1
|
Lovecchio N, Giuseppetti R, Bertuccini L, Columba-Cabezas S, Di Meo V, Figliomeni M, Iosi F, Petrucci G, Sonnessa M, Magurano F, D’Ugo E. Hydrocarbonoclastic Biofilm-Based Microbial Fuel Cells: Exploiting Biofilms at Water-Oil Interface for Renewable Energy and Wastewater Remediation. BIOSENSORS 2024; 14:484. [PMID: 39451698 PMCID: PMC11506689 DOI: 10.3390/bios14100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Microbial fuel cells (MFCs) represent a promising technology for sustainable energy generation, which leverages the metabolic activities of microorganisms to convert organic substrates into electrical energy. In oil spill scenarios, hydrocarbonoclastic biofilms naturally form at the water-oil interface, creating a distinct environment for microbial activity. In this work, we engineered a novel MFC that harnesses these biofilms by strategically positioning the positive electrode at this critical junction, integrating the biofilm's natural properties into the MFC design. These biofilms, composed of specialized hydrocarbon-degrading bacteria, are vital in supporting electron transfer, significantly enhancing the system's power generation. Next-generation sequencing and scanning electron microscopy were used to characterize the microbial community, revealing a significant enrichment of hydrocarbonoclastic Gammaproteobacteria within the biofilm. Notably, key genera such as Paenalcaligenes, Providencia, and Pseudomonas were identified as dominant members, each contributing to the degradation of complex hydrocarbons and supporting the electrogenic activity of the MFCs. An electrochemical analysis demonstrated that the MFC achieved a stable power output of 51.5 μW under static conditions, with an internal resistance of about 1.05 kΩ. The system showed remarkable long-term stability, which maintained consistent performance over a 5-day testing period, with an average daily energy storage of approximately 216 mJ. Additionally, the MFC effectively recovered after deep discharge cycles, sustaining power output for up to 7.5 h before requiring a recovery period. Overall, the study indicates that MFCs based on hydrocarbonoclastic biofilms provide a dual-functionality system, combining renewable energy generation with environmental remediation, particularly in wastewater treatment. Despite lower power output compared to other hydrocarbon-degrading MFCs, the results highlight the potential of this technology for autonomous sensor networks and other low-power applications, which required sustainable energy sources. Moreover, the hydrocarbonoclastic biofilm-based MFC presented here offer significant potential as a biosensor for real-time monitoring of hydrocarbons and other contaminants in water. The biofilm's electrogenic properties enable the detection of organic compound degradation, positioning this system as ideal for environmental biosensing applications.
Collapse
Affiliation(s)
- Nicola Lovecchio
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy;
| | - Roberto Giuseppetti
- Department of Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy; (R.G.); (F.M.)
| | - Lucia Bertuccini
- Core Facilities, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (F.I.)
| | - Sandra Columba-Cabezas
- Department of Neuroscience, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Valentina Di Meo
- Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Mario Figliomeni
- Department of Environment and Health, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Francesca Iosi
- Core Facilities, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (F.I.)
| | - Giulia Petrucci
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy;
| | | | - Fabio Magurano
- Department of Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy; (R.G.); (F.M.)
| | - Emilio D’Ugo
- Department of Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy; (R.G.); (F.M.)
| |
Collapse
|
2
|
Abouhagger A, Celiešiūtė-Germanienė R, Bakute N, Stirke A, Melo WCMA. Electrochemical biosensors on microfluidic chips as promising tools to study microbial biofilms: a review. Front Cell Infect Microbiol 2024; 14:1419570. [PMID: 39386171 PMCID: PMC11462992 DOI: 10.3389/fcimb.2024.1419570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Microbial biofilms play a pivotal role in microbial infections and antibiotic resistance due to their unique properties, driving the urgent need for advanced methodologies to study their behavior comprehensively across varied environmental contexts. While electrochemical biosensors have demonstrated success in understanding the dynamics of biofilms, scientists are now synergistically merging these biosensors with microfluidic technology. This combined approach offers heightened precision, sensitivity, and real-time monitoring capabilities, promising a more comprehensive understanding of biofilm behavior and its implications. Our review delves into recent advancements in electrochemical biosensors on microfluidic chips, specifically tailored for investigating biofilm dynamics, virulence, and properties. Through a critical examination of these advantages, properties and applications of these devices, the review highlights the transformative potential of this technology in advancing our understanding of microbial biofilms in different settings.
Collapse
Affiliation(s)
| | | | | | | | - Wanessa C. M. A. Melo
- Department of Functional Materials and Electronics, State Research Institute Centre for Physical Sciences and Technology (FTMC), Vilnius, Lithuania
| |
Collapse
|
3
|
Zhang W, Hu Y, Feng P, Li Z, Zhang H, Zhang B, Xu D, Qi J, Wang H, Xu L, Li Z, Xia M, Li J, Chai R, Tian L. Structural Color Colloidal Photonic Crystals for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403173. [PMID: 39083316 PMCID: PMC11423208 DOI: 10.1002/advs.202403173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/10/2024] [Indexed: 09/26/2024]
Abstract
Photonic crystals are a new class of optical microstructure materials characterized by a dielectric constant that varies periodically with space and features a photonic bandgap. Inspired by natural photonic crystals such as butterfly scales, a series of artificial photonic crystals are developed for use in integrated photonic platforms, biosensing, communication, and other fields. Among them, colloidal photonic crystals (CPCs) have gained widespread attention due to their excellent optical properties and advantages, such as ease of preparation and functionalization. This work reviews the classification and self-assembly principles of CPCs, details some of the latest biomedical applications of large-area, high-quality CPCs prepared using advanced self-assembly methods, summarizes the existing challenges in CPC construction and application, and anticipates future development directions and optimization strategy. With further advancements, CPCs are expected to play a more critical role in biosensors, drug delivery, cell research, and other fields, bringing significant benefits to biomedical research and clinical practice.
Collapse
Affiliation(s)
- Wenhui Zhang
- School of Design and Arts, Beijing Institute of Technology, Beijing, 100081, China
| | - Yangnan Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Pan Feng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Zhe Li
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hui Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Bin Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Dongyu Xu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Huan Wang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jilai Li
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace Clinical College, Beijing, 100049, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Lei Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| |
Collapse
|
4
|
Perchikov R, Cheliukanov M, Plekhanova Y, Tarasov S, Kharkova A, Butusov D, Arlyapov V, Nakamura H, Reshetilov A. Microbial Biofilms: Features of Formation and Potential for Use in Bioelectrochemical Devices. BIOSENSORS 2024; 14:302. [PMID: 38920606 PMCID: PMC11201457 DOI: 10.3390/bios14060302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Microbial biofilms present one of the most widespread forms of life on Earth. The formation of microbial communities on various surfaces presents a major challenge in a variety of fields, including medicine, the food industry, shipping, etc. At the same time, this process can also be used for the benefit of humans-in bioremediation, wastewater treatment, and various biotechnological processes. The main direction of using electroactive microbial biofilms is their incorporation into the composition of biosensor and biofuel cells This review examines the fundamental knowledge acquired about the structure and formation of biofilms, the properties they have when used in bioelectrochemical devices, and the characteristics of the formation of these structures on different surfaces. Special attention is given to the potential of applying the latest advances in genetic engineering in order to improve the performance of microbial biofilm-based devices and to regulate the processes that take place within them. Finally, we highlight possible ways of dealing with the drawbacks of using biofilms in the creation of highly efficient biosensors and biofuel cells.
Collapse
Affiliation(s)
- Roman Perchikov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Maxim Cheliukanov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Yulia Plekhanova
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| | - Sergei Tarasov
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| | - Anna Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Denis Butusov
- Computer-Aided Design Department, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg 197022, Russia;
| | - Vyacheslav Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Hideaki Nakamura
- Department of Liberal Arts, Tokyo University of Technology, 1404-1 Katakura, Hachioji 192-0982, Tokyo, Japan;
| | - Anatoly Reshetilov
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| |
Collapse
|
5
|
Huang W, Zulkifli MYB, Chai M, Lin R, Wang J, Chen Y, Chen V, Hou J. Recent advances in enzymatic biofuel cells enabled by innovative materials and techniques. EXPLORATION (BEIJING, CHINA) 2023; 3:20220145. [PMID: 37933234 PMCID: PMC10624391 DOI: 10.1002/exp.20220145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/21/2023] [Indexed: 11/08/2023]
Abstract
The past few decades have seen increasingly rapid advances in the field of sustainable energy technologies. As a new bio- and eco-friendly energy source, enzymatic biofuel cells (EBFCs) have garnered significant research interest due to their capacity to power implantable bioelectronics, portable devices, and biosensors by utilizing biomass as fuel under mild circumstances. Nonetheless, numerous obstacles impeded the commercialization of EBFCs, including their relatively modest power output and poor long-term stability of enzymes. To depict the current progress of EBFC and address the challenges it faces, this review traces back the evolution of EBFC and focuses on contemporary advances such as newly emerged multi or single enzyme systems, various porous framework-enzyme composites techniques, and innovative applications. Besides emphasizing current achievements in this field, from our perspective part we also introduced novel electrode and cell design for highly effective EBFC fabrication. We believe this review will assist readers in comprehending the basic research and applications of EBFCs as well as potentially spark interdisