rapid detection test for LSDV depending on fluorescent turn-on behavior.
Collapse
Affiliation(s)
- Samr Kassem
- Nanomaterials Research and Synthesis Unit, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza 12618, Egypt
| | - Mervat E. Hamdy
- Genome Research Unit, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza 12618, Egypt
| | - Karim M. Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza 12618, Egypt
| | - Dalia M. A. Elmasry
- Nanomaterials Research and Synthesis Unit, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza 12618, Egypt
| | - Momtaz A. Shahein
- Virology Research Department, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza 12618, Egypt
| | - Dalia M. El-Husseini
- Nanomaterials Research and Synthesis Unit, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza 12618, Egypt
| |
Collapse
|
12
|
Pan M, Zhao Y, Qiao J, Meng X. Electrochemical biosensors for pathogenic microorganisms detection based on recognition elements. Folia Microbiol (Praha) 2024; 69:283-304. [PMID: 38367165 DOI: 10.1007/s12223-024-01144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
The worldwide spread of pathogenic microorganisms poses a significant risk to human health. Electrochemical biosensors have emerged as dependable analytical tools for the point-of-care detection of pathogens and can effectively compensate for the limitations of conventional techniques. Real-time analysis, high throughput, portability, and rapidity make them pioneering tools for on-site detection of pathogens. Herein, this work comprehensively reviews the recent advances in electrochemical biosensors for pathogen detection, focusing on those based on the classification of recognition elements, and summarizes their principles, current challenges, and prospects. This review was conducted by a systematic search of PubMed and Web of Science databases to obtain relevant literature and construct a basic framework. A total of 171 publications were included after online screening and data extraction to obtain information of the research advances in electrochemical biosensors for pathogen detection. According to the findings, the research of electrochemical biosensors in pathogen detection has been increasing yearly in the past 3 years, which has a broad development prospect, but most of the biosensors have performance or economic limitations and are still in the primary stage. Therefore, significant research and funding are required to fuel the rapid development of electrochemical biosensors. The overview comprehensively evaluates the recent advances in different types of electrochemical biosensors utilized in pathogen detection, with a view to providing insights into future research directions in biosensors.
Collapse
Affiliation(s)
- Mengting Pan
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yurui Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Jinjuan Qiao
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiangying Meng
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
13
|
Dhahi TS, Dafhalla AKY, Saad SA, Zayan DMI, Ahmed AET, Elobaid ME, Adam T, Gopinath SCB. The importance, benefits, and future of nanobiosensors for infectious diseases. Biotechnol Appl Biochem 2024; 71:429-445. [PMID: 38238920 DOI: 10.1002/bab.2550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/19/2023] [Indexed: 04/11/2024]
Abstract
Infectious diseases, caused by pathogenic microorganisms such as bacteria, viruses, parasites, or fungi, are crucial for efficient disease management, reducing morbidity and mortality rates and controlling disease spread. Traditional laboratory-based diagnostic methods face challenges such as high costs, time consumption, and a lack of trained personnel in resource-poor settings. Diagnostic biosensors have gained momentum as a potential solution, offering advantages such as low cost, high sensitivity, ease of use, and portability. Nanobiosensors are a promising tool for detecting and diagnosing infectious diseases such as coronavirus disease, human immunodeficiency virus, and hepatitis. These sensors use nanostructured carbon nanotubes, graphene, and nanoparticles to detect specific biomarkers or pathogens. They operate through mechanisms like the lateral flow test platform, where a sample containing the biomarker or pathogen is applied to a test strip. If present, the sample binds to specific recognition probes on the strip, indicating a positive result. This binding event is visualized through a colored line. This review discusses the importance, benefits, and potential of nanobiosensors in detecting infectious diseases.
Collapse
Affiliation(s)
- Th S Dhahi
- Electronics Technical Department, Southern Technical University, Basra, Iraq
| | - Alaa Kamal Yousif Dafhalla
- Department of Computer Engineering, College of Computer Science and engineering, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Sawsan Ali Saad
- Department of Computer Engineering, College of Computer Science and engineering, University of Hail, Hail, Kingdom of Saudi Arabia
| | | | | | - Mohamed Elshaikh Elobaid
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
| | - Tijjani Adam
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
- Advanced Communication Engineering, Centre of Excellence (ACE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
| |
Collapse
|
14
|
Thalir S, Celshia Susai S, Selvamani M, Suresh V, Sethuraman S, Ramalingam K. Sensing of Quercetin With Cobalt-Doped Manganese Nanosystems by Electrochemical Method. Cureus 2024; 16:e56665. [PMID: 38646311 PMCID: PMC11032413 DOI: 10.7759/cureus.56665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND The pressing need for precise, quick, and affordable detection of diverse biomolecules has led to notable developments in the realm of biosensors. Quercetin, a biomolecule rich in flavonoids predominantly found in our diet, is sensed by the electrochemical method. The electrochemical properties show remarkable improvement when Mn2O3 (MO) is doped with cobalt (Co). Aim: This study aimed to investigate the biomolecule sensing of quercetin using Co-doped MO by electrochemical method. Materials and methods: Co-doped MO nanospheres were prepared by hydrothermal method. The crystal structure of the synthesized material was evaluated by using X-ray diffraction analysis. The sample morphology was assessed by using field emission scanning electron microscopy (FE-SEM) techniques. The cyclic voltammetry technique was used for the detection of quercetin biomolecules. Results: The synthesized Co-doped MO appeared to be spherical in morphology in FE-SEM. Energy-dispersive X-ray spectroscopy showed the only presence of Co, Mn, and O, which confirmed the purity of the sample. The modified electrode sensed the biomolecule with a higher current of 7.35 µA than the bare glassy carbon electrode of 6.1 µA. CONCLUSION The Co-doped MO exhibited enhanced conductivity, reactivity, and electrochemical performance. This tailored approach will help in the optimization of material properties toward specific biomolecule sensing applications.
Collapse
Affiliation(s)
- Sree Thalir
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sherin Celshia Susai
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Muthamizh Selvamani
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Vasugi Suresh
- Medical Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sathya Sethuraman
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Karthikeyan Ramalingam
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
15
|
Vercauteren R, Gevers C, Mahillon J, Francis LA. Design of a Porous Silicon Biosensor: Characterization, Modeling, and Application to the Indirect Detection of Bacteria. BIOSENSORS 2024; 14:104. [PMID: 38392023 PMCID: PMC10886929 DOI: 10.3390/bios14020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
The design of a porous silicon (PSi) biosensor is not often documented, but is of the upmost importance to optimize its performance. In this work, the motivation behind the design choices of a PSi-based optical biosensor for the indirect detection of bacteria via their lysis is detailed. The transducer, based on a PSi membrane, was characterized and models were built to simulate the analyte diffusion, depending on the porous nanostructures, and to optimize the optical properties. Once all performances and properties were analyzed and optimized, a theoretical response was calculated. The theoretical limit of detection was computed as 104 CFU/mL, based on the noise levels of the optical setup. The experimental response was measured using 106 CFU/mL of Bacillus cereus as model strain, lysed by bacteriophage-coded endolysins PlyB221. The obtained signal matched the expected response, demonstrating the validity of our design and models.
Collapse
Affiliation(s)
- Roselien Vercauteren
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (R.V.); (C.G.)
| | - Clémentine Gevers
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (R.V.); (C.G.)
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Laurent A. Francis
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (R.V.); (C.G.)
| |
Collapse
|
16
|
Bartosik M, Moranova L, Izadi N, Strmiskova J, Sebuyoya R, Holcakova J, Hrstka R. Advanced technologies towards improved HPV diagnostics. J Med Virol 2024; 96:e29409. [PMID: 38293790 DOI: 10.1002/jmv.29409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 02/01/2024]
Abstract
Persistent infection with high-risk types of human papillomaviruses (HPV) is a major cause of cervical cancer, and an important factor in other malignancies, for example, head and neck cancer. Despite recent progress in screening and vaccination, the incidence and mortality are still relatively high, especially in low-income countries. The mortality and financial burden associated with the treatment could be decreased if a simple, rapid, and inexpensive technology for HPV testing becomes available, targeting individuals for further monitoring with increased risk of developing cancer. Commercial HPV tests available in the market are often relatively expensive, time-consuming, and require sophisticated instrumentation, which limits their more widespread utilization. To address these challenges, novel technologies are being implemented also for HPV diagnostics that include for example, isothermal amplification techniques, lateral flow assays, CRISPR-Cas-based systems, as well as microfluidics, paperfluidics and lab-on-a-chip devices, ideal for point-of-care testing in decentralized settings. In this review, we first evaluate current commercial HPV tests, followed by a description of advanced technologies, explanation of their principles, critical evaluation of their strengths and weaknesses, and suggestions for their possible implementation into medical diagnostics.
Collapse
Affiliation(s)
- Martin Bartosik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ludmila Moranova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Nasim Izadi
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Johana Strmiskova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ravery Sebuyoya
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jitka Holcakova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
17
|
Ray SK, Mukherjee S. Innovation and Patenting Activities During COVID-19 and Advancement of Biochemical and Molecular Diagnosis in the Post- COVID-19 Era. Recent Pat Biotechnol 2024; 18:210-226. [PMID: 37779409 DOI: 10.2174/0118722083262217230921042127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 10/03/2023]
Abstract
The COVID-19 pandemic is to escalate globally and acquire new mutations quickly, so accurate diagnostic technologies play a vital role in controlling and understanding the epidemiology of the disease. A plethora of technologies acquires diagnosis of individuals and informs clinical management of COVID. Some important biochemical parameters for COVID diagnosis are the elevation of liver enzymes, creatinine, and nonspecific inflammatory markers such as C-reactive protein (CRP) and Interleukin 6 (IL-6). The main progression predictors are lymphopenia, elevated D-dimer, and hyperferritinemia, although it is also necessary to consider LDH, CPK, and troponin in the marker panel of diagnosis. Owing to the greater sensitivity and accuracy, molecular technologies such as conventional polymerase chain reaction (PCR), reverse transcription (RT)-PCR, nested PCR, loop-mediated isothermal amplification (LAMP), and xMAP technology have been extensively used for COVID diagnosis for some time now. To make so many diagnostics accessible to general people, many techniques may be exploited, including point of care (POC), also called bedside testing, which is developing as a portable promising tool in pathogen identification. Some other lateral flow assay (LFA)-centered techniques like SHERLOCK, CRISPR-Cas12a (AIOD-CRISPR), and FNCAS9 editor limited uniform detection assay (FELUDA), etc. have shown auspicious results in the rapid detection of pathogens. More recently, low-cost sequencing and advancements in big data management have resulted in a slow but steady rise of next-generation sequencing (NGS)-based approaches for diagnosis that have potential relevance for clinical purposes and may pave the way toward a better future. Due to the COVID-19 pandemic, various institutions provided free, specialized websites and tools to promote research and access to critically needed advanced solutions by alleviating research and analysis of data within a substantial body of scientific and patent literature regarding biochemical and molecular diagnosis published since January 2020. This circumstance is unquestionably unique and difficult for anyone using patent information to find pertinent disclosures at a specific date in a trustworthy manner.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh-462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
18
|
Patil AVP, Yang PF, Yang CY, Gaur MS, Wu CC. A Critical Review on Detection of Foodborne Pathogens Using Electrochemical Biosensors. Crit Rev Biomed Eng 2024; 52:17-40. [PMID: 38523439 DOI: 10.1615/critrevbiomedeng.2023049469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
An outbreak of foodborne pathogens would cause severe consequences. Detecting and diagnosing foodborne diseases is crucial for food safety, and it is increasingly important to develop fast, sensitive, and cost-effective methods for detecting foodborne pathogens. In contrast to traditional methods, such as medium-based culture, nucleic acid amplification test, and enzyme-linked immunosorbent assay, electrochemical biosensors possess the advantages of simplicity, rapidity, high sensitivity, miniaturization, and low cost, making them ideal for developing pathogen-sensing devices. The biorecognition layer, consisting of recognition elements, such as aptamers, antibodies and bacteriophages, and other biomolecules or polymers, is the most critical component to determine the selectivity, specificity, reproducibility, and lifetime of a biosensor when detecting pathogens in a biosample. Furthermore, nanomaterials have been frequently used to improve electrochemical biosensors for sensitively detecting foodborne pathogens due to their high conductivity, surface-to-volume ratio, and electrocatalytic activity. In this review, we survey the characteristics of biorecognition elements and nanomaterials in constructing electrochemical biosensors applicable for detecting foodborne pathogens during the past five years. As well as the challenges and opportunities of electrochemical biosensors in the application of foodborne pathogen detection are discussed.
Collapse
Affiliation(s)
- Avinash V Police Patil
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan R.O.C
| | - Ping-Feng Yang
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan R.O.C
| | - Chiou-Ying Yang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan R.O.C
| | - M S Gaur
- Department of Physics, Hindustan College of Science and Technology, Farah, Mathura, 281122 U.P., India
| | | |
Collapse
|
19
|
Sutarlie L, Chee HL, Ow SY, Aabdin Z, Tjiu WW, Su X. A rapid total bacterial count method using gold nanoparticles conjugated with an aptamer for water quality assessment. NANOSCALE 2023; 15:16675-16686. [PMID: 37823252 DOI: 10.1039/d3nr02635c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Total bacterial count is a routine parameter in microbial safety assessment used in many fields, such as drinking water and industrial water testing. The current gold standard method for counting bacteria is the plate culture method (or heterotrophic plate count) that requires a microbiology laboratory and a long turnover time of at least 24 hours. To tackle these shortcomings, we developed a rapid total bacterial count method that relies on gold nanoparticles (AuNPs) conjugated with affinity ligands to stain bacterial cells captured on a syringe filter. Two affinity ligands were exploited, i.e. a DNA aptamer (AB2) and a lectin Griffonia simplicifolia II (GSII) that recognize bacterial cell wall commonalities, i.e. peptidoglycan and its amino sugars. Upon proper formulation with addition of a surfactant, the AB2 conjugated AuNPs (AB2-AuNPs) can selectively stain bacterial cells captured on the filter membrane with a higher sensitivity than GSII-AuNPs. Measuring the staining intensity using an in-house-built handheld detector allowed us to correlate its intensity reading with the total number of bacterial units present. This bacteria quantification method, referred to as "Filter-and-Stain", had an efficient turnover time of 20 min suggesting its potential usage for rapid on-site applications. Additionally, the detection sensitivity provided by the AB2-AuNP nanoreagent offered a limit of detection as low as 100 CFU mL-1. We have demonstrated the use of the AB2-AuNPs for detection of bacteria from environmental water samples.
Collapse
Affiliation(s)
- Laura Sutarlie
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Heng Li Chee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Sian Yang Ow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Zainul Aabdin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Weng Weei Tjiu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Xiaodi Su
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
- Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
20
|
Zhou W, Wen H, Hao G, Zhang YS, Yang J, Gao L, Zhu G, Yang ZQ, Xu X. Surface engineering of magnetic peroxidase mimic using bacteriophage for high-sensitivity/specificity colorimetric determination of Staphylococcus aureus in food. Food Chem 2023; 426:136611. [PMID: 37356237 DOI: 10.1016/j.foodchem.2023.136611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/28/2023] [Accepted: 06/10/2023] [Indexed: 06/27/2023]
Abstract
Herein, we proposed surface engineering of magnetic peroxidase mimic using bacteriophage by electrostatic interaction to prepare bacteriophage SapYZU15 modified Fe3O4 (SapYZU15@Fe3O4) for colorimetric determination of S. aureus in food. SapYZU15@Fe3O4 exhibits peroxidase-like activity, catalyzing 3,3',5,5'-tetramethylbenzidine (TMB) chromogenic reaction. After introducing S. aureus, peroxidase-like activity of SapYZU15@Fe3O4 was specifically inhibited, resulting in deceleration of TMB chromogenic reaction. This phenomenon benefits from the presence of unique tail protein gene in the bacteriophage SapYZU15 genome, leading to a specific biological interaction between S. aureus and SapYZU15. On basis of this principle, SapYZU15@Fe3O4 can be employed for colorimetric determination of S. aureus with a limiting detection (LOD), calculated as low as 1.2 × 102 CFU mL-1. With this proposed method, colorimetric detection of S. aureus in food was successfully achieved. This portends that surface engineering of nanozymes using bacteriophage has great potential in the field of colorimetric detection of pathogenic bacterium in food.
Collapse
Affiliation(s)
- Wenyuan Zhou
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hua Wen
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Guijie Hao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, Zhejiang, China
| | - Yuan-Song Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juanli Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Lu Gao
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhen-Quan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Xuechao Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
21
|
Natsuki T, Natsuki J. Constitutive Modeling of Mechanical Behaviors of Carbon-Based CNTs and GSs, and Their Sensing Applications as Nanomechanical Resonators: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1834. [PMID: 37368264 DOI: 10.3390/nano13121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Carbon-based nanomaterials, including carbon nanotubes (CNTs) and graphene sheets (GSs), have garnered considerable research attention owing to their unique mechanical, physical, and chemical properties compared with traditional materials. Nanosensors are sensing devices with sensing elements made of nanomaterials or nanostructures. CNT- and GS-based nanomaterials have been proved to be very sensitive nanosensing elements, being used to detect tiny mass and force. In this study, we review the developments in the analytical modeling of mechanical behavior of CNTs and GSs, and their potential applications as next-generation nanosensing elements. Subsequently, we discuss the contributions of various simulation studies on theoretical models, calculation methods, and mechanical performance analyses. In particular, this review intends to provide a theoretical framework for a comprehensive understanding of the mechanical properties and potential applications of CNTs/GSs nanomaterials as demonstrated by modeling and simulation methods. According to analytical modeling, nonlocal continuum mechanics pose small-scale structural effects in nanomaterials. Thus, we overviewed a few representative studies on the mechanical behavior of nanomaterials to inspire the future development of nanomaterial-based sensors or devices. In summary, nanomaterials, such as CNTs and GSs, can be effectively utilized for ultrahigh-sensitivity measurements at a nanolevel resolution compared to traditional materials.
Collapse
Affiliation(s)
- Toshiaki Natsuki
- College of Textiles and Apparel, Quanzhou Normal University, Quanzhou 362000, China
- Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Nagano, Japan
| | - Jun Natsuki
- Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Nagano, Japan
| |
Collapse
|
22
|
Ang PC, Perumal V, Ibrahim MNM, Adnan R, Mohd Azman DK, Gopinath SCB, Raja PB. Electrochemical biosensor detection on respiratory and flaviviruses. Appl Microbiol Biotechnol 2023; 107:1503-1513. [PMID: 36719432 PMCID: PMC9887245 DOI: 10.1007/s00253-023-12400-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
Viruses have spread throughout the world and cause acute illness or death among millions of people. There is a growing concern about methods to control and combat early-stage viral infections to prevent the significant public health problem. However, conventional detection methods like polymerase chain reaction (PCR) requires sample purification and are time-consuming for further clinical diagnosis. Hence, establishing a portable device for rapid detection with enhanced sensitivity and selectivity for the specific virus to prevent further spread becomes an urgent need. Many research groups are focusing on the potential of the electrochemical sensor to become a key for developing point-of-care (POC) technologies for clinical analysis because it can solve most of the limitations of conventional diagnostic methods. Herein, this review discusses the current development of electrochemical sensors for the detection of respiratory virus infections and flaviviruses over the past 10 years. Trends in future perspectives in rapid clinical detection sensors on viruses are also discussed. KEY POINTS: • Respiratory related viruses and Flavivirus are being concerned for past decades. • Important to differentiate the cross-reactivity between the virus in same family. • Electrochemical biosensor as a suitable device to detect viruses with high performance.
Collapse
Affiliation(s)
- Phaik Ching Ang
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Veeradasan Perumal
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS (UTP), Seri Iskandar, Perak, Malaysia
- Mechanical Engineering Department, Universiti Teknologi PETRONAS (UTP), Seri Iskandar, Perak, Malaysia
| | | | - Rohana Adnan
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Daruliza Kernain Mohd Azman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Gelugor, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600, Arau, Perlis, Malaysia
| | - Pandian Bothi Raja
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
23
|
Štukovnik Z, Bren U. Recent Developments in Electrochemical-Impedimetric Biosensors for Virus Detection. Int J Mol Sci 2022; 23:ijms232415922. [PMID: 36555560 PMCID: PMC9788240 DOI: 10.3390/ijms232415922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Viruses, including influenza viruses, MERS-CoV (Middle East respiratory syndrome coronavirus), SARS-CoV (severe acute respiratory syndrome coronavirus), HAV (Hepatitis A virus), HBV (Hepatitis B virus), HCV (Hepatitis C virus), HIV (human immunodeficiency virus), EBOV (Ebola virus), ZIKV (Zika virus), and most recently SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), are responsible for many diseases that result in hundreds of thousands of deaths yearly. The ongoing outbreak of the COVID-19 disease has raised a global concern and intensified research on the detection of viruses and virus-related diseases. Novel methods for the sensitive, rapid, and on-site detection of pathogens, such as the recent SARS-CoV-2, are critical for diagnosing and treating infectious diseases before they spread and affect human health worldwide. In this sense, electrochemical impedimetric biosensors could be applied for virus detection on a large scale. This review focuses on the recent developments in electrochemical-impedimetric biosensors for the detection of viruses.
Collapse
Affiliation(s)
- Zala Štukovnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, 6000 Koper, Slovenia
- Institute for Environmental Protection and Sensors, Beloruska ulica 7, 2000 Maribor, Slovenia
| |
Collapse
|
24
|
Raeisi H, Azimirad M, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Rapid-format recombinant antibody-based methods for the diagnosis of Clostridioides difficile infection: Recent advances and perspectives. Front Microbiol 2022; 13:1043214. [PMID: 36523835 PMCID: PMC9744969 DOI: 10.3389/fmicb.2022.1043214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 08/30/2023] Open
Abstract
Clostridioides difficile, the most common cause of nosocomial diarrhea, has been continuously reported as a worldwide problem in healthcare settings. Additionally, the emergence of hypervirulent strains of C. difficile has always been a critical concern and led to continuous efforts to develop more accurate diagnostic methods for detection of this recalcitrant pathogen. Currently, the diagnosis of C. difficile infection (CDI) is based on clinical manifestations and laboratory tests for detecting the bacterium and/or its toxins, which exhibit varied sensitivity and specificity. In this regard, development of rapid diagnostic techniques based on antibodies has demonstrated promising results in both research and clinical environments. Recently, application of recombinant antibody (rAb) technologies like phage display has provided a faster and more cost-effective approach for antibody production. The application of rAbs for developing ultrasensitive diagnostic tools ranging from immunoassays to immunosensors, has allowed the researchers to introduce new platforms with high sensitivity and specificity. Additionally, DNA encoding antibodies are directly accessible in these approaches, which enables the application of antibody engineering to increase their sensitivity and specificity. Here, we review the latest studies about the antibody-based ultrasensitive diagnostic platforms for detection of C. difficile bacteria, with an emphasis on rAb technologies.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Paladhi AG, Manohar M, Pal K, Vallinayagam S, Packirisamy ASB, Bashreer VA, Sai Nandhini R, Ukhurebor KE. Novel electrochemical biosensor key significance of smart intelligence (IoMT & IoHT) of COVID-19 virus control management. Process Biochem 2022; 122:105-109. [PMID: 36185573 PMCID: PMC9514016 DOI: 10.1016/j.procbio.2022.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 12/23/2022]
Abstract
Recent outbreak of COVID-19 pandemic has led to the different possibilities of the development of treatment against corona virus. To know the phylogenicity of SARS-CoV, various studies have been conducted with the outcome of the results showing virulence is caused due to spike protein. Various detection techniques with clinical approach like imaging technology, RT-PCR etc. are comparatively expensively than the use of biosensors. Nano-biosensors have an excellent way of approach to track the conditions of individual and public providing information about the existing condition and treatment status. Electrochemical nano-biosensors are referred as an excellent way of detection. The use of graphene based electrochemical nano-biosensors are most advantageous due to its elevated properties. Fluorescence investigation is one of the precise ways of sensing, optical biosignals that helps in obtaining real time results with high accuracy and negligible changes. The potential application of nano-biosensors are very wide, improvised and advanced Nanotechnology helps in the use of nano-biosensors detect all possible biosignals. Significant ubiquitous IoT-enabled novel sensor technologies that can be potentially utilized to respond various facets the growing COVID-19 pandemic from diagnostic and therapeutics to the prevention stage.
Collapse
Affiliation(s)
| | - M Manohar
- JSS Medical College (Deemed to be University), Mysuru, Karnataka, India
| | - Kaushik Pal
- University Centre for Research and Development, Department of Physics, Chandigarh University, Mohali, Gharuan, Punjab, India
| | - Sugumari Vallinayagam
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu
| | | | - Vajiha Aafrin Bashreer
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai 600025, Tamil Nadu
| | - R Sai Nandhini
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu
| | | |
Collapse
|
26
|
Dönmez Sİ, Needs SH, Osborn HMI, Reis NM, Edwards AD. Label-free 1D microfluidic dipstick counting of microbial colonies and bacteriophage plaques. LAB ON A CHIP 2022; 22:2820-2831. [PMID: 35792607 DOI: 10.1039/d2lc00280a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Counting viable bacterial cells and functional bacteriophage is fundamental to microbiology underpinning research, surveillance, biopharmaceuticals and diagnostics. Colony forming unit (CFU) and plaque forming unit (PFU) counting still requires slow and laborious solid culture on agar in Petri dishes or plates. Here, we show that dip-stick microfluidic strips can be used without growth indicator dye for rapid and simple CFU ml-1 and PFU ml-1 measurement. We demonstrate for the first time that fluoropolymer microcapillaries combined with digital imaging allow bacteriophage plaques to be counted rapidly in a dip-and-test format. The microfluidic length scales offer a linear 1-dimensional alternative to a 2D solid agar medium surface, with colonies or plaques clearly visible as "dashes" or "gaps". An inexpensive open source darkfield biosensor system using Raspberry Pi imaging permits label-free detection and counting of colonies or plaques within 4-8 hours in a linear, liquid matrix within ∼200 μm inner diameter microcapillaries. We obtained full quantitative agreement between 1D microfluidic colony counting in dipsticks versus conventional 2D solid agar Petri dish plates for S. aureus and E. coli, and for T2 phage and phage K, but up to 6 times faster. Time-lapse darkfield imaging permitted detailed kinetic analysis of colony growth in the microcapillaries, providing new insight into microfluidic microbiology and colony growth, not possible with Petri dishes. Surprisingly, whilst E. coli colonies appeared earlier, subsequent colony expansion was faster along the microcapillaries for S. aureus. This may be explained by the microenvironment offered for 1D colony growth within microcapillaries, linked to a mass balance between nutrient (glucose) diffusion and bacterial growth kinetics. Counting individual colonies in liquid medium was not possible for motile strains that spread rapidly along the capillary, however inclusion of soft agar inhibited spreading, making this new simple dip-and-test counting method applicable to both motile and non-motile bacteria. Label-free dipstick colony and plaque counting has potential for many analytical microbial tasks, and the innovation of 1D colony counting has relevance to other microfluidic microbiology.
Collapse
Affiliation(s)
| | - Sarah H Needs
- Reading School of Pharmacy, University of Reading, Whiteknights, RG6 6AD, UK.
| | - Helen M I Osborn
- Reading School of Pharmacy, University of Reading, Whiteknights, RG6 6AD, UK.
| | - Nuno M Reis
- Department of Chemical Engineering and Centre for Biosensors, Biodevices and Bioelectronics (C3Bio), University of Bath, Claverton Down, Bath BA2 7AY, UK
- Capillary Film Technology Ltd, Daux Road, Billingshurst, West Sussex RH14 9SJ, UK
| | - Alexander D Edwards
- Reading School of Pharmacy, University of Reading, Whiteknights, RG6 6AD, UK.
- Capillary Film Technology Ltd, Daux Road, Billingshurst, West Sussex RH14 9SJ, UK
| |
Collapse
|
27
|
Mostafa-Hedeab G, Allayeh AK, Elhady HA, Eledrdery AY, Mraheil MA, Mostafa A. Viral Eco-Genomic Tools: Development and Implementation for Aquatic Biomonitoring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7707. [PMID: 35805367 PMCID: PMC9265447 DOI: 10.3390/ijerph19137707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/17/2022]
Abstract
Enteric viruses (EVs) occurrence within aquatic environments varies and leads to significant risk on public health of humans, animals, and diversity of aquatic taxa. Early and efficacious recognition of cultivable and fastidious EVs in aquatic systems are important to ensure the sanitary level of aquatic water and implement required treatment strategies. Herein, we provided a comprehensive overview of the conventional and up-to-date eco-genomic tools for aquatic biomonitoring of EVs, aiming to develop better water pollution monitoring tools. In combination with bioinformatics techniques, genetic tools including cloning sequencing analysis, DNA microarray, next-generation sequencing (NGS), and metagenomic sequencing technologies are implemented to make informed decisions about the global burden of waterborne EVs-associated diseases. The data presented in this review are helpful to recommend that: (1) Each viral pollution detection method has its own merits and demerits; therefore, it would be advantageous for viral pollution evaluation to be integrated as a complementary platform. (2) The total viral genome pool extracted from aquatic environmental samples is a real reflection of pollution status of the aquatic eco-systems; therefore, it is recommended to conduct regular sampling through the year to establish an updated monitoring system for EVs, and quantify viral peak concentrations, viral typing, and genotyping. (3) Despite that conventional detection methods are cheaper, it is highly recommended to implement molecular-based technologies to complement aquatic ecosystems biomonitoring due to numerous advantages including high-throughput capability. (4) Continuous implementation of the eco-genetic detection tools for monitoring the EVs in aquatic ecosystems is recommended.
Collapse
Affiliation(s)
- Gomaa Mostafa-Hedeab
- Pharmacology Department and Health Research Unit, Medical College, Jouf University, Skaka 11564, Saudi Arabia
| | - Abdou Kamal Allayeh
- Water Pollution Department, Virology Laboratory, National Research Centre, Dokki, Giza 12622, Egypt;
| | | | - Abozer Y. Eledrdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 11564, Saudi Arabia;
| | - Mobarak Abu Mraheil
- German Center for Infection Research (DZIF), Institute of Medical Microbiology, Justus-Liebig University, 35392 Giessen, Germany
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
28
|
Eksin E. An electrochemical assay for sensitive detection of Acinetobacter baumannii gene. Talanta 2022; 249:123696. [PMID: 35749906 DOI: 10.1016/j.talanta.2022.123696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
A new genosensor, which allows sensitive and selective detection of Acinetobacter baumannii gene sequence was developed herein. In this assay, capture probe of Acinetobacter baumannii was immobilized on the surface of chitosan modified single-use pencil graphite electrodes (c-PGEs) to obtain Acinetobacter baumannii genosensor. Then, Acinetobacter baumannii target DNA sequence was recognized after solid-state hybridization on c-PGE genosensor by measuring guanine signal via differential pulse voltammetry (DPV). In order to improve hybridization efficiency, experimental parameters affecting all assay steps are studied and the analytical performance of the genosensor was tested. The low limit of detection (LOD) for Acinetobacter baumannii target DNA sequence was obtained as 1.86 nM with developed genosensor. The selectivity of the proposed assay was then tested in the presence of 1-base mismatch, or two different type of non-complementary sequences and no interference effect was observed. The proposed electrochemical assay protocol is easy, convenient, and rapid which can be a decent alternative to existing methods.
Collapse
Affiliation(s)
- Ece Eksin
- Biomedical Device Technology Program, Vocational School of Health Services, Izmir Democracy University, Izmir 35140, Turkey; Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey.
| |
Collapse
|
29
|
Jun SW, Ahn YH. Terahertz thermal curve analysis for label-free identification of pathogens. Nat Commun 2022; 13:3470. [PMID: 35710797 PMCID: PMC9203813 DOI: 10.1038/s41467-022-31137-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
In this study, we perform a thermal curve analysis with terahertz (THz) metamaterials to develop a label-free identification tool for pathogens such as bacteria and yeasts. The resonant frequency of the metasensor coated with a bacterial layer changes as a function of temperature; this provides a unique fingerprint specific to the individual microbial species without the use of fluorescent dyes and antibodies. Differential thermal curves obtained from the temperature-dependent resonance exhibit the peaks consistent with bacterial phases, such as growth, thermal inactivation, DNA denaturation, and cell wall destruction. In addition, we can distinguish gram-negative bacteria from gram-positive bacteria which show strong peaks in the temperature range of cell wall destruction. Finally, we perform THz melting curve analysis on the mixture of bacterial species in which the pathogenic bacteria are successfully distinguished from each other, which is essential for practical clinical and environmental applications such as in blood culture. A label-free sensing method has been developed for identifying hazardous pathogens based on their intrinsic properties. This was possible by interrogating the temperature-dependent dielectric constant of the microbes in the far-infrared range.
Collapse
Affiliation(s)
- S W Jun
- Department of Physics, Ajou University, Suwon, 16499, Korea.,Department of Energy Systems Research, Ajou University, Suwon, 16499, Korea
| | - Y H Ahn
- Department of Physics, Ajou University, Suwon, 16499, Korea. .,Department of Energy Systems Research, Ajou University, Suwon, 16499, Korea.
| |
Collapse
|
30
|
Elsherbini AM, Sabra SA. Nanoparticles-in-nanofibers composites: Emphasis on some recent biomedical applications. J Control Release 2022; 348:57-83. [PMID: 35636616 DOI: 10.1016/j.jconrel.2022.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
Nanoparticles-in-nanofibers composites comprise an attractive approach for controlling release and delivery of many active molecules for versatile biomedical applications. Incorporation of drug-loaded nanoparticles within these composites can afford the encapsulation of one or more drug with sequential drug release, which can be tuned according to the assigned function. Moreover, existence of nanoparticles within the nanofibrous matrix was found to favor the morphological and mechanical properties of the developed composites. In this review, the latest biomedical advances for nanoparticles-in-nanofibers composites will be highlighted including; tissue regeneration, antimicrobial applications, wound healing, cancer management, cardiovascular disorders, ophthalmic applications, vaginal drug delivery, biosensors and biomedical filters. These composites incorporating multiple types of nanoparticles could be very promising drug delivery platforms.
Collapse
Affiliation(s)
- Asmaa M Elsherbini
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria, 21526, Egypt.
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria, 21526, Egypt.
| |
Collapse
|
31
|
Design and Characterization of a Microwave Transducer for Gas Sensing Applications. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10040127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gas sensors have wide applications in several fields, spanning diverse areas such as environmental monitoring, healthcare, defense, and the evaluation of personal and occupational exposure to hazardous chemicals. Different typologies of gas sensors have been proposed over the years, such as optical, electrochemical, and metal oxide gas sensors. In this paper, a relatively new typology of gas sensors is explored: the microwave gas sensor. It consists of a combination of a microwave transducer with a nanostructured sensing material deposited on an interdigitated capacitor (IDC). The device is designed and fabricated on a Rogers substrate (RO4003C) using microstrip technology, and investigated as a microwave transducer over the frequency range from 1 GHz to 6 GHz by measuring the scattering (S) parameters in response to gas adsorption and desorption. The sensing material is based on a nano-powder of barium titanate oxalate with a coating of urea (BaTiO(C2O4)2/CO(NH2)2). It is deposited on the IDC surface by drop coating, thus creating a sensing film. The developed prototype has been tested toward different oxygen (O2) concentrations and exhibits a sensitivity of 28 kHz/%O2. Special attention has been devoted to the measurement process. Besides the canonical short-open-load-thru (SOLT) calibration of the measured S-parameters, a thru-reflect-line (TRL) calibration has been performed in order to get rid of the parasitic electromagnetic (EM) contributions of the board connectors and the feedlines, thus moving the measurement reference planes to the edges of the IDC.
Collapse
|
32
|
Lunardi CN, Subrinho FL, Freitas Barros MPD, Lima RC, de Queiroz Melo ACM, Barbosa DDM, Negreiros LGD, Rodrigues BS, Neiva MS, Linhares JVR, Dalla Costa GF, Gomes ADJ. BIBLIOMETRIC ANALYSIS: NANOTECHNOLOGY AND COVID-19. Curr Top Med Chem 2022; 22:629-638. [PMID: 35255795 DOI: 10.2174/1568026622666220307125446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/22/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND COVID-19 pandemic information is critical in order to study it further, but the virus has still not been confined. In addition, even if there is no longer any threat, more knowledge may be gathered from these resources. METHODS The data used in this study was gathered from several scientific areas and the links between them. Due to the fact that the COVID-19 pandemic has not been fully contained and additional information can be gleaned from these references, bibliometric analysis of it is important. RESULTS In total 155 publications on the topic of "COVID-19" and the keyword "nanotechnology" were identified in the Scopus database between 2020 and 2021 in a network visualization map. CONCLUSION As a result, our analysis was conducted at the appropriate time to provide a comprehensive understanding of COVID-19 and nanotechnology and prospective research directions for medicinal chemistry.
Collapse
Affiliation(s)
- Claure Nain Lunardi
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Fernanda Lima Subrinho
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Mirella Paula de Freitas Barros
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Raiane Cavalcante Lima
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Ana Clara Magalhaes de Queiroz Melo
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Daniela de Melo Barbosa
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Luana Gouveia De Negreiros
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Brenda Soares Rodrigues
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Mateus Sousa Neiva
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Joao Victor Ribeiro Linhares
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Gabriel Farrapeira Dalla Costa
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| | - Anderson de Jesus Gomes
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Universitário Centro Metropolitano 1 Conjunto, Brasília, 72220-900, DF, Brazil
| |
Collapse
|
33
|
Farkas E, Tarr R, Gerecsei T, Saftics A, Kovács KD, Stercz B, Domokos J, Peter B, Kurunczi S, Szekacs I, Bonyár A, Bányai A, Fürjes P, Ruszkai-Szaniszló S, Varga M, Szabó B, Ostorházi E, Szabó D, Horvath R. Development and In-Depth Characterization of Bacteria Repellent and Bacteria Adhesive Antibody-Coated Surfaces Using Optical Waveguide Biosensing. BIOSENSORS 2022; 12:bios12020056. [PMID: 35200317 PMCID: PMC8869200 DOI: 10.3390/bios12020056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 05/10/2023]
Abstract
Bacteria repellent surfaces and antibody-based coatings for bacterial assays have shown a growing demand in the field of biosensors, and have crucial importance in the design of biomedical devices. However, in-depth investigations and comparisons of possible solutions are still missing. The optical waveguide lightmode spectroscopy (OWLS) technique offers label-free, non-invasive, in situ characterization of protein and bacterial adsorption. Moreover, it has excellent flexibility for testing various surface coatings. Here, we describe an OWLS-based method supporting the development of bacteria repellent surfaces and characterize the layer structures and affinities of different antibody-based coatings for bacterial assays. In order to test nonspecific binding blocking agents against bacteria, OWLS chips were coated with bovine serum albumin (BSA), I-block, PAcrAM-g-(PMOXA, NH2, Si), (PAcrAM-P) and PLL-g-PEG (PP) (with different coating temperatures), and subsequent Escherichia coli adhesion was monitored. We found that the best performing blocking agents could inhibit bacterial adhesion from samples with bacteria concentrations of up to 107 cells/mL. Various immobilization methods were applied to graft a wide range of selected antibodies onto the biosensor's surface. Simple physisorption, Mix&Go (AnteoBind) (MG) films, covalently immobilized protein A and avidin-biotin based surface chemistries were all fabricated and tested. The surface adsorbed mass densities of deposited antibodies were determined, and the biosensor;s kinetic data were evaluated to divine the possible orientations of the bacteria-capturing antibodies and determine the rate constants and footprints of the binding events. The development of affinity layers was supported by enzyme-linked immunosorbent assay (ELISA) measurements in order to test the bacteria binding capabilities of the antibodies. The best performance in the biosensor measurements was achieved by employing a polyclonal antibody in combination with protein A-based immobilization and PAcrAM-P blocking of nonspecific binding. Using this setting, a surface sensitivity of 70 cells/mm2 was demonstrated.
Collapse
Affiliation(s)
- Eniko Farkas
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
| | - Robert Tarr
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary;
| | - Tamás Gerecsei
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
- Department of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Andras Saftics
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
| | - Kinga Dóra Kovács
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
- Department of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Balazs Stercz
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (B.S.); (J.D.); (E.O.); (D.S.)
| | - Judit Domokos
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (B.S.); (J.D.); (E.O.); (D.S.)
| | - Beatrix Peter
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
| | - Sandor Kurunczi
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
| | - Inna Szekacs
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
| | - Attila Bonyár
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary;
| | - Anita Bányai
- Centre for Energy Research, Microsystems Lab, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (A.B.); (P.F.)
| | - Péter Fürjes
- Centre for Energy Research, Microsystems Lab, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (A.B.); (P.F.)
| | | | - Máté Varga
- 77 Elektronika Ltd., 1116 Budapest, Hungary; (S.R.-S.); (M.V.); (B.S.)
| | - Barnabás Szabó
- 77 Elektronika Ltd., 1116 Budapest, Hungary; (S.R.-S.); (M.V.); (B.S.)
| | - Eszter Ostorházi
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (B.S.); (J.D.); (E.O.); (D.S.)
| | - Dóra Szabó
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (B.S.); (J.D.); (E.O.); (D.S.)
| | - Robert Horvath
- Centre for Energy Research, Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (R.T.); (T.G.); (A.S.); (K.D.K.); (B.P.); (S.K.); (I.S.)
- Correspondence:
| |
Collapse
|
34
|
Abdeldayem OM, Dabbish AM, Habashy MM, Mostafa MK, Elhefnawy M, Amin L, Al-Sakkari EG, Ragab A, Rene ER. Viral outbreaks detection and surveillance using wastewater-based epidemiology, viral air sampling, and machine learning techniques: A comprehensive review and outlook. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149834. [PMID: 34525746 PMCID: PMC8379898 DOI: 10.1016/j.scitotenv.2021.149834] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 05/06/2023]
Abstract
A viral outbreak is a global challenge that affects public health and safety. The coronavirus disease 2019 (COVID-19) has been spreading globally, affecting millions of people worldwide, and led to significant loss of lives and deterioration of the global economy. The current adverse effects caused by the COVID-19 pandemic demands finding new detection methods for future viral outbreaks. The environment's transmission pathways include and are not limited to air, surface water, and wastewater environments. The wastewater surveillance, known as wastewater-based epidemiology (WBE), can potentially monitor viral outbreaks and provide a complementary clinical testing method. Another investigated outbreak surveillance technique that has not been yet implemented in a sufficient number of studies is the surveillance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in the air. Artificial intelligence (AI) and its related machine learning (ML) and deep learning (DL) technologies are currently emerging techniques for detecting viral outbreaks using global data. To date, there are no reports that illustrate the potential of using WBE with AI to detect viral outbreaks. This study investigates the transmission pathways of SARS-CoV-2 in the environment and provides current updates on the surveillance of viral outbreaks using WBE, viral air sampling, and AI. It also proposes a novel framework based on an ensemble of ML and DL algorithms to provide a beneficial supportive tool for decision-makers. The framework exploits available data from reliable sources to discover meaningful insights and knowledge that allows researchers and practitioners to build efficient methods and protocols that accurately monitor and detect viral outbreaks. The proposed framework could provide early detection of viruses, forecast risk maps and vulnerable areas, and estimate the number of infected citizens.
Collapse
Affiliation(s)
- Omar M Abdeldayem
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands.
| | - Areeg M Dabbish
- Biotechnology Graduate Program, Biology Department, School of Science and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mahmoud M Habashy
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | - Mohamed K Mostafa
- Faculty of Engineering and Technology, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Mohamed Elhefnawy
- CanmetENERGY, 1615 Lionel-Boulet Blvd, P.O. Box 4800, Varennes, Québec J3X 1P7, Canada; Department of Mathematics and Industrial Engineering, Polytechnique Montréal 2500 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Lobna Amin
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands; Department of Built Environment, Aalto University, PO Box 15200, FI-00076, Aalto, Finland
| | - Eslam G Al-Sakkari
- Chemical Engineering Department, Cairo University, Cairo University Road, 12613 Giza, Egypt
| | - Ahmed Ragab
- CanmetENERGY, 1615 Lionel-Boulet Blvd, P.O. Box 4800, Varennes, Québec J3X 1P7, Canada; Department of Mathematics and Industrial Engineering, Polytechnique Montréal 2500 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada; Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| |
Collapse
|
35
|
Deshmukh SB, Kulandainathan AM, Murugavel K. A review on Biopolymer-derived Electrospun Nanofibers for Biomedical and Antiviral Applications. Biomater Sci 2022; 10:4424-4442. [DOI: 10.1039/d2bm00820c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unique aspects of polymer-derived nanofibers provide significant potential in the area of biomedical and health care applications. Much research has demonstrated several plausible nanofibers to overcome the modern-day challenges in...
Collapse
|
36
|
Yilmaz-Sercinoglu Z, Kuru Cİ, Ulucan-Karnak F. Polymeric-based interface for the development of COVID-19 biosensor. SENSING TOOLS AND TECHNIQUES FOR COVID-19 2022:57-82. [DOI: 10.1016/b978-0-323-90280-9.00013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
37
|
Basir MT, Abbas SR. Applications of digital and smart technologies to control SARS-CoV-2 transmission, rapid diagnosis, and monitoring. BIOTECHNOLOGY IN HEALTHCARE 2022:259-271. [DOI: 10.1016/b978-0-323-90042-3.25001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
38
|
Er S, Laraib U, Arshad R, Sargazi S, Rahdar A, Pandey S, Thakur VK, Díez-Pascual AM. Amino Acids, Peptides, and Proteins: Implications for Nanotechnological Applications in Biosensing and Drug/Gene Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3002. [PMID: 34835766 PMCID: PMC8622868 DOI: 10.3390/nano11113002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Over various scientific fields in biochemistry, amino acids have been highlighted in research works. Protein, peptide- and amino acid-based drug delivery systems have proficiently transformed nanotechnology via immense flexibility in their features for attaching various drug molecules and biodegradable polymers. In this regard, novel nanostructures including carbon nanotubes, electrospun carbon nanofibers, gold nanoislands, and metal-based nanoparticles have been introduced as nanosensors for accurate detection of these organic compounds. These nanostructures can bind the biological receptor to the sensor surface and increase the surface area of the working electrode, significantly enhancing the biosensor performance. Interestingly, protein-based nanocarriers have also emerged as useful drug and gene delivery platforms. This is important since, despite recent advancements, there are still biological barriers and other obstacles limiting gene and drug delivery efficacy. Currently available strategies for gene therapy are not cost-effective, and they do not deliver the genetic cargo effectively to target sites. With rapid advancements in nanotechnology, novel gene delivery systems are introduced as nonviral vectors such as protein, peptide, and amino acid-based nanostructures. These nano-based delivery platforms can be tailored into functional transformation using proteins and peptides ligands based nanocarriers, usually overexpressed in the specified diseases. The purpose of this review is to shed light on traditional and nanotechnology-based methods to detect amino acids, peptides, and proteins. Furthermore, new insights into the potential of amino protein-based nanoassemblies for targeted drug delivery or gene transfer are presented.
Collapse
Affiliation(s)
- Simge Er
- Biochemistry Department, Faculty of Science, Ege University, Bornova-Izmir 35100, Turkey;
| | - Ushna Laraib
- Department of Pharmacy, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
39
|
Xi H, Jiang H, Juhas M, Zhang Y. Multiplex Biosensing for Simultaneous Detection of Mutations in SARS-CoV-2. ACS OMEGA 2021; 6:25846-25859. [PMID: 34632242 PMCID: PMC8491437 DOI: 10.1021/acsomega.1c04024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/10/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has become the world's largest public health emergency of the past few decades. Thousands of mutations were identified in the SARS-CoV-2 genome. Some mutants are more infectious and may replace the original strains. Recently, B.1.1.7(Alpha), B1.351(Beta), and B.1.617.2(Delta) strains, which appear to have increased transmissibility, were detected. These strains accounting for the high proportion of newly diagnosed cases spread rapidly over the world. Particularly, the Delta variant has been reported to account for a vast majority of the infections in several countries over the last few weeks. The application of biosensors in the detection of SARS-CoV-2 is important for the control of the COVID-19 pandemic. Due to high demand for SARS-CoV-2 genotyping, it is urgent to develop reliable and efficient systems based on integrated multiple biosensor technology for rapid detection of multiple SARS-CoV-2 mutations simultaneously. This is important not only for the detection and analysis of the current but also for future mutations. Novel biosensors combined with other technologies can be used for the reliable and effective detection of SARS-CoV-2 mutants.
Collapse
Affiliation(s)
- Hui Xi
- College
of Science, Harbin Institute of Technology
(Shenzhen), Shenzhen, Guangdong 518055, China
| | - Hanlin Jiang
- College
of Science, Harbin Institute of Technology
(Shenzhen), Shenzhen, Guangdong 518055, China
| | - Mario Juhas
- Medical
and Molecular Microbiology Unit, Department of Medicine, Faculty of
Science and Medicine, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Yang Zhang
- College
of Science, Harbin Institute of Technology
(Shenzhen), Shenzhen, Guangdong 518055, China
| |
Collapse
|
40
|
Peng T, Fan C, Zhou M, Jiang F, Drummer D, Jiang B. Rapid Enrichment of Submicron Particles within a Spinning Droplet Driven by a Unidirectional Acoustic Transducer. Anal Chem 2021; 93:13293-13301. [PMID: 34554739 DOI: 10.1021/acs.analchem.1c02914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Efficient and rapid particle enrichment at the submicron scale is essential for research in biomedicine and biochemistry. Here, we demonstrate an acoustofluidic method for submicron particle enrichment within a spinning droplet driven by a unidirectional transducer. The unidirectional transducer generates intense sound energy with relatively low attenuation. Droplets placed offset in the wave propagation path on a polydimethylsiloxane film undergo strong pressure gradients, deforming into an ellipsoid shape and spinning at high speed. Benefitting from the drag force induced by the droplet spin and acoustic streaming and the radial force induced by the droplet compression and expansion, the submicron particles in the liquid droplet quickly enrich toward the central area following a spiral trajectory. Through numerical calculations and experimental processes, we have demonstrated the possible mechanism responsible for particle enrichment. The application of biological sample processing has also been exploited. This study anticipates that the strategy based on the spinning droplet and particle enrichment method will be highly desirable for many applications.
Collapse
Affiliation(s)
- Tao Peng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Cui Fan
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Mingyong Zhou
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Fengze Jiang
- Institute of Polymer Technology (LKT), Friedrich-Alexander-University Erlangen-Nurnberg, Am Weichselgarten 9, Erlangen-Tennenlohe 91058, Germany
| | - Dietmar Drummer
- Institute of Polymer Technology (LKT), Friedrich-Alexander-University Erlangen-Nurnberg, Am Weichselgarten 9, Erlangen-Tennenlohe 91058, Germany
| | - Bingyan Jiang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
41
|
Meng Z, Guo S, Zhou Y, Li M, Wang M, Ying B. Applications of laboratory findings in the prevention, diagnosis, treatment, and monitoring of COVID-19. Signal Transduct Target Ther 2021; 6:316. [PMID: 34433805 PMCID: PMC8386162 DOI: 10.1038/s41392-021-00731-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
The worldwide pandemic of coronavirus disease 2019 (COVID-19) presents us with a serious public health crisis. To combat the virus and slow its spread, wider testing is essential. There is a need for more sensitive, specific, and convenient detection methods of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Advanced detection can greatly improve the ability and accuracy of the clinical diagnosis of COVID-19, which is conducive to the early suitable treatment and supports precise prophylaxis. In this article, we combine and present the latest laboratory diagnostic technologies and methods for SARS-CoV-2 to identify the technical characteristics, considerations, biosafety requirements, common problems with testing and interpretation of results, and coping strategies of commonly used testing methods. We highlight the gaps in current diagnostic capacity and propose potential solutions to provide cutting-edge technical support to achieve a more precise diagnosis, treatment, and prevention of COVID-19 and to overcome the difficulties with the normalization of epidemic prevention and control.
Collapse
Affiliation(s)
- Zirui Meng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shuo Guo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yanbing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mengjiao Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
42
|
Kamińska A, Marzec ME, Stępień EŁ. Design and Optimization of a Biosensor Surface Functionalization to Effectively Capture Urinary Extracellular Vesicles. Molecules 2021; 26:4764. [PMID: 34443351 PMCID: PMC8399133 DOI: 10.3390/molecules26164764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
For this study, we tested and optimized silicon surface functionalization procedures for capturing urinary extracellular vesicles (uEVs). The influence of the silane type (APTES or GOPS) and protein concentration on the efficiency of uEVs binding was investigated. Human lactadherin protein (LACT) was used to capture uEVs. We applied surface characterization techniques, including ellipsometry, atomic force microscopy, and time-of-flight secondary ion mass spectrometry, to observe changes in the biosensor surface after each functionalization step. uEVs were purified by a low-vacuum filtration method and concentrated by ultracentrifugation. The physical parameters of uEVs after the isolation procedure, such as morphology and size distribution, were determined using transmission electron microscopy and tunable resistive pulse sensing methods. We observed a gradual growth of the molecular layer after subsequent stages of modification of the silicon surface. The ToF-SIMS results showed no changes in the mean intensities for the characteristic peaks of amino acids and lipids in positive and negative polarization, in terms of the surface-modifying silane (APTES or GOPS) used. The most optimal concentration of LACT for the tested system was 25 µg/mL.
Collapse
Affiliation(s)
| | - Magdalena E. Marzec
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland; (A.K.); (E.Ł.S.)
| | | |
Collapse
|
43
|
Khorsandifard M, Jafari K, Sheikhaleh A. A Proposal for a Novel Surface-Stress Based BioMEMS Sensor Using an Optical Sensing System for Highly Sensitive Diagnoses of Bio-particles. SENSING AND IMAGING 2021; 22:35. [PMID: 34335120 PMCID: PMC8313884 DOI: 10.1007/s11220-021-00355-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/08/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
In this paper, a BioMEMS sensor by using a surface-stress sensing approach, connected to a highly sensitive optical sensing system, is proposed to diagnose various types of biomolecules. The MEMS transducer is composed of a fixed-fixed beam with immobilized receptors on the surface which is connected to a Ring Resonator (RR) filter. The interaction between the target biomolecules and the receptors induces surface stresses on the beam. This stress results in the beam deformation which leads to changes in the coupling coefficient of the RR. Consequently, the transmission spectrum of the RR experiences changes, measured by using an optical photo-detector. Therefore, by analyzing the response of the photo-detector output, one can detect the number of target biomolecules in the sample and assign a level of contamination, infection or bioparticles, caused by the specific disease. Furthermore, the MEMS functional characteristics and the optical properties of the proposed biosensor are designed and analyzed respectively by using the finite element method (FEM) and the finite difference time domain (FDTD) approach. The obtained functional characteristics of the proposed device show that the present optical BioMEMS sensor can be used for highly sensitive diagnoses of various types of diseases and their progress level.
Collapse
Affiliation(s)
| | - Kian Jafari
- Faculty of Electrical Engineering, Shahid Beheshti University (SBU), Tehran, Iran
| | - Arash Sheikhaleh
- Faculty of Electrical Engineering, Shahid Beheshti University (SBU), Tehran, Iran
| |
Collapse
|
44
|
Fabrication of Electrochemical Biosensor Based on Titanium Dioxide Nanotubes and Silver Nanoparticles for Heat Shock Protein 70 Detection. MATERIALS 2021; 14:ma14133767. [PMID: 34279337 PMCID: PMC8269842 DOI: 10.3390/ma14133767] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
This paper presents the fabrication methodology of an electrochemical biosensor for the detection of heat shock protein 70 (HSP70) as a potential tumor marker with high diagnostic sensitivity. The sensor substrate was a composite based on titanium dioxide nanotubes (TNTs) and silver nanoparticles (AgNPs) produced directly on TNTs by electrodeposition, to which anti-HSP70 antibodies were attached by covalent functionalization. This manuscript contains a detailed description of the production, modification, and the complete characteristics of the material used as a biosensor platform. As-formed TNTs, annealed TNTs, and the final sensor platform—AgNPs/TNTs, were tested using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction analysis (XRD). In addition, open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) of these substrates were used to assess the influence of TNTs modification on their electrochemical characteristics. The EIS technique was used to monitor the functionalization steps of the AgNPs/TNTs electrode and the interaction between anti-HSP70 and HSP70. The produced composite was characterized by high purity, and electrical conductivity improved more than twice compared to unmodified TNTs. The linear detection range of HSP70 of the developed biosensor was in the concentration range from 0.1 to 100 ng/mL.
Collapse
|
45
|
Losada-Garcia N, Garcia-Sanz C, Andreu A, Velasco-Torrijos T, Palomo JM. Glyconanomaterials for Human Virus Detection and Inhibition. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1684. [PMID: 34206886 PMCID: PMC8308178 DOI: 10.3390/nano11071684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/23/2023]
Abstract
Viruses are among the most infectious pathogens, responsible for the highest death toll around the world. Lack of effective clinical drugs for most viral diseases emphasizes the need for speedy and accurate diagnosis at early stages of infection to prevent rapid spread of the pathogens. Glycans are important molecules which are involved in different biological recognition processes, especially in the spread of infection by mediating virus interaction with endothelial cells. Thus, novel strategies based on nanotechnology have been developed for identifying and inhibiting viruses in a fast, selective, and precise way. The nanosized nature of nanomaterials and their exclusive optical, electronic, magnetic, and mechanical features can improve patient care through using sensors with minimal invasiveness and extreme sensitivity. This review provides an overview of the latest advances of functionalized glyconanomaterials, for rapid and selective biosensing detection of molecules as biomarkers or specific glycoproteins and as novel promising antiviral agents for different kinds of serious viruses, such as the Dengue virus, Ebola virus, influenza virus, human immunodeficiency virus (HIV), influenza virus, Zika virus, or coronavirus SARS-CoV-2 (COVID-19).
Collapse
Affiliation(s)
- Noelia Losada-Garcia
- Department of Biocatalysis, Institute of Catalysis (CSIC), Marie Curie 2, 28049 Madrid, Spain; (N.L.-G.); (C.G.-S.); (A.A.)
| | - Carla Garcia-Sanz
- Department of Biocatalysis, Institute of Catalysis (CSIC), Marie Curie 2, 28049 Madrid, Spain; (N.L.-G.); (C.G.-S.); (A.A.)
| | - Alicia Andreu
- Department of Biocatalysis, Institute of Catalysis (CSIC), Marie Curie 2, 28049 Madrid, Spain; (N.L.-G.); (C.G.-S.); (A.A.)
| | | | - Jose M. Palomo
- Department of Biocatalysis, Institute of Catalysis (CSIC), Marie Curie 2, 28049 Madrid, Spain; (N.L.-G.); (C.G.-S.); (A.A.)
| |
Collapse
|
46
|
Misra R, Acharya S, Sushmitha N. Nanobiosensor-based diagnostic tools in viral infections: Special emphasis on Covid-19. Rev Med Virol 2021; 32:e2267. [PMID: 34164867 PMCID: PMC8420101 DOI: 10.1002/rmv.2267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/10/2021] [Indexed: 01/09/2023]
Abstract
The rapid propagation of novel human coronavirus 2019 and its emergence as a pandemic raising morbidity calls for taking more appropriate measures for rapid improvement of present diagnostic techniques which are time‐consuming, labour‐intensive and non‐portable. In this scenario, biosensors can be considered as a means to outmatch customary techniques and deliver point‐of‐care diagnostics for many diseases in a much better way owing to their speed, cost‐effectiveness, accuracy, sensitivity and selectivity. Besides this, these biosensors have been aptly used to detect a wide spectrum of viruses thus facilitating timely delivery of correct therapy. The present review is an attempt to analyse such different kinds of biosensors that have been implemented for virus detection. Recently, the field of nanotechnology has given a great push to diagnostic techniques by the development of smart and miniaturised nanobiosensors which have enhanced the diagnostic procedure and taken it to a new level. The portability, hardiness and affordability of nanobiosensor make them an apt diagnostic agent for different kinds of viruses including SARS‐CoV‐2. The role of such novel nanobiosensors in the diagnosis of SARS‐CoV‐2 has also been addressed comprehensively in the present review. Along with this, the challenges and future position of developing such ultrasensitive nanobiosensors which should be taken into consideration before declaring these nano‐weapons as the ideal futuristic gold standard of diagnosis has also been accounted for here.
Collapse
Affiliation(s)
- Ranjita Misra
- Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Sarbari Acharya
- Department of Life Science, School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Nehru Sushmitha
- Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
47
|
Huang F, Zhang Y, Lin J, Liu Y. Biosensors Coupled with Signal Amplification Technology for the Detection of Pathogenic Bacteria: A Review. BIOSENSORS 2021; 11:190. [PMID: 34207580 PMCID: PMC8227973 DOI: 10.3390/bios11060190] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/18/2022]
Abstract
Foodborne disease caused by foodborne pathogens is a very important issue in food safety. Therefore, the rapid screening and sensitive detection of foodborne pathogens is of great significance for ensuring food safety. At present, many research works have reported the application of biosensors and signal amplification technologies to achieve the rapid and sensitive detection of pathogenic bacteria. Thus, this review summarized the use of biosensors coupled with signal amplification technology for the detection of pathogenic bacteria, including (1) the development, concept, and principle of biosensors; (2) types of biosensors, such as electrochemical biosensors, optical biosensors, microfluidic biosensors, and so on; and (3) different kinds of signal amplification technologies applied in biosensors, such as enzyme catalysis, nucleic acid chain reaction, biotin-streptavidin, click chemistry, cascade reaction, nanomaterials, and so on. In addition, the challenges and future trends for pathogenic bacteria based on biosensor and signal amplification technology were also discussed and summarized.
Collapse
Affiliation(s)
- Fengchun Huang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
| | - Yingchao Zhang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (J.L.)
| | - Jianhan Lin
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (J.L.)
| | - Yuanjie Liu
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (J.L.)
| |
Collapse
|
48
|
Kalkal A, Allawadhi P, Pradhan R, Khurana A, Bharani KK, Packirisamy G. Allium sativum derived carbon dots as a potential theranostic agent to combat the COVID-19 crisis. SENSORS INTERNATIONAL 2021; 2:100102. [PMID: 34766058 PMCID: PMC8164516 DOI: 10.1016/j.sintl.2021.100102] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is one of the worst pandemics to have hit the humanity. The manifestations are quite varied, ranging from severe lung infections to being asymptomatic. Hence, there is an urgent need to champion new tools to accelerate the end of this pandemic. Compromised immunity is a primary feature of COVID-19. Allium sativum (AS) is an effective dietary supplement known for its immune-modulatory, antibacterial, anti-inflammatory, anticancer, antifungal, and anti-viral properties. In this paper, it is hypothesized that carbon dots (CDs) derived from AS (AS-CDs) may possess the potential to downregulate the expression of pro-inflammatory cytokines and revert the immunological aberrations to normal in case of COVID-19. CDs have already been explored in the world of nanobiomedicine as a promising theranostic candidates for bioimaging and drug/gene delivery. The antifibrotic and antioxidant effects of AS are elaborated, as demonstrated in several studies. It is found that the most active constituent of AS, allicin has a highly potent antioxidant and reactive oxygen species (ROS) scavenging effect. The antibacterial, antifungal, and anti-viral effects along with their capability of negating inflammatory effects and cytokine storm are discussed. The synthesis of theranostic CDs from AS may provide a novel weapon in the therapeutic armamentarium for the management of COVID-19 infection and, at the same time, could act as a diagnostic agent for COVID-19.
Collapse
Affiliation(s)
- Ashish Kalkal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee- 247667, Uttarakhand, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee- 247667, Uttarakhand, India
| | - Rangadhar Pradhan
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee- 247667, Uttarakhand, India
| | - Amit Khurana
- Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, P. V. Narasimha Rao Telangana Veterinary University (PVNRTVU), Telangana India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, P. V. Narasimha Rao Telangana Veterinary University (PVNRTVU), Telangana, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, P. V. Narasimha Rao Telangana Veterinary University (PVNRTVU), Telangana, India
- Department of Aquatic Animal Health Management, College of Fishery Science, Pebbair, Wanaparthy, 509104, P. V. Narasimha Rao Telangana Veterinary University (PVNRTVU), Telangana, India
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee- 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee- 247667, Uttarakhand, India
| |
Collapse
|
49
|
Luo Y, Liu F, Song J, Luo Q, Yang Y, Mei C, Xu M, Liao B. Function-Oriented Graphene Quantum Dots Probe for Single Cell in situ Sorting of Active Microorganisms in Environmental Samples. Front Microbiol 2021; 12:659111. [PMID: 34113325 PMCID: PMC8186282 DOI: 10.3389/fmicb.2021.659111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
Functional microorganisms play a vital role in removing environmental pollutants because of their diverse metabolic capability. Herein, a function-oriented fluorescence resonance energy transfer (FRET)-based graphene quantum dots (GQDs-M) probe was developed for the specific identification and accurate sorting of azo-degrading functional bacteria in the original location of environmental samples for large-scale culturing. First, nitrogen-doped GQDs (GQDs-N) were synthesized using a bottom-up strategy. Then, a GQDs-M probe was synthesized based on bonding FRET-based GQDs-N to an azo dye, methyl red, and the quenched fluorescence was recovered upon cleavage of the azo bond. Bioimaging confirmed the specific recognition capability of GQDs-M upon incubation with the target bacteria or environmental samples. It is suggested that the estimation of environmental functional microbial populations based on bioimaging will be a new method for rapid preliminary assessment of environmental pollution levels. In combination with a visual single-cell sorter, the target bacteria in the environmental samples could be intuitively screened at the single-cell level in 17 bacterial strains, including the positive control Shewanella decolorationis S12, and were isolated from environmental samples. All of these showed an azo degradation function, indicating the high accuracy of the single-cell sorting strategy using the GQDs-M. Furthermore, among the bacteria isolated, two strains of Bacillus pacificus and Bacillus wiedmannii showed double and triple degradation efficiency for methyl red compared to the positive control (strain S12). This strategy will have good application prospects for finding new species or high-activity species of specific functional bacteria.
Collapse
Affiliation(s)
- Yeshen Luo
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fei Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Jianhua Song
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Qian Luo
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Yonggang Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Chengfang Mei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Bing Liao
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
50
|
Abdelhamid HN, Badr G. Nanobiotechnology as a platform for the diagnosis of COVID-19: a review. NANOTECHNOLOGY FOR ENVIRONMENTAL ENGINEERING 2021. [PMCID: PMC7988262 DOI: 10.1007/s41204-021-00109-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A sensitive method for diagnosing coronavirus disease 2019 (COVID-19) is highly required to fight the current and future global health threats due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2). However, most of the current methods exhibited high false‐negative rates, resulting in patient misdiagnosis and impeding early treatment. Nanoparticles show promising performance and great potential to serve as a platform for diagnosing viral infection in a short time and with high sensitivity. This review highlighted the potential of nanoparticles as platforms for the diagnosis of COVID-19. Nanoparticles such as gold nanoparticles, magnetic nanoparticles, and graphene (G) were applied to detect SARS-CoV 2. They have been used for molecular-based diagnosis methods and serological methods. Nanoparticles improved specificity and shorten the time required for the diagnosis. They may be implemented into small devices that facilitate the self-diagnosis at home or in places such as airports and shops. Nanoparticles-based methods can be used for the analysis of virus-contaminated samples from a patient, surface, and air. The advantages and challenges were discussed to introduce useful information for designing a sensitive, fast, and low-cost diagnostic method. This review aims to present a helpful survey for the lesson learned from handling this outbreak to prepare ourself for future pandemic.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
| | - Gamal Badr
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|