1
|
Xu D, Bai N, Wang W, Wu X, Liu K, Liu M, Ping M, Zhou L, Jiang P, Zhao Y, Lu Y, Gao L. 3D Network Spacer-Embedded Flexible Iontronic Pressure Sensor Array with High Sensitivity over a Broad Sensing Range. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58780-58790. [PMID: 39413772 DOI: 10.1021/acsami.4c09659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Microstructure construction is a common strategy for enhancing the sensitivity of flexible pressure sensors, but it typically requires complex manufacturing techniques. In this study, we develop a flexible iontronic pressure sensor (FIPS) by embedding an isolated three-dimensional network spacer (3DNS) between an ionic gel and a flexible Ti3C2Tx MXene electrode, thereby avoiding complex microstructure construction techniques. By leveraging substantial deformation of the 3DNS and the high capacitance density resulting from the electrical double layer effect, the sensor exhibits high sensitivity (87.4 kPa-1) over a broad high-pressure range (400-1000 kPa) while maintaining linearity (R2 = 0.998). Additionally, the FIPS demonstrates a rapid response time of 46 ms, a low limit of detection at 50 Pa, and excellent stability over 10 000 cycles under a high pressure of 600 kPa. As practical demonstrations, the FIPS can effectively monitor human motion such as elbow bending and assist a robotic gripper in accurately sensing gripping tasks. Moreover, a real-time, adaptive 7 × 7 sensing array system is built and can recognize both numeric and alphabetic characters. Our design philosophy can be extended for fabricating pressure sensors with high sensing performance without involving complex techniques, facilitating the applications of flexible sensors in human motion monitoring, robotic tactile sensing, and human-machine interaction.
Collapse
Affiliation(s)
- Dandan Xu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
- City U-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Shenzhen 518057, People's Republic of China
| | - Ningning Bai
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
- City U-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Shenzhen 518057, People's Republic of China
| | - Weidong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
- City U-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Shenzhen 518057, People's Republic of China
| | - Xinyang Wu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Ke Liu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Min Liu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Mingda Ping
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Linxuan Zhou
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Peishuo Jiang
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Yunlong Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
| | - Yang Lu
- City U-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Shenzhen 518057, People's Republic of China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, 999077, Hong Kong Special Administrative Region, China
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
2
|
Quaresma LJB, Oliveira DSC, Dias RS, Alves KC, de Barros LGD, Pessin G, Sinatora A, Paraguassu W, Dos Reis MAL. Anisotropic piezoresistive response of 3D-printed pressure sensor based on ABS/MWCNT nanocomposite. Sci Rep 2024; 14:25297. [PMID: 39455667 PMCID: PMC11511984 DOI: 10.1038/s41598-024-76028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Nanocomposites based on carbon nanotubes (CNTs) are suitable for sensors, due to matrix ability to incorporate nanotube properties. Thus, we developed a low-cost, nanostructured poly(acrylonitrile-butadiene-styrene) (ABS) polymer piezoresistive sensor produced by additive manufacturing. For this, solution layers of acetone, dimethylformamide and CNTs functionalized with carboxylic acid were pulverized on an ABS substrate using an aerograph. Electrical characterization revealed an anisotropic piezoresistive response of the material, induced by the printing lines direction. Field Emission Gun-Scanning Electron Microscopy showed the nanostructured film spreading after five layers of CNTs as well as the random entanglement of nanotubes on parallel and perpendicular 3D-printed ABS substrates. Raman spectroscopy indicated compression and p-type doping of CNTs in interaction with the polymer, as seen mainly by the blueshift of the G and 2D subbands. The results show that the material is promising for pressure sensors, with potential applications in robotic haptic feedback systems.
Collapse
Affiliation(s)
- Luciano J B Quaresma
- Graduate Program in Materials Science and Engineering, Federal University of Pará, Ananindeua, PA, Brazil.
- 3D Nanostructuring Laboratory, Federal University of Pará, Belém, PA, Brazil.
| | - Dhonata S C Oliveira
- Graduate Program in Materials Science and Engineering, Federal University of Pará, Ananindeua, PA, Brazil
- 3D Nanostructuring Laboratory, Federal University of Pará, Belém, PA, Brazil
| | - Rosielem S Dias
- Graduate Program in Materials Science and Engineering, Federal University of Pará, Ananindeua, PA, Brazil
- 3D Nanostructuring Laboratory, Federal University of Pará, Belém, PA, Brazil
| | - Kelly C Alves
- Graduate Program in Materials Science and Engineering, Federal University of Pará, Ananindeua, PA, Brazil
| | - Luiz G D de Barros
- Mechanical Engineering Department, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
- Instituto Tecnológico Vale, Ouro Preto, MG, Brazil
| | - Gustavo Pessin
- Institute of Exact and Natural Sciences, Federal University of Pará, Belém, PA, Brazil
- Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Instituto Tecnológico Vale, Ouro Preto, MG, Brazil
| | | | - Waldeci Paraguassu
- Graduate Program in Materials Science and Engineering, Federal University of Pará, Ananindeua, PA, Brazil
| | - Marcos A L Dos Reis
- Graduate Program in Materials Science and Engineering, Federal University of Pará, Ananindeua, PA, Brazil
- 3D Nanostructuring Laboratory, Federal University of Pará, Belém, PA, Brazil
- Graduate Program in Amazon's Natural Resources Engineering, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
3
|
Yan X, Chen Y, Tan J, Zhang C, Xie Z, Zheng SY, Wang Q, Zhou Z, Yang J. Tough and stretchable ionic polyurethane foam for use in wearable devices. SOFT MATTER 2024; 20:8136-8143. [PMID: 39364663 DOI: 10.1039/d4sm00926f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Developing tough and conductive materials is crucial for the fields of wearable devices. However, soft materials like polyurethane (PU) are usually non-conductive, whereas conductive materials like carbon nanotubes (CNTs) are usually brittle. Besides, their composites usually face poor interfacial interactions, leading to a decline in performance in practical use. Here, we develop a stretchable PU/CNTs composite foam for use as a strain sensor. A cationic chain extender is incorporated to afford PU cationic groups and to regulate its mechanical properties, whose tensile strength is up to 12.30 MPa and breaking strain exceeds 1000%, and which shows considerable adhesion capability. Furthermore, porous PU foam is prepared via a salt-templating method and carboxylic CNTs with negative groups are loaded to afford the foam conductivity. The obtained foam shows high sensitivity to small strain (GF = 5.2) and exhibits outstanding long-term cycling performance, which is then used for diverse motion detection. The strategy illustrated here should provide new insights into the design of highly efficient PU-based sensors.
Collapse
Affiliation(s)
- Xuefeng Yan
- Zhejiang Hexin New Material Co., Ltd., Jiaxing 314000, P. R. China.
| | - Yong Chen
- Zhejiang Hexin New Material Co., Ltd., Jiaxing 314000, P. R. China.
| | - Jun Tan
- College of Biological, Chemical Science and Technology, Jiaxing University, Jiaxing 314001, P. R. China.
| | - Cailiang Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zeming Xie
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Si Yu Zheng
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Qi Wang
- Zhejiang Hexin New Material Co., Ltd., Jiaxing 314000, P. R. China.
- Hexin Kuraray Micro Fiber Leather (Jiaxing) Co., Ltd., Jiaxing 314000, P. R. China
| | - Zhijun Zhou
- Zhejiang Hexin New Material Co., Ltd., Jiaxing 314000, P. R. China.
| | - Jintao Yang
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
4
|
Peña A, Alvarez EL, Ayala Valderrama DM, Palacio C, Bermudez Y, Paredes-Madrid L. Usage of Machine Learning Techniques to Classify and Predict the Performance of Force Sensing Resistors. SENSORS (BASEL, SWITZERLAND) 2024; 24:6592. [PMID: 39460073 PMCID: PMC11511561 DOI: 10.3390/s24206592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Recently, there has been a huge increase in the different ways to manufacture polymer-based sensors. Methods like additive manufacturing, microfluidic preparation, and brush painting are just a few examples of new approaches designed to improve sensor features like self-healing, higher sensitivity, reduced drift over time, and lower hysteresis. That being said, we believe there is still a lot of potential to boost the performance of current sensors by applying modeling, classification, and machine learning techniques. With this approach, final sensor users may benefit from inexpensive computational methods instead of dealing with the already mentioned manufacturing routes. In this study, a total of 96 specimens of two commercial brands of Force Sensing Resistors (FSRs) were characterized under the error metrics of drift and hysteresis; the characterization was performed at multiple input voltages in a tailored test bench. It was found that the output voltage at null force (Vo_null) of a given specimen is inversely correlated with its drift error, and, consequently, it is possible to predict the sensor's performance by performing inexpensive electrical measurements on the sensor before deploying it to the final application. Hysteresis error was also studied in regard to Vo_null readings; nonetheless, a relationship between Vo_null and hysteresis was not found. However, a classification rule base on k-means clustering method was implemented; the clustering allowed us to distinguish in advance between sensors with high and low hysteresis by relying solely on Vo_null readings; the method was successfully implemented on Peratech SP200 sensors, but it could be applied to Interlink FSR402 sensors. With the aim of providing a comprehensive insight of the experimental data, the theoretical foundations of FSRs are also presented and correlated with the introduced modeling/classification techniques.
Collapse
Affiliation(s)
- Angela Peña
- Faculty of Mechanic, Electronic and Biomedical Engineering, Universidad Antonio Nariño, Carrera 7 N 21–84, Tunja 150001, Boyacá, Colombia;
- Doctorado en Ciencia Aplicada, Universidad Antonio Nariño, Carrera 3 Este N 47 A–15, Bogotá DC 110231, Colombia
| | - Edwin L. Alvarez
- GIMAC (Modeling, Automation and Control Research Group), Mechatronics Engineering Program, Faculty of Sciences and Engineering, Universidad de Boyacá, Carrera 2A Este N 64–169, Tunja 150003, Boyacá, Colombia;
| | - Diana M. Ayala Valderrama
- Comprehensive Management of Agro-Industrial Productivity and Services GISPA, Santo Tomas University, Tunja, Av. Universitaria, No. 45-202, Tunja 15003, Boyacá, Colombia;
| | - Carlos Palacio
- Faculty of Sciences, Universidad Antonio Nariño, Carrera 7 N 21–84, Tunja 150001, Boyacá, Colombia;
| | | | - Leonel Paredes-Madrid
- Faculty of Mechanic, Electronic and Biomedical Engineering, Universidad Antonio Nariño, Carrera 7 N 21–84, Tunja 150001, Boyacá, Colombia;
| |
Collapse
|
5
|
Cheng YJ, Li T, Lee C, Sakthivelpathi V, Hahn JO, Kwon Y, Chung JH. Nanocomposite Multimodal Sensor Array Integrated with Auxetic Structure for an Intelligent Biometrics System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405224. [PMID: 39246218 DOI: 10.1002/smll.202405224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Indexed: 09/10/2024]
Abstract
A multimodal sensor array, combining pressure and proximity sensing, has attracted considerable interest due to its importance in ubiquitous monitoring of cardiopulmonary health- and sleep-related biometrics. However, the sensitivity and dynamic range of prevalent sensors are often insufficient to detect subtle body signals. This study introduces a novel capacitive nanocomposite proximity-pressure sensor (NPPS) for detecting multiple human biometrics. NPPS consists of a carbon nanotube-paper composite (CPC) electrode and a percolating multiwalled carbon nanotube (MWCNT) foam enclosed in a MWCNT-coated auxetic frame. The fractured fibers in the CPC electrode intensify an electric field, enabling highly sensitive detection of proximity and pressure. When pressure is applied to the sensor, the synergic effect of MWCNT foam and auxetic deformation amplifies the sensitivity. The simple and mass-producible fabrication protocol allows for building an array of highly sensitive sensors to monitor human presence, sleep posture, and vital signs, including ballistocardiography (BCG). With the aid of a machine learning algorithm, the sensor array accurately detects blood pressure (BP) without intervention. This advancement holds promise for unrestricted vital sign monitoring during sleep or driving.
Collapse
Affiliation(s)
- Yu-Jen Cheng
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Tianyi Li
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Changwoo Lee
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | | | - Jin-Oh Hahn
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Younghoon Kwon
- Division of Cardiology, University of Washington, Seattle, WA, 98195, USA
| | - Jae-Hyun Chung
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
6
|
Mousavi SM, Nezhad FF, Ghahramani Y, Binazadeh M, Javidi Z, Azhdari R, Gholami A, Omidifar N, Rahman MM, Chiang WH. Recent Advances in Bioactive Carbon Nanotubes Based on Polymer Composites for Biosensor Applications. Chem Biodivers 2024; 21:e202301288. [PMID: 38697942 DOI: 10.1002/cbdv.202301288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Recent breakthroughs in the field of carbon nanotubes (CNTs) have opened up unprecedented opportunities for the development of specialized bioactive CNT-polymers for a variety of biosensor applications. The incorporation of bioactive materials, including DNA, aptamers and antibodies, into CNTs to produce composites of bioactive CNTs has attracted considerable attention. In addition, polymers are essential for the development of biosensors as they provide biocompatible conditions and are the ideal matrix for the immobilization of proteins. The numerous applications of bioactive compounds combined with the excellent chemical and physical properties of CNTs have led to the development of bioactive CNT-polymer composites. This article provides a comprehensive overview of CNT-polymer composites and new approaches to encapsulate bioactive compounds and polymers in CNTs. Finally, biosensor applications of bioactive CNT-polymer for the detection of glucose, H2O2 and cholesterol were investigated. The surface of CNT-polymer facilitates the immobilization of bioactive molecules such as DNA, enzymes or antibodies, which in turn enables the construction of state-of-the-art, future-oriented biosensors.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | | | - Yasamin Ghahramani
- Department of Endodontics, Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Mollasadra Street, 71345, Shiraz, Fars, Iran
| | - Zahra Javidi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rouhollah Azhdari
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
7
|
Al-Hamry A, Pan Y, Rahaman M, Selyshchev O, Tegenkamp C, Zahn DRT, Pašti IA, Kanoun O. Toward Humidity-Independent Sensitive and Fast Response Temperature Sensors Based on Reduced Graphene Oxide/Poly(vinyl alcohol) Nanocomposites. ACS APPLIED ELECTRONIC MATERIALS 2024; 6:4718-4734. [PMID: 38947952 PMCID: PMC11210420 DOI: 10.1021/acsaelm.4c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 07/02/2024]
Abstract
Flexible temperature sensors are becoming increasingly important these days. In this work, we explore graphene oxide (GO)/poly(vinyl alcohol) (PVA) nanocomposites for potential application in temperature sensors. The influence of the mixing ratio of both materials, the reduction temperature, and passivation on the sensing performance has been investigated. Various spectroscopic techniques revealed the composite structure and atomic composition. These were complemented by semiempirical quantum chemical calculations to investigate rGO and PVA interaction. Scanning electron and atomic force microscopy measurements were carried out to evaluate dispersion and coated film quality. The temperature sensitivity has been evaluated for several composite materials with different compositions in the range from 10 to 80 °C. The results show that a linear temperature behavior can be realized based on rGO/PVA composites with temperature coefficients of resistance (TCR) larger than 1.8% K-1 and a fast response time of 0.3 s with minimal hysteresis. Furthermore, humidity influence has been investigated in the range from 10% to 80%, and a minor effect is shown. Therefore, we can conclude that rGO/PVA composites have a high potential for excellent passivation-free, humidity-independent, sensitive, and fast response temperature sensors for various applications. The GO reduction is tunable, and PVA improves the rGO/PVA sensor performance by increasing the tunneling effect and band gap energy, consequently improving temperature sensitivity. Additionally, PVA exhibits minimal water absorption, reducing the humidity sensitivity. rGO/PVA maintains its temperature sensitivity during and after several mechanical deformations.
Collapse
Affiliation(s)
- Ammar Al-Hamry
- Measurement
and Sensor Technology, Chemnitz University
of Technology, Reichenhainer Str. 70, 09126 Chemnitz, Germany
| | - Yang Pan
- Semiconductor
Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126 Chemnitz, Germany
| | - Mahfujur Rahaman
- Semiconductor
Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126 Chemnitz, Germany
| | - Oleksandr Selyshchev
- Semiconductor
Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126 Chemnitz, Germany
| | - Christoph Tegenkamp
- Analysis
of Solid Surfaces, Chemnitz University of
Technology, Reichenhainer
Str. 70, 09126 Chemnitz, Germany
| | - Dietrich R. T. Zahn
- Semiconductor
Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126 Chemnitz, Germany
| | - Igor A. Pašti
- Faculty
of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Olfa Kanoun
- Measurement
and Sensor Technology, Chemnitz University
of Technology, Reichenhainer Str. 70, 09126 Chemnitz, Germany
| |
Collapse
|
8
|
Encinas-Encinas JC, Castillo-Ortega MM, Del Castillo-Castro T, Rodríguez-Félix DE, Quiroz Castillo JM, Huitrón Gamboa JA. Evaluation of Strain Sensors Based on Poly(acrylonitrile- co-butadiene) and Polypyrrole Synthesized by the Diffusion Method. ACS OMEGA 2024; 9:25034-25041. [PMID: 38882075 PMCID: PMC11170624 DOI: 10.1021/acsomega.4c02166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
In this study, the functionality of an elastomer composite material containing polypyrrole (PPy) as a stress sensor was evaluated. The material was prepared using the swelling method by diffusing the pyrrole monomer into the elastomer before polymerization. To achieve adequate diffusion, organic solvents with affinity for the elastomer were used. The resulting materials were characterized by scanning electron microscopy (SEM), surface electrical resistance, and thermal and mechanical properties for application as a stress sensor. The simultaneous change in electrical resistance and tension stress was measured using a digital multimeter with electrodes connected to the jaws of a universal mechanical testing machine. The influence of stress cycles on the piezoresistivity of the composite materials was investigated. The obtained PPy/NBR composite presented a good combination of electrical conductivity and mechanical properties. The strain at break remained with mild variation after coating with PPy.
Collapse
Affiliation(s)
| | | | - Teresa Del Castillo-Castro
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico
| | | | | | | |
Collapse
|
9
|
Qiu C, He M, Xu SF, Ali AM, Shen L, Wang JS. Self-adhesive, conductive, and multifunctional hybrid hydrogel for flexible/wearable electronics based on triboelectric and piezoresistive sensor. Int J Biol Macromol 2024; 269:131825. [PMID: 38679271 DOI: 10.1016/j.ijbiomac.2024.131825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Flexible electronics are highly developed nowadays in human-machine interfaces (HMI). However, challenges such as lack of flexibility, conductivity, and versatility always greatly hindered flexible electronics applications. In this work, a multifunctional hybrid hydrogel (H-hydrogel) was prepared by combining two kinds of 1D polymer chains (polyacrylamide and polydopamine) and two kinds of 2D nanosheets (Ti3C2Tx MXene and graphene oxide nanosheets) as quadruple crosslinkers. The introduced Ti3C2Tx MXene and graphene oxide nanosheets are bonded with the PAM and PDA polymer chains by hydrogen bonds. This unique crosslinking and stable structure endow the H-hydrogel with advantages such as good flexibility, electrical conductivity, self-adhesion, and mechanical robustness. The two kinds of nanosheets not only improved the mechanical strength and conductivity of the H-hydrogel, but also helped to form the double electric layers (DELs) between the nanosheets and the bulk-free water phase inside the H-hydrogel. When utilized as the electrode of a triboelectric nanogenerator (TENG), high electrical output performances were realized due to the dynamic balance of the DELs between the nanosheets and the H-hydrogel's inside water molecules. Moreover, flexible sensors, including triboelectric, and strain/pressure sensors, were achieved for human motion detection at low frequencies. This hydrogel is promising for HMI and e-skin.
Collapse
Affiliation(s)
- Chuang Qiu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Ming He
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Shi-Feng Xu
- College of Science, Shenyang Aerospace University, Shenyang, Liaoning 110136, China
| | - Aasi Mohammad Ali
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Lin Shen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Jia-Shi Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
10
|
Lee JE, Kim SU, Kim JY. Fabrication of a Capacitive 3D Spacer Fabric Pressure Sensor with a Dielectric Constant Change for High Sensitivity. SENSORS (BASEL, SWITZERLAND) 2024; 24:3395. [PMID: 38894186 PMCID: PMC11174641 DOI: 10.3390/s24113395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Smart wearable sensors are increasingly integrated into everyday life, interfacing with the human body to enable real-time monitoring of biological signals. This study focuses on creating high-sensitivity capacitive-type sensors by impregnating polyester-based 3D spacer fabric with a Carbon Nanotube (CNT) dispersion. The unique properties of conductive particles lead to nonlinear variations in the dielectric constant when pressure is applied, consequently affecting the gauge factor. The results reveal that while the fabric without CNT particles had a gauge factor of 1.967, the inclusion of 0.04 wt% CNT increased it significantly to 5.210. As sensor sensitivity requirements vary according to the application, identifying the necessary CNT wt% is crucial. Artificial intelligence, particularly the Multilayer Perception (MLP) model, enables nonlinear regression analysis for this purpose. The MLP model created and validated in this research showed a high correlation coefficient of 0.99564 between the model predictions and actual target values, indicating its effectiveness and reliability.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea;
| | - Sang-Un Kim
- Department of Smart Wearable Engineering, Soongsil University, Seoul 06978, Republic of Korea;
| | - Joo-Yong Kim
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea;
| |
Collapse
|
11
|
Ferreira R, Silva AP, Nunes-Pereira J. Current On-Skin Flexible Sensors, Materials, Manufacturing Approaches, and Study Trends for Health Monitoring: A Review. ACS Sens 2024; 9:1104-1133. [PMID: 38394033 PMCID: PMC10964246 DOI: 10.1021/acssensors.3c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Due to an ever-increasing amount of the population focusing more on their personal health, thanks to rising living standards, there is a pressing need to improve personal healthcare devices. These devices presently require laborious, time-consuming, and convoluted procedures that heavily rely on cumbersome equipment, causing discomfort and pain for the patients during invasive methods such as sample-gathering, blood sampling, and other traditional benchtop techniques. The solution lies in the development of new flexible sensors with temperature, humidity, strain, pressure, and sweat detection and monitoring capabilities, mimicking some of the sensory capabilities of the skin. In this review, a comprehensive presentation of the themes regarding flexible sensors, chosen materials, manufacturing processes, and trends was made. It was concluded that carbon-based composite materials, along with graphene and its derivates, have garnered significant interest due to their electromechanical stability, extraordinary electrical conductivity, high specific surface area, variety, and relatively low cost.
Collapse
Affiliation(s)
- Rodrigo
G. Ferreira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Abílio P. Silva
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - João Nunes-Pereira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
12
|
Puozzo H, Saiev S, Bonnaud L, Beljonne D, Lazzaroni R. Integrating Benzoxazine-PDMS 3D Networks with Carbon Nanotubes for flexible Pressure Sensors. Chemistry 2024; 30:e202301791. [PMID: 37937983 DOI: 10.1002/chem.202301791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
Shapeable and flexible pressure sensors with superior mechanical and electrical properties are of major interest as they can be employed in a wide range of applications. In this regard, elastomer-based composites incorporating carbon nanomaterials in the insulating matrix embody an appealing solution for designing flexible pressure sensors with specific properties. In this study, PDMS chains of different molecular weight were successfully functionalized with benzoxazine moieties in order to thermally cure them without adding a second component, nor a catalyst or an initiator. These precursors were then blended with 1 weight percent of multi-walled carbon nanotubes (CNTs) using an ultrasound probe, which induced a transition from a liquid-like to a gel-like behavior as CNTs generate an interconnected network within the matrix. After curing, the resulting nanocomposites exhibit mechanical and electrical properties making them highly promising materials for pressure-sensing applications.
Collapse
Affiliation(s)
- Hugo Puozzo
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons (UMONS), 20 Place du Parc, B-7000, Mons, Belgium
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials & Polymers (CIRMAP), Materia Nova Research Center, Materials Research Institute, University of Mons (UMONS), 20 Place du Parc, B-7000, Mons, Belgium) E-mail: s
| | - Shamil Saiev
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons (UMONS), 20 Place du Parc, B-7000, Mons, Belgium
| | - Leïla Bonnaud
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials & Polymers (CIRMAP), Materia Nova Research Center, Materials Research Institute, University of Mons (UMONS), 20 Place du Parc, B-7000, Mons, Belgium) E-mail: s
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons (UMONS), 20 Place du Parc, B-7000, Mons, Belgium
| | - Roberto Lazzaroni
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons (UMONS), 20 Place du Parc, B-7000, Mons, Belgium
| |
Collapse
|
13
|
Emon OF, Sun H, Rahim A, Choi JW. An Ionic Liquid-Based Stretchable Sensor for Measuring Normal and Shear Force. Soft Robot 2023; 10:1115-1125. [PMID: 37130312 DOI: 10.1089/soro.2022.0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Soft and stretchable force sensors are widely used for health monitoring, robotics, prosthetics, and other applications. Soft force sensors with the capability of measuring both normal and shear force could offer even greater functionality and provide more information, particularly in the field of biomechanics. In this work, a new solid-state force sensor is proposed that can measure both normal and shear forces at the same time. The soft and stretchable sensor was fabricated using an ionic liquid (IL)/polymer network. Two separate IL-based polymer membranes were used to detect normal and shear forces. Sensor architecture and electrical wiring for normal, shear, and combined sensing were developed, and various material compositions for different sensor layers were investigated to find the combination that could achieve the optimum sensor performance. A basic material formulation for carbon nanotube-based electrodes, the IL/polymer network, and polymeric insulation layers was proposed. To configure a combined (normal and shear) sensor, separate sensors for normal and shear deformations were first designed and investigated. Later, a combined sensor was fabricated using a mold via screen printing, photocuring, and thermal curing. The combined sensor was evaluated under different force conditions. The results show that the sensor can reliably measure normal and shear forces. Moreover, the findings demonstrate a way to successfully modulate the sensitivity for normal and shear sensing by varying the material composition or geometric configuration, which provides flexibility for application-specific designs.
Collapse
Affiliation(s)
- Omar Faruk Emon
- Department of Mechanical and Industrial Engineering and University of New Haven, West Haven, Connecticut, USA
| | - Hao Sun
- Department of Chemistry and Chemical & Biomedical Engineering, University of New Haven, West Haven, Connecticut, USA
| | - Ahadur Rahim
- Department of Mechanical Engineering, The University of Akron, Akron, Ohio, USA
| | - Jae-Won Choi
- Department of Mechanical Engineering, The University of Akron, Akron, Ohio, USA
| |
Collapse
|
14
|
Sarma S, Rao VR. Emerging synthesis and characterization techniques for hybrid polymer nanocomposites. NANOTECHNOLOGY 2023; 35:012002. [PMID: 37783203 DOI: 10.1088/1361-6528/acfef8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Metallic nanoparticles and carbon nanotubes are two of the most promising nanomaterials, due to their distinctive properties occurring from spatial confinement of electron-hole pairs. The unique combination of metallic nanoparticles and carbon nanotubes (CNTs) in a polymer matrix offers unparalleled advantages, making them highly desirable in various fields. Advanced methods and techniques for synthesizing and characterizing hybrid metal-CNT-polymer nanocomposites have undergone significant progress in recent years, paving their integration into various fields, including aerospace, electronics, energy, water treatment and environmental remediation. These advances have allowed better understanding of nanocomposite properties and imparted ability to tune specific properties through size, shape, and distribution control of the nanofillers within the matrix material or by altering filler properties through functionalization. This study aims to critically judge the emerging tools, techniques and methods used in polymer nanocomposites with specific focus on metal-CNT based hybrid polymer nanocomposites, and suggest new avenues for research in the field. Furthermore, by examining the mechanisms affecting the performance of these composites, we can understand how the inclusion of fillers alters the microstructure and overall behavior of the material. Ultimately, this knowledge could lay the foundation for the development of novel nanocomposites with tailored properties and enhanced performance in a plethora of applications.
Collapse
Affiliation(s)
- Shrutidhara Sarma
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Rajasthan 342037, India
| | - V Ramgopal Rao
- Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
15
|
Seesaard T, Wongchoosuk C. Flexible and Stretchable Pressure Sensors: From Basic Principles to State-of-the-Art Applications. MICROMACHINES 2023; 14:1638. [PMID: 37630177 PMCID: PMC10456594 DOI: 10.3390/mi14081638] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Flexible and stretchable electronics have emerged as highly promising technologies for the next generation of electronic devices. These advancements offer numerous advantages, such as flexibility, biocompatibility, bio-integrated circuits, and light weight, enabling new possibilities in diverse applications, including e-textiles, smart lenses, healthcare technologies, smart manufacturing, consumer electronics, and smart wearable devices. In recent years, significant attention has been devoted to flexible and stretchable pressure sensors due to their potential integration with medical and healthcare devices for monitoring human activity and biological signals, such as heartbeat, respiratory rate, blood pressure, blood oxygen saturation, and muscle activity. This review comprehensively covers all aspects of recent developments in flexible and stretchable pressure sensors. It encompasses fundamental principles, force/pressure-sensitive materials, fabrication techniques for low-cost and high-performance pressure sensors, investigations of sensing mechanisms (piezoresistivity, capacitance, piezoelectricity), and state-of-the-art applications.
Collapse
Affiliation(s)
- Thara Seesaard
- Department of Physics, Faculty of Science and Technology, Kanchanaburi Rajabhat University, Kanchanaburi 71190, Thailand;
| | - Chatchawal Wongchoosuk
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
16
|
Zhang X, Li N, Wang G, Zhang C, Zhang Y, Zeng F, Liu H, Yi G, Wang Z. Research status of polysiloxane-based piezoresistive flexible human electronic sensors. RSC Adv 2023; 13:16693-16711. [PMID: 37274402 PMCID: PMC10236448 DOI: 10.1039/d3ra03258b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/06/2023] Open
Abstract
Flexible human body electronic sensor is a multifunctional electronic device with flexibility, extensibility, and responsiveness. Piezoresistive flexible human body electronic sensor has attracted the extensive attention of researchers because of its simple preparation process, high detection sensitivity, wide detection range, and low power consumption. However, the wearability and affinity to the human body of traditional flexible human electronic sensors are poor, while polysiloxane materials can be mixed with other electronic materials and have good affinity toward the human body. Therefore, polysiloxane materials have become the first choice of flexible matrixes. In this study, the research progress and preparation methods of piezoresistive flexible human electronic sensors based on polysiloxane materials in recent years are summarized, the challenges faced in the development of piezoresistive flexible human electronic sensors are analyzed, and the future research directions are prospected.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Jiangsu Province Key Laboratory of Environmentally Friendly Polymer Materials, School of Materials Science and Engineering, Changzhou University Changzhou 213164 China
| | - Ning Li
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Jiangsu Province Key Laboratory of Environmentally Friendly Polymer Materials, School of Materials Science and Engineering, Changzhou University Changzhou 213164 China
| | - Guorui Wang
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Jiangsu Province Key Laboratory of Environmentally Friendly Polymer Materials, School of Materials Science and Engineering, Changzhou University Changzhou 213164 China
| | - Chi Zhang
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Jiangsu Province Key Laboratory of Environmentally Friendly Polymer Materials, School of Materials Science and Engineering, Changzhou University Changzhou 213164 China
| | - Yu Zhang
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Jiangsu Province Key Laboratory of Environmentally Friendly Polymer Materials, School of Materials Science and Engineering, Changzhou University Changzhou 213164 China
| | - Fanglei Zeng
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Jiangsu Province Key Laboratory of Environmentally Friendly Polymer Materials, School of Materials Science and Engineering, Changzhou University Changzhou 213164 China
| | - Hailong Liu
- Shandong Dongyue Silicone Material Co. ,Ltd. Zibo 256401 China
| | - Gang Yi
- Shandong Dongyue Silicone Material Co. ,Ltd. Zibo 256401 China
| | - Zhongwei Wang
- College of Materials Science and Engineering, Shandong University of Science and Technology Qingdao 266590 China
| |
Collapse
|
17
|
Wu X, Wang J, Han J, Xie Y, Ge X, Liao J, Yi Y. Design of Suspended Slot Racetrack Microring Refractive Index Sensor Based on Polymer Nanocomposite. Polymers (Basel) 2023; 15:polym15092113. [PMID: 37177257 PMCID: PMC10180560 DOI: 10.3390/polym15092113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Recently, polymer nanocomposites have attracted great interest due to their remarkable characteristics of high performance and enabling production of low-cost devices. This article explores the reflective index sensing application of the polymer nanocomposite IOC-133, which is a TiOx/polymer nanocomposite with a reflective index between 1.8 and 1.9. Considering the material properties of high reflective index, low absorption loss, and compatibility with nanoimprint lithography, a microring-based reflective index sensor with a suspended slot waveguide structure is proposed. We combined the sensing mechanism of slot waveguides with high reflective index polymer nanocomposites and designed the suspended structure to address the problem of decreasing sensitivity caused by residual layers. The sensing device was adopted as a microring resonator, which is conducive to large-scale integration. The finite-difference time-domain (FDTD) method was employed to analyze the effects of several key parameters. The results showed that the racetrack microring sensor we propose can achieve a high sensitivity of 436 nm/RIU (Refractive Index Units), about six times higher than the microring sensor with a ridge waveguide. The Q factor of the microring reaches 1.42 × 104, and the detection limit is 1.38 × 10-4 RIU. The proposed suspended slot microring sensor has potential value in the field of nanoprinted photonic integrated circuits.
Collapse
Affiliation(s)
- Xihan Wu
- College of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, Shenzhen 518118, China
| | - Jiajun Wang
- College of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, Shenzhen 518118, China
| | - Jiachen Han
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Yuqi Xie
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Xuyang Ge
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Jianzhi Liao
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Yunji Yi
- College of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
18
|
Muñoz-Chilito J, Lara-Ramos JA, Marín L, Machuca-Martínez F, Correa-Aguirre JP, Hidalgo-Salazar MA, García-Navarro S, Roca-Blay L, Rodríguez LA, Mosquera-Vargas E, Diosa JE. Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates. Molecules 2023; 28:molecules28083598. [PMID: 37110832 PMCID: PMC10145542 DOI: 10.3390/molecules28083598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
The impacts on the morphological, electrical and hardness properties of thermoplastic polyurethane (TPU) plates using multi-walled carbon nanotubes (MWCNTs) as reinforcing fillers have been investigated, using MWCNT loadings between 1 and 7 wt%. Plates of the TPU/MWCNT nanocomposites were fabricated by compression molding from extruded pellets. An X-ray diffraction analysis showed that the incorporation of MWCNTs into the TPU polymer matrix increases the ordered range of the soft and hard segments. SEM images revealed that the fabrication route used here helped to obtain TPU/MWCNT nanocomposites with a uniform dispersion of the nanotubes inside the TPU matrix and promoted the creation of a conductive network that favors the electronic conduction of the composite. The potential of the impedance spectroscopy technique has been used to determine that the TPU/MWCNT plates exhibited two conduction mechanisms, percolation and tunneling conduction of electrons, and their conductivity values increase as the MWCNT loading increases. Finally, although the fabrication route induced a hardness reduction with respect to the pure TPU, the addition of MWCNT increased the Shore A hardness behavior of the TPU plates.
Collapse
Affiliation(s)
- José Muñoz-Chilito
- Grupo de Transiciones de Fase y Materiales Funcionales, Departamento de Física, Universidad del Valle, Santiago de Cali 760032, Colombia
| | - José A Lara-Ramos
- Grupo de Transiciones de Fase y Materiales Funcionales, Departamento de Física, Universidad del Valle, Santiago de Cali 760032, Colombia
| | - Lorena Marín
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia
- Grupo de Películas Delgadas, Universidad del Valle, Santiago de Cali 760032, Colombia
| | - Fiderman Machuca-Martínez
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia
- Grupo de Investigación en Procesos Avanzados para Tratamientos Biológicos y Químicos, Escuela de Ingeniería Química, Universidad del Valle, Santiago de Cali 760032, Colombia
| | - Juan P Correa-Aguirre
- Grupo de Investigación en Tecnología para la Manufactura, Universidad Autónoma de Occidente, Santiago de Cali 760035, Colombia
| | - Miguel A Hidalgo-Salazar
- Grupo de Investigación en Tecnología para la Manufactura, Universidad Autónoma de Occidente, Santiago de Cali 760035, Colombia
| | | | - Luis Roca-Blay
- AIMPLAS, Gustave Eiffel 4 (València Parc Tecnològic), 46980 Paterna, Spain
| | - Luis A Rodríguez
- Grupo de Transiciones de Fase y Materiales Funcionales, Departamento de Física, Universidad del Valle, Santiago de Cali 760032, Colombia
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia
| | - Edgar Mosquera-Vargas
- Grupo de Transiciones de Fase y Materiales Funcionales, Departamento de Física, Universidad del Valle, Santiago de Cali 760032, Colombia
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia
| | - Jesús E Diosa
- Grupo de Transiciones de Fase y Materiales Funcionales, Departamento de Física, Universidad del Valle, Santiago de Cali 760032, Colombia
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia
| |
Collapse
|
19
|
Li MX, Wu DY, Tang RY, Zhou SY, Liang WH, Liu J, Li L. Liquid metal integrated PU/CNT fibrous membrane for human health monitoring. Front Bioeng Biotechnol 2023; 11:1169411. [PMID: 37082218 PMCID: PMC10111225 DOI: 10.3389/fbioe.2023.1169411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Wearable flexible sensors are widely used in several applications such as physiological monitoring, electronic skin, and telemedicine. Typically, flexible sensors that are made of elastomeric thin-films lack sufficient permeability, which leads to skin inflammation, and more importantly, affects signal detection and consequently, reduces the sensitivity of the sensor. In this study, we designed a flexible nanofibrous membrane with a high air permeability (6.10 mm/s), which could be effectively used to monitor human motion signals and physiological signals. More specifically, a flexible membrane with a point (liquid metal nanoparticles)-line (carbon nanotubes)-plane (liquid metal thin-film) multiscale conductive structure was fabricated by combining liquid metal (LM) and carbon nanotubes (CNTs) with a polyurethane (PU) nanofibrous membrane. Interestingly, the excellent conductivity and fluidity of the liquid metal enhanced the sensitivity and stability of the membrane. More precisely, the gauge factor (GF) values of the membrane is 3.0 at 50% strain and 14.0 at 400% strain, which corresponds to a high strain sensitivity within the whole range of deformation. Additionally, the proposed membrane has good mechanical properties with an elongation at a break of 490% and a tensile strength of 12 MPa. Furthermore, the flexible membrane exhibits good biocompatibility and can efficiently monitor human health signals, thereby indicating potential for application in the field of wearable electronic devices.
Collapse
Affiliation(s)
- Mei-Xi Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Da-Yong Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Lei Li, ; Da-Yong Wu,
| | - Rong-Yu Tang
- The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| | - Si-Yuan Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Hua Liang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jing Liu
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Li
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Lei Li, ; Da-Yong Wu,
| |
Collapse
|
20
|
Characterization of Conductive 3D Printed Fingertips Manufactured by Fused Filament Fabrication. Polymers (Basel) 2023; 15:polym15061426. [PMID: 36987207 PMCID: PMC10057525 DOI: 10.3390/polym15061426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
This study purposed to develop conductivity 3D printed (3DP) fingertips and confirm their potential for use in a pressure sensor. Index fingertips were 3D printed using thermoplastic polyurethane filament with three types of infill patterns (Zigzag (ZG), Triangles (TR), Honeycomb (HN)) and densities (20%, 50%, 80%). Hence, the 3DP index fingertip was dip-coated with 8 wt% graphene/waterborne polyurethane composite solution. The coated 3DP index fingertips were analyzed by appearance property, weight changes, compressive property, and electrical property. As results, the weight increased from 1.8 g to 2.9 g as infill density increased. By infill pattern, ZG was the largest, and the pick-up rate decreased from 18.9% for 20% infill density to 4.5% for 80% infill density. Compressive properties were confirmed. Compressive strength increased as infill density increased. In addition, the compressive strength after coating was improved more than 1000 times. Especially, TR had excellent compressive toughness as 13.9 J for 20%, 17.2 J for 50%, and 27.9 J for 80%. In the case of electrical properties, the current become excellent at 20% infill density. By infill patterns at 20% infill density, TR has 0.22 mA as the best conductivity. Therefore, we confirmed the conductivity of 3DP fingertips, and the infill pattern of TR at 20% was most suitable.
Collapse
|
21
|
Albright T, Hobeck J. Characterization of Carbon-Black-Based Nanocomposite Mixtures of Varying Dispersion for Improving Stochastic Model Fidelity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050916. [PMID: 36903793 PMCID: PMC10005693 DOI: 10.3390/nano13050916] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/01/2023]
Abstract
Carbon black nanocomposites are complex systems that show potential for engineering applications. Understanding the influence of preparation methods on the engineering properties of these materials is critical for widespread deployment. In this study, the fidelity of a stochastic fractal aggregate placement algorithm is explored. A high-speed spin-coater is deployed for the creation of nanocomposite thin films of varying dispersion characteristics, which are imaged via light microscopy. Statistical analysis is performed and compared to 2D image statistics of stochastically generated RVEs with comparable volumetric properties. Correlations between simulation variables and image statistics are examined. Future and current works are discussed.
Collapse
|
22
|
Gilanizadehdizaj G, Bhattacharyya D, Stringer J, Aw K. Elucidating the Conducting Mechanisms in a Flexible Piezoresistive Pressure Sensor Using Reduced Graphene Oxide Film in Silicone Elastomer. SENSORS (BASEL, SWITZERLAND) 2023; 23:2443. [PMID: 36904647 PMCID: PMC10006949 DOI: 10.3390/s23052443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Sensors as a composite film made from reduced graphene oxide (rGO) structures filled with a silicone elastomer are soft and flexible, making them suitable for wearable applications. The sensors exhibit three distinct conducting regions, denoting different conducting mechanisms when pressure is applied. This article aims to elucidate the conduction mechanisms in these sensors made from this composite film. It was deduced that the conducting mechanisms are dominated by Schottky/thermionic emission and Ohmic conduction.
Collapse
|
23
|
Du C, Zhao Y, Li Y. Theoretical Derivation of the Effect of Bonding Current on the Bonding Interface during Anodic Bonding of PEG-Based Encapsulation Materials and Aluminum. Polymers (Basel) 2023; 15:polym15040913. [PMID: 36850196 PMCID: PMC9965209 DOI: 10.3390/polym15040913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
This study analyzed the mechanism underlying the effect of the bonding current on the bonding interface during anodic bonding on the basis of the anodic bonding of PEG (polyethylene glycol)-based encapsulation materials and Al. By establishing an equivalent electrical model, the effects of various electrical parameters on the dynamic performance of the bonding current were evaluated, and the change law of the bonding current transfer function was analyzed. By examining the gap deformation model, the conditions for contact between the interface gaps and the bonding current pair were determined, and the influence law of the gap deformation of the bonding interface was derived. By assessing the effect of the bonding current on the ionic behavior, we found that the larger the bonding current, the greater the number of activated mobile ions in the bonding material and the higher the field strength in the cation depletion area. From the anodic bonding experiments, it was found that increasing the bonding voltage can increase the peak current and improve the bonding efficiency. The SEM image after bonding shows that the bonding interface had no obvious defects; the higher bonding voltage can result in a thicker bonding layer.
Collapse
Affiliation(s)
- Chao Du
- Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030600, China
- Shanxi Province Collaborative Innovation Center for Light Materials Modification and Application, Jinzhong 030600, China
| | - Yali Zhao
- Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030600, China
- Shanxi Province Collaborative Innovation Center for Light Materials Modification and Application, Jinzhong 030600, China
- Correspondence:
| | - Yong Li
- Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030600, China
- Shanxi Province Collaborative Innovation Center for Light Materials Modification and Application, Jinzhong 030600, China
| |
Collapse
|
24
|
Direct formation of carbon nanotube wiring with controlled electrical resistance on plastic films. Sci Rep 2023; 13:2254. [PMID: 36755114 PMCID: PMC9908902 DOI: 10.1038/s41598-023-29578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
We have developed a simple method to fabricate multi-walled carbon nanotube (MWNT) wiring on a plastic film at room temperature under atmosphere pressure. By irradiating a MWNT thin film coated on a polypropylene (PP) film with a laser, a conductive wiring made of a composite of MWNT and PP can be directly fabricated on the PP film. The resistance of MWNT wiring fabricated using this method were ranging from 0.789 to 114 kΩ/cm. By changing the scanning speed of laser, we could fabricate various regions with different resistances per unit length even within a single wiring. The formation mechanism of the MWNT wiring with tunable resistance was discussed from both experimental results, such as microscopic structural observation using cross-sectional scanning electron microscopy and microscopic Raman imaging, and simulation results, such as heat conduction in the film during local laser heating. The results suggest that the MWNT wiring was formed by PP diffusion in MWNT at high temperature. We also demonstrated that excess MWNTs that were not used for wiring could be recovered and used to fabricate new wirings. This method could be utilized to realize all-carbon devices such as light-weight flexible sensors, energy conversion devices, and energy storage devices.
Collapse
|
25
|
Xu J, Pan J, Cui T, Zhang S, Yang Y, Ren TL. Recent Progress of Tactile and Force Sensors for Human-Machine Interaction. SENSORS (BASEL, SWITZERLAND) 2023; 23:1868. [PMID: 36850470 PMCID: PMC9961639 DOI: 10.3390/s23041868] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Human-Machine Interface (HMI) plays a key role in the interaction between people and machines, which allows people to easily and intuitively control the machine and immersively experience the virtual world of the meta-universe by virtual reality/augmented reality (VR/AR) technology. Currently, wearable skin-integrated tactile and force sensors are widely used in immersive human-machine interactions due to their ultra-thin, ultra-soft, conformal characteristics. In this paper, the recent progress of tactile and force sensors used in HMI are reviewed, including piezoresistive, capacitive, piezoelectric, triboelectric, and other sensors. Then, this paper discusses how to improve the performance of tactile and force sensors for HMI. Next, this paper summarizes the HMI for dexterous robotic manipulation and VR/AR applications. Finally, this paper summarizes and proposes the future development trend of HMI.
Collapse
Affiliation(s)
- Jiandong Xu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jiong Pan
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tianrui Cui
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Sheng Zhang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yi Yang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
Mechanical Recycling of Ethylene-Vinyl Acetate/Carbon Nanotube Nanocomposites: Processing, Thermal, Rheological, Mechanical and Electrical Behavior. Polymers (Basel) 2023; 15:polym15030583. [PMID: 36771884 PMCID: PMC9919012 DOI: 10.3390/polym15030583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Recycling polymer/carbon nanotube (CNT) nanocomposites is not well common, despite a growing interest in using polymer/carbon nanotube (CNT) nanocomposites in industrial applications. In this study, the influence of mechanical recycling on the thermal, rheological, mechanical and electrical behavior of ethylene-vinyl acetate (EVA)/CNT nanocomposites is investigated. EVA/CNT nanocomposite with different amounts of CNTs (1, 3 and 5 wt.%) was subjected to mechanical grinding and reprocessing by injection molding in a close-loop up to three cycles, and the changes induced by mechanical recycling were monitored by Differential Scanning Calorimetry (DSC), capillary rheology, scanning electron microscopy (SEM), electrical resistance and tensile tests. It was found that the EVA/CNT nanocomposites did not exhibit significant changes in thermal and flow behavior due to mechanical recycling and reprocessing. The recycled EVA/CNT nanocomposites retain close to 75% of the original elastic modulus after three recycling cycles and about 80-90% in the tensile strength, depending on the CNT loading. The electrical conductivity of the recycled nanocomposites was about one order of magnitude lower as compared with the virgin nanocomposites, spanning the insulating to semi-conducting range (10-9 S/m-10-2 S/m) depending on the CNT loading. With proper control of the injection molding temperature and CNT loading, a balance between the mechanical and electrical properties of the recycled EVA nanocomposites can be reached, showing a potential to be used in practical applications.
Collapse
|
27
|
Cheng Y, Zhou Y, Wang R, Chan KH, Liu Y, Ding T, Wang XQ, Li T, Ho GW. An Elastic and Damage-Tolerant Dry Epidermal Patch with Robust Skin Adhesion for Bioelectronic Interfacing. ACS NANO 2022; 16:18608-18620. [PMID: 36318185 DOI: 10.1021/acsnano.2c07097] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
On-skin patches that record biopotential and biomechanical signals are essential for wearable healthcare monitoring, clinical treatment, and human-machine interaction. To acquire wearing comfort and high-quality signals, patches with tissue-like softness, elastic recovery, damage tolerance, and robust bioelectronic interface are highly desired yet challenging to achieve. Here, we report a dry epidermal patch made from a supramolecular polymer (SESA) and an in situ transferred carbon nanotubes' percolation network. The polymer possesses a hybrid structure of copolymerized permanent scaffold permeated by multiple dynamic interactions, which imparts a desired mechanical response transition from elastic recoil to energy dissipation with increased elongation. Such SESA-based patches are soft (Young's modulus ∼0.1 MPa) and elastic within physiologically relevant strain levels (97% elastic recovery at 50% tensile strain), intrinsically mechanical-electrical damage-resilient (∼90% restoration from damage after 5 min), and interference-immune in dynamic signal acquisition (stretch, underwater, sweat). We demonstrate its versatile physiological sensing applications, including electrocardiogram recording under various disturbances, machine-learning-enabled hand-gesture recognition through electromyogram measurement, subtle radial artery pulse, and drastic knee kinematics sensing. This epidermal patch offers a promising noninvasive, long-duration, and ambulant bioelectronic interfacing with anti-interference robustness.
Collapse
Affiliation(s)
- Yin Cheng
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Yi Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Ranran Wang
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Kwok Hoe Chan
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Yan Liu
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Tianpeng Ding
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Xiao-Qiao Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Tongtao Li
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| |
Collapse
|
28
|
Bai D, Liu F, Xie D, Lv F, Shen L, Tian Z. 3D printing of flexible strain sensor based on MWCNTs/flexible resin composite. NANOTECHNOLOGY 2022; 34:045701. [PMID: 36265436 DOI: 10.1088/1361-6528/ac9c0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The flexible strain sensor is an indispensable part in flexible integrated electronic systems and an important intermediate in external mechanical signal acquisition. The 3D printing technology provides a fast and cheap way to manufacture flexible strain sensors. In this paper, a MWCNTs/flexible resin composite for photocuring 3D printing was prepared using mechanical mixing method. The composite has a low percolation threshold (1.2%ωt). Based on the composite material, a flexible strain sensor with high performance was fabricated using digital light processing technology. The sensor has a GF of 8.98 under strain conditions ranging between 0% and 40% and a high elongation at break (48%). The sensor presents mechanical hysteresis under cyclic loading. With the increase of the strain amplitude, the mechanical hysteresis becomes more obvious. At the same time, the resistance response signal of the sensor shows double peaks during the unloading process, which is caused by the competition of disconnection and reconstruction of conductive network in the composite material. The test results show that the sensor has different response signals to different types of loads. Finally, its practicability is verified by applying it to balloon pressure detection.
Collapse
Affiliation(s)
- Dezhi Bai
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Fuxi Liu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
- Nanjing HANGPU Machinery Technology Co. Ltd, Nanjing 210016, People's Republic of China
- JITRI Institute of Precision Manufacturing, Nanjing 211806, People's Republic of China
| | - Deqiao Xie
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Fei Lv
- Laboratory of High Power Fiber Laser Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, People's Republic of China
| | - Lida Shen
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Zongjun Tian
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
- Nanjing HANGPU Machinery Technology Co. Ltd, Nanjing 210016, People's Republic of China
- JITRI Institute of Precision Manufacturing, Nanjing 211806, People's Republic of China
| |
Collapse
|
29
|
Shin YK, Shin Y, Lee JW, Seo MH. Micro-/Nano-Structured Biodegradable Pressure Sensors for Biomedical Applications. BIOSENSORS 2022; 12:952. [PMID: 36354461 PMCID: PMC9687959 DOI: 10.3390/bios12110952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The interest in biodegradable pressure sensors in the biomedical field is growing because of their temporary existence in wearable and implantable applications without any biocompatibility issues. In contrast to the limited sensing performance and biocompatibility of initially developed biodegradable pressure sensors, device performances and functionalities have drastically improved owing to the recent developments in micro-/nano-technologies including device structures and materials. Thus, there is greater possibility of their use in diagnosis and healthcare applications. This review article summarizes the recent advances in micro-/nano-structured biodegradable pressure sensor devices. In particular, we focus on the considerable improvement in performance and functionality at the device-level that has been achieved by adapting the geometrical design parameters in the micro- and nano-meter range. First, the material choices and sensing mechanisms available for fabricating micro-/nano-structured biodegradable pressure sensor devices are discussed. Then, this is followed by a historical development in the biodegradable pressure sensors. In particular, we highlight not only the fabrication methods and performances of the sensor device, but also their biocompatibility. Finally, we intoduce the recent examples of the micro/nano-structured biodegradable pressure sensor for biomedical applications.
Collapse
Affiliation(s)
- Yoo-Kyum Shin
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea
| | - Yujin Shin
- Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Jung Woo Lee
- Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Min-Ho Seo
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea
| |
Collapse
|
30
|
Oh J, Kim DY, Kim H, Hur ON, Park SH. Comparative Study of Carbon Nanotube Composites as Capacitive and Piezoresistive Pressure Sensors under Varying Conditions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7637. [PMID: 36363228 PMCID: PMC9657234 DOI: 10.3390/ma15217637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Conducting polymer composites consisting of carbon nanotubes (CNTs) as a conductive filler and polydimethylsiloxane (PDMS) as a polymer matrix were fabricated to investigate their capacitive and piezoresistive effects as pressure sensors. The pressure-sensing behavior and mechanism of the composites were compared in terms of basic configuration with a parallel plate structure. Various sensing experiments, such as sensitivity, repeatability, hysteresis, and temperature dependence according to the working principle, were conducted with varying filler contents. The hysteresis and repeatability of the pressure-sensing properties were investigated using cyclic tensile tests. In addition, a temperature test was performed at selected temperatures to monitor the change in the resistance/capacitance.
Collapse
|
31
|
Lencar CC, Ramakrishnan S, Sundararaj U. Carbon Nanotube Migration in Melt-Compounded PEO/PE Blends and Its Impact on Electrical and Rheological Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3772. [PMID: 36364545 PMCID: PMC9656623 DOI: 10.3390/nano12213772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
In this work, the effects of MWCNT concentration and mixing time on the migration of multi-walled carbon nanotubes (MWCNTs) within polyethylene oxide (PEO)/polyethylene (PE) blends are studied. Two-step mixing used to pre-localize MWCNTs within the PE phase and subsequently to observe their migration into the thermodynamically favored PEO phase. SEM micrographs show that many MWCNTs migrated into PEO. PEO/PE 40:60 polymer blend nanocomposites with 3 vol% MWCNTs mixed for short durations exhibited exceptional electromagnetic interference shielding effectiveness (EMI SE) and electrical conductivity (14.1 dB and 22.1 S/m, respectively), with properties dropping significantly at higher mixing times, suggesting the disruption of percolated MWCNT networks within the PE phase. PE grafted with maleic anhydride (PEMA) was introduced as a compatibilizer to arrest the migration of MWCNTs by creating a barrier at the PEO/PE interface. For the compatibilized system, EMI SE and electrical conductivity measurements showed a peak in electrical properties at 5 min of mixing (15.6 dB and 68.7 S/m), higher than those found for uncompatibilized systems. These improvements suggest that compatibilization can be effective at halting MWCNT migration. Although utilizing differences in thermodynamic affinity to draw MWCNTs toward the polymer/polymer interface of polymer blend systems can be an effective way to achieve interfacial localization, an excessively low viscosity of the destination phase may play a major role in reducing the entrapment of MWCNTs at the interface.
Collapse
|
32
|
Song J, Kim Y, Kang K, Lee S, Shin M, Son D. Stretchable and Self-Healable Graphene–Polymer Conductive Composite for Wearable EMG Sensor. Polymers (Basel) 2022; 14:polym14183766. [PMID: 36145910 PMCID: PMC9505217 DOI: 10.3390/polym14183766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/11/2022] Open
Abstract
In bioelectronics, stretchable and self-healable electrodes can reliably measure electrophysiological signals from the human body because they have good modulus matching with tissue and high durability. In particular, the polymer–graphene composite has advantages when it is used as an electrode for bioelectronic sensor devices. However, it has previously been reported that external stimuli such as heat or light are required for the self-healing process of polymer/graphene composites. In this study, we optimized a conducting composite by mixing a self-healing polymer (SHP) and graphene. The composite materials can not only self-heal without external stimulation but also have rapid electrical recovery from repeated mechanical damage such as scratches. In addition, they had stable electrical endurance even when the cyclic test was performed over 200 cycles at 50% strain, so they can be useful for a bioelectronic sensor device with high durability. Finally, we measured the electromyogram signals caused by the movement of arm muscles using our composite, and the measured data were transmitted to a microcontroller to successfully control the movement of the robot’s hand.
Collapse
Affiliation(s)
- Jihyang Song
- Department of Superintelligence Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
| | - Yewon Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Kyumin Kang
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Sangkyu Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Mikyung Shin
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (M.S.); (D.S.)
| | - Donghee Son
- Department of Superintelligence Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (M.S.); (D.S.)
| |
Collapse
|
33
|
Nouri H, Rajendran D, Ramalingame R, Kanoun O. Homogeneity Characterization of Textile-Integrated Wearable Sensors based on Impedance Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2022; 22:6530. [PMID: 36080989 PMCID: PMC9460754 DOI: 10.3390/s22176530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
One of the main challenges during the integration of a carbon/polymer-based nanocomposite sensor on textile substrates is the fabrication of a homogeneous surface of the nanocomposite-based thin films, which play a major role in the reproducibility of the sensor. Characterizations are therefore required in every fabrication step to control the quality of the material preparation, deposition, and curing. As a result, microcharacterization methods are more suitable for laboratory investigations, and electrical methods can be easily implemented for in situ characterization within the manufacturing process. In this paper, several textile-based pressure sensors are fabricated at an optimized concentration of 0.3 wt.% of multiwalledcarbon nanotubes (MWCNTs) composite material in PDMS. We propose to use impedance spectroscopy for the characterization of both of the resistive behavior and capacitive behavior of the sensor at several frequencies and under different loads from 50 g to 500 g. The impedance spectra are fitted to a model composed of a resistance in series with a parallel combination of resistance and a constant phase element (CPE). The results show that the printing parameters strongly influence the impedance behavior under different loads. The deviation of the model parameter α of the CPE from the value 1 is strongly dependent on the nonhomogeneity of the sensor. Based on an impedance spectrum measurement followed by parameter extraction, the parameter α can be determined to realize a novel method for homogeneity characterization and in-line quality control of textile-integrated wearable sensors during the manufacturing process.
Collapse
|
34
|
Wang H, Liang C, Zhang H, Diao Y, Luo H, Han Y, Wu X. Digitized Construction of Iontronic Pressure Sensor with Self-Defined Configuration and Widely Regulated Performance. SENSORS (BASEL, SWITZERLAND) 2022; 22:6136. [PMID: 36015893 PMCID: PMC9415562 DOI: 10.3390/s22166136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Flexible pressure sensors are essential components for wearable smart devices and intelligent systems. Significant progress has been made in this area, reporting on excellent sensor performance and fascinating sensor functionalities. Nevertheless, geometrical and morphological engineering of pressure sensors is usually neglected, which, however, is significant for practical application. Here, we present a digitized manufacturing methodology to construct a new class of iontronic pressure sensors with optionally defined configurations and widely modulated performance. These pressure sensors are composed of self-defined electrode patterns prepared by a screen printing method and highly tunable pressure-sensitive microstructures fabricated using 3D printed templates. Importantly, the iontronic pressure sensors employ an iontronic capacitive sensing mechanism based on mechanically regulating the electrical double layer at the electrolyte/electrode interfaces. The resultant pressure sensors exhibit high sensitivity (58 kPa-1), fast response/recovery time (45 ms/75 ms), low detectability (6.64 Pa), and good repeatability (2000 cycles). Moreover, our pressure sensors show remarkable tunability and adaptability in device configuration and performance, which is challenging to achieve via conventional manufacturing processes. The promising applications of these iontronic pressure sensors in monitoring various human physiological activities, fabricating flexible electronic skin, and resolving the force variation during manipulation of an object with a robotic hand are successfully demonstrated.
Collapse
Affiliation(s)
- Honghao Wang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Chun Liang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Haozhe Zhang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Yan Diao
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Hua Luo
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Yangyang Han
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaodong Wu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
35
|
Fu G, Shi Q, Liang Y, He Y, Xue R, He S, Chen Y. Fluorescent markable multi-mode pressure sensors achieved by sandwich-structured electrospun P(VDF-HFP) nanocomposite films. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Bouhamed A, Jöhrmann N, Naifar S, Böhm B, Hellwig O, Wunderle B, Kanoun O. Collaborative Filler Network for Enhancing the Performance of BaTiO 3/PDMS Flexible Piezoelectric Polymer Composite Nanogenerators. SENSORS 2022; 22:s22114181. [PMID: 35684803 PMCID: PMC9185639 DOI: 10.3390/s22114181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 02/05/2023]
Abstract
Wearable sensors are gaining attention in human health monitoring applications, even if their usability is limited due to battery need. Flexible nanogenerators (NGs) converting biomechanical energy into electrical energy offer an interesting solution, as they can supply the sensors or extend the battery lifetime. Herein, flexible generators based on lead-free barium titanate (BaTiO3) and a polydimethylsiloxane (PDMS) polymer have been developed. A comparative study was performed to investigate the impact of multiwalled carbon nanotubes (MWCNTs) via structural, morphological, electrical, and electromechanical measurements. This study demonstrated that MWCNTs boosts the performance of the NG at the percolation threshold. This enhancement is attributed to the enhanced conductivity that promotes charge transfer and enhanced mechanical property and piezoceramics particles distribution. The nanogenerator delivers a maximum open-circuit voltage (VOC) up to 1.5 V and output power of 40 nW, which is two times higher than NG without MWCNTs. Additionally, the performance can be tuned by controlling the composite thickness and the applied frequency. Thicker NG shows a better performance, which enlarges their potential use for harvesting biomechanical energy efficiently up to 11.22 V under palm striking. The voltage output dependency on temperature was also investigated. The results show that the output voltage changes enormously with the temperature.
Collapse
Affiliation(s)
- Ayda Bouhamed
- Measurement and Sensor Technology, Faculty of Electrical Engineering and Information Technology, Technische Universität Chemnitz, Reichenhainer Straße 70, 09126 Chemnitz, Germany; (S.N.); (O.K.)
- Correspondence:
| | - Nathanael Jöhrmann
- Materials and Reliability of Microsystems, Faculty of Electrical Engineering and Information Technology, Technische Universität Chemnitz, Reichenhainer Straße 70, 09126 Chemnitz, Germany; (N.J.); (B.W.)
| | - Slim Naifar
- Measurement and Sensor Technology, Faculty of Electrical Engineering and Information Technology, Technische Universität Chemnitz, Reichenhainer Straße 70, 09126 Chemnitz, Germany; (S.N.); (O.K.)
| | - Benny Böhm
- Functional Magnetic Materials, Faculty of Natural Sciences, Technische Universität Chemnitz, Reichenhainer Straße 70, 09126 Chemnitz, Germany; (B.B.); (O.H.)
| | - Olav Hellwig
- Functional Magnetic Materials, Faculty of Natural Sciences, Technische Universität Chemnitz, Reichenhainer Straße 70, 09126 Chemnitz, Germany; (B.B.); (O.H.)
| | - Bernhard Wunderle
- Materials and Reliability of Microsystems, Faculty of Electrical Engineering and Information Technology, Technische Universität Chemnitz, Reichenhainer Straße 70, 09126 Chemnitz, Germany; (N.J.); (B.W.)
| | - Olfa Kanoun
- Measurement and Sensor Technology, Faculty of Electrical Engineering and Information Technology, Technische Universität Chemnitz, Reichenhainer Straße 70, 09126 Chemnitz, Germany; (S.N.); (O.K.)
| |
Collapse
|
37
|
Garzón-Posada AO, Paredes-Madrid L, Peña A, Fontalvo VM, Palacio C. Enhancing Part-to-Part Repeatability of Force-Sensing Resistors Using a Lean Six Sigma Approach. MICROMACHINES 2022; 13:840. [PMID: 35744454 PMCID: PMC9228405 DOI: 10.3390/mi13060840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/05/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022]
Abstract
Polymer nanocomposites have found wide acceptance in research applications as pressure sensors under the designation of force-sensing resistors (FSRs). However, given the random dispersion of conductive nanoparticles in the polymer matrix, the sensitivity of FSRs notably differs from one specimen to another; this condition has precluded the use of FSRs in industrial applications that require large part-to-part repeatability. Six Sigma methodology provides a standard framework to reduce the process variability regarding a critical variable. The Six Sigma core is the DMAIC cycle (Define, Measure, Analyze, Improve, and Control). In this study, we have deployed the DMAIC cycle to reduce the process variability of sensor sensitivity, where sensitivity was defined by the rate of change in the output voltage in response to the applied force. It was found that sensor sensitivity could be trimmed by changing their input (driving) voltage. The whole process comprised: characterization of FSR sensitivity, followed by physical modeling that let us identify the underlying physics of FSR variability, and ultimately, a mechanism to reduce it; this process let us enhance the sensors' part-to-part repeatability from an industrial standpoint. Two mechanisms were explored to reduce the variability in FSR sensitivity. (i) It was found that the output voltage at null force can be used to discard noncompliant sensors that exhibit either too high or too low sensitivity; this observation is a novel contribution from this research. (ii) An alternative method was also proposed and validated that let us trim the sensitivity of FSRs by means of changing the input voltage. This study was carried out from 64 specimens of Interlink FSR402 sensors.
Collapse
Affiliation(s)
- Andrés O. Garzón-Posada
- Faculty of Engineering, Universidad Católica de Colombia, Carrera 13 # 47-30, Bogota 110221, Colombia; (A.O.G.-P.); (V.M.F.)
- Department of Applied Physics, Materials and Surface Lab (Nanotechnology Unit), Faculty of Sciences, Universidad de Málaga, ES29071 Malaga, Spain
| | - Leonel Paredes-Madrid
- Faculty of Engineering, Universidad Católica de Colombia, Carrera 13 # 47-30, Bogota 110221, Colombia; (A.O.G.-P.); (V.M.F.)
| | - Angela Peña
- Faculty of Mechanical, Biomedical and Electronic Engineering, Universidad Antonio Nariño, Carrera 7 # 21-84, Tunja 150001, Colombia;
| | - Victor M. Fontalvo
- Faculty of Engineering, Universidad Católica de Colombia, Carrera 13 # 47-30, Bogota 110221, Colombia; (A.O.G.-P.); (V.M.F.)
| | - Carlos Palacio
- GIFAM Group, Faculty of Sciences, Universidad Antonio Nariño, Carrera 7 # 21-84, Tunja 150001, Colombia;
| |
Collapse
|
38
|
Multi-Layered Carbon-Black/Elastomer-Composite-Based Shielded Stretchable Capacitive Sensors for the Underactuated Robotic Hand. ROBOTICS 2022. [DOI: 10.3390/robotics11030058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Soft and flexible strain sensors are becoming popular for many robotic applications. This article presents a stretchable capacitive sensor by combining a conductive filler of carbon black with elastomers and implementing shielding to reduce parasitic interference, applied to an underactuated robotic hand. Sensors with different configurations were explored. The results show that a shield introduced to the sensor does have some mitigation effect on external interference. Two sensor configurations were explored: longitudinal interdigitated capacitive (LIDC) sensor, where the interdigitated fingers lie along the same axis as the strain, and transverse interdigitated capacitive (TIDC) sensor, where the interdigitated fingers are orthogonal to the strain direction. The LIDC configuration had better performance than TIDC. The fabricated two-layered LIDC sensor had a gage factor of 0.15 pF/mm and the rates of capacitive creep of 0.000667 pF/s and 0.001 pF/s at loads of 120 g and 180 g, respectively. The LIDC sensors attached to an underactuated robotic hand demonstrate the sensors’ ability to determine the bending angles of the proximal interphalangeal (PIP) and metacarpophalangeal (MCP) joints.
Collapse
|
39
|
Tan STM, Gumyusenge A, Quill TJ, LeCroy GS, Bonacchini GE, Denti I, Salleo A. Mixed Ionic-Electronic Conduction, a Multifunctional Property in Organic Conductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110406. [PMID: 35434865 DOI: 10.1002/adma.202110406] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Organic mixed ionic-electronic conductors (OMIECs) have gained recent interest and rapid development due to their versatility in diverse applications ranging from sensing, actuation and computation to energy harvesting/storage, and information transfer. Their multifunctional properties arise from their ability to simultaneously participate in redox reactions as well as modulation of ionic and electronic charge density throughout the bulk of the material. Most importantly, the ability to access charge states with deep modulation through a large extent of its density of states and physical volume of the material enables OMIEC-based devices to display exciting new characteristics and opens up new degrees of freedom in device design. Leveraging the infinite possibilities of the organic synthetic toolbox, this perspective highlights several chemical and structural design approaches to modify OMIECs' properties important in device applications such as electronic and ionic conductivity, color, modulus, etc. Additionally, the ability for OMIECs to respond to external stimuli and transduce signals to myriad types of outputs has accelerated their development in smart systems. This perspective further illustrates how various stimuli such as electrical, chemical, and optical inputs fundamentally change OMIECs' properties dynamically and how these changes can be utilized in device applications.
Collapse
Affiliation(s)
- Siew Ting Melissa Tan
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Aristide Gumyusenge
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Tyler James Quill
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Garrett Swain LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Giorgio Ernesto Bonacchini
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, Milano, 20133, Italy
| | - Ilaria Denti
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
40
|
Investigation into the effect of ZnO nanorod coating on the thermal-mechanical and dielectric properties of ITO coated PET. MATERIALS RESEARCH BULLETIN 2022. [DOI: 10.1016/j.materresbull.2021.111701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
High-Sensitivity Pressure Sensors Based on a Low Elastic Modulus Adhesive. SENSORS 2022; 22:s22093425. [PMID: 35591116 PMCID: PMC9103123 DOI: 10.3390/s22093425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023]
Abstract
With the rapid development of intelligent applications, the demand for high-sensitivity pressure sensor is increasing. However, the simple and efficient preparation of an industrial high-sensitivity sensor is still a challenge. In this study, adhesives with different elastic moduli are used to bond pressure-sensitive elements of double-sided sensitive grids to prepare a highly sensitive and fatigue-resistant pressure sensor. It was observed that the low elastic modulus adhesive effectively produced tensile and compressive strains on both sides of the sensitive grids to induce greater strain transfer efficiency in the pressure sensor, thus improving its sensitivity. The sensitivity of the sensor was simulated by finite element analysis to verify that the low elastic modulus adhesive could enhance the sensitivity of the sensor up to 12%. The preparation of high-precision and fatigue-resistant pressure sensors based on low elastic modulus, double-sided sensitive grids makes their application more flexible and convenient, which is urgently needed in the miniaturization and integration electronics field.
Collapse
|
42
|
Yoon Y, Truong PL, Lee D, Ko SH. Metal-Oxide Nanomaterials Synthesis and Applications in Flexible and Wearable Sensors. ACS NANOSCIENCE AU 2022; 2:64-92. [PMID: 37101661 PMCID: PMC10114907 DOI: 10.1021/acsnanoscienceau.1c00029] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Metal-oxide nanomaterials (MONs) have gained considerable interest in the construction of flexible/wearable sensors due to their tunable band gap, low cost, large specific area, and ease of manufacturing. Furthermore, MONs are in high demand for applications, such as gas leakage alarms, environmental protection, health tracking, and smart devices integrated with another system. In this Review, we introduce a comprehensive investigation of factors to boost the sensitivity of MON-based sensors in environmental indicators and health monitoring. Finally, the challenges and perspectives of MON-based flexible/wearable sensors are considered.
Collapse
Affiliation(s)
- Yeosang Yoon
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 08826, Korea
| | - Phuoc Loc Truong
- Laser
and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, Seongnam 13120, Korea
| | - Daeho Lee
- Laser
and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, Seongnam 13120, Korea
| | - Seung Hwan Ko
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 08826, Korea
- Institute
of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Institute
of Engineering Research, Seoul National
University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
43
|
Shin G, Lee S, Park YL. Selective Patterning of Conductive Elastomers Embedded With Silver Powders and Carbon Nanotubes for Stretchable Electronics. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3153707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Liu MY, Hang CZ, Wu XY, Zhu LY, Wen XH, Wang Y, Zhao XF, Lu HL. Investigation of stretchable strain sensor based on CNT/AgNW applied in smart wearable devices. NANOTECHNOLOGY 2022; 33:255501. [PMID: 35299168 DOI: 10.1088/1361-6528/ac5ee6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/17/2022] [Indexed: 05/23/2023]
Abstract
Stretchable strain sensor, an important paradigm of wearable sensor which can be attached onto clothing or even human skin, is widely used in healthcare, human motion monitoring and human-machine interaction. Pattern-available and facile manufacturing process for strain sensor is pursued all the time. A carbon nanotube (CNT)/silver nanowire (AgNW)-based stretchable strain sensor fabricated by a facile process is reported here. The strain sensor exhibits a considerable Gauge factor of 6.7, long-term durability (>1000 stretching cycles), fast response and recovery (420 ms and 600 ms, respectively), hence the sensor can fulfill the measurement of finger movement. Accordingly, a smart glove comprising a sensor array and a flexible printed circuit board is assembled to detect the bending movement of five fingers simultaneously. Moreover, the glove is wireless and basically fully flexible, it can detect the finger bending of wearer and display the responses distinctly on an APP of a smart phone or a host computer. Our strain senor and smart glove will broaden the materials and applications of wearable sensors.
Collapse
Affiliation(s)
- Meng-Yang Liu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - Cheng-Zhou Hang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - Xue-Yan Wu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - Li-Yuan Zhu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - Xiao-Hong Wen
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - Yang Wang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - Xue-Feng Zhao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, People's Republic of China
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, 322000 Zhejiang, People's Republic of China
| |
Collapse
|
45
|
Bhuyan P, Cho D, Choe M, Lee S, Park S. Liquid Metal Patterned Stretchable and Soft Capacitive Sensor with Enhanced Dielectric Property Enabled by Graphite Nanofiber Fillers. Polymers (Basel) 2022; 14:710. [PMID: 35215624 PMCID: PMC8879769 DOI: 10.3390/polym14040710] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
In this work, we introduce liquid metal patterned stretchable and soft capacitive sensor with enhanced dielectric properties enabled by graphite nanofiber (GNF) fillers dispersed in polydimethylsiloxane (PDMS) substrate. We oxidized gallium-based liquid metal that exhibited excellent wetting behavior on the surface of the composites to enable patterning of the electrodes by a facile stencil printing. The fluidic behavior of the liquid metal electrode and modulated dielectric properties of the composite (k = 6.41 ± 0.092@6 wt % at 1 kHz) was utilized to fabricate stretchable and soft capacitive sensor with ability to distinguish various hand motions.
Collapse
Affiliation(s)
- Priyanuj Bhuyan
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea; (P.B.); (D.C.); (M.C.); (S.L.)
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Dongkyun Cho
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea; (P.B.); (D.C.); (M.C.); (S.L.)
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Minjae Choe
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea; (P.B.); (D.C.); (M.C.); (S.L.)
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Sangmin Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea; (P.B.); (D.C.); (M.C.); (S.L.)
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Sungjune Park
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea; (P.B.); (D.C.); (M.C.); (S.L.)
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
46
|
Yoo J, Kim DY, Kim H, Hur ON, Park SH. Comparison of Pressure Sensing Properties of Carbon Nanotubes and Carbon Black Polymer Composites. MATERIALS 2022; 15:ma15031213. [PMID: 35161157 PMCID: PMC8838471 DOI: 10.3390/ma15031213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/02/2022]
Abstract
Polymer composites containing conductive fillers that utilize the piezoresistive effect can be employed in flexible pressure sensors. Depending on the filler used, different characteristics of a pressure sensor such as repeatability, sensitivity, and hysteresis can be determined. To confirm the variation of the pressure sensing tendency in accordance with the dimensions of the filler, carbon black (CB) and carbon nanotubes (CNTs) were used as representative 0-dimension and 1-dimension conductive fillers, respectively. The piezoresistive effect was exploited to analyze the process of resistance change according to pressure using CB/PDMS (polydimethylsiloxane) and CNT/PDMS composites. The electrical characteristics observed for each filler were confirmed to be in accordance with its content. The pressure sensitivity of each composite was optimized, and the pressure-sensing mechanism that explains the difference in sensitivity is presented. Through repeated compression experiments, the hysteresis and repeatability of the pressure-sensing properties were examined.
Collapse
|
47
|
Falcetelli F, Martini A, Di Sante R, Troncossi M. Strain Modal Testing with Fiber Bragg Gratings for Automotive Applications. SENSORS 2022; 22:s22030946. [PMID: 35161691 PMCID: PMC8838284 DOI: 10.3390/s22030946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/03/2023]
Abstract
Strain Modal Testing (SMT), based on strain sensors signal processing, is an unconventional approach to perform Experimental Modal Analysis which is typically based on data measured by accelerometers. SMT is still mainly restricted to academia and requires additional investigation for a successful transition towards industry. This paper critically reviews why the automotive sector can benefit from this relatively new approach for a variety of reasons. Moreover, a case study representative of the automotive field is analyzed and discussed. Specifically, an SMT methodology is applied to evaluate the modal properties of a reinforced composite roof belonging to a racing solar powered vehicle. In the experimental activity, signals from Fiber Bragg Grating (FBG) sensors, strain gauges, and accelerometers were simultaneously acquired and further processed. The advantages of using optical fibers were discussed, together with their weaknesses and ongoing challenges. The FBG results were compared with the conventional analysis performed with the accelerometers, emphasizing the main similarities and discrepancies.
Collapse
|
48
|
In situ detection of oil leakage by new self-sensing nanocomposite sensor containing MWCNTs. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02082-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Rajendran D, Ramalingame R, Palaniyappan S, Wagner G, Kanoun O. Flexible Ultra-Thin Nanocomposite Based Piezoresistive Pressure Sensors for Foot Pressure Distribution Measurement. SENSORS (BASEL, SWITZERLAND) 2021; 21:6082. [PMID: 34577285 PMCID: PMC8471841 DOI: 10.3390/s21186082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022]
Abstract
Foot pressure measurement plays an essential role in healthcare applications, clinical rehabilitation, sports training and pedestrian navigation. Among various foot pressure measurement techniques, in-shoe sensors are flexible and can measure the pressure distribution accurately. In this paper, we describe the design and characterization of flexible and low-cost multi-walled carbon nanotubes (MWCNT)/Polydimethylsiloxane (PDMS) based pressure sensors for foot pressure monitoring. The sensors have excellent electrical and mechanical properties an show a stable response at constant pressure loadings for over 5000 cycles. They have a high sensitivity of 4.4 kΩ/kPa and the hysteresis effect corresponds to an energy loss of less than 1.7%. The measurement deviation is of maximally 0.13% relative to the maximal relative resistance. The sensors have a measurement range of up to 330 kPa. The experimental investigations show that the sensors have repeatable responses at different pressure loading rates (5 N/s to 50 N/s). In this paper, we focus on the demonstration of the functionality of an in-sole based on MWCNT/PDMS nanocomposite pressure sensors, weighing approx. 9.46 g, by investigating the foot pressure distribution while walking and standing. The foot pressure distribution was investigated by measuring the resistance changes of the pressure sensors for a person while walking and standing. The results show that pressure distribution is higher in the forefoot and the heel while standing in a normal position. The foot pressure distribution is transferred from the heel to the entire foot and further transferred to the forefoot during the first instance of the gait cycle.
Collapse
Affiliation(s)
- Dhivakar Rajendran
- Measurement and Sensor Technology, Technische Universität Chemnitz, Reichenhainer Straße 70, 09126 Chemnitz, Germany
| | - Rajarajan Ramalingame
- Measurement and Sensor Technology, Technische Universität Chemnitz, Reichenhainer Straße 70, 09126 Chemnitz, Germany
| | - Saravanan Palaniyappan
- Composites and Material Compounds, Institute of Material Science and Engineering (IWW), Technische Universität Chemnitz, Erfenschlager Straße 73, 09125 Chemnitz, Germany
| | - Guntram Wagner
- Composites and Material Compounds, Institute of Material Science and Engineering (IWW), Technische Universität Chemnitz, Erfenschlager Straße 73, 09125 Chemnitz, Germany
| | - Olfa Kanoun
- Measurement and Sensor Technology, Technische Universität Chemnitz, Reichenhainer Straße 70, 09126 Chemnitz, Germany
| |
Collapse
|
50
|
Effects of 3D Printing-Line Directions for Stretchable Sensor Performances. MATERIALS 2021; 14:ma14071791. [PMID: 33916372 PMCID: PMC8038555 DOI: 10.3390/ma14071791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/27/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Health monitoring sensors that are attached to clothing are a new trend of the times, especially stretchable sensors for human motion measurements or biological markers. However, price, durability, and performance always are major problems to be addressed and three-dimensional (3D) printing combined with conductive flexible materials (thermoplastic polyurethane) can be an optimal solution. Herein, we evaluate the effects of 3D printing-line directions (45°, 90°, 180°) on the sensor performances. Using fused filament fabrication (FDM) technology, the sensors are created with different print styles for specific purposes. We also discuss some main issues of the stretch sensors from Carbon Nanotube/Thermoplastic Polyurethane (CNT/TPU) and FDM. Our sensor achieves outstanding stability (10,000 cycles) and reliability, which are verified through repeated measurements. Its capability is demonstrated in a real application when detecting finger motion by a sensor-integrated into gloves. This paper is expected to bring contribution to the development of flexible conductive materials-based on 3D printing.
Collapse
|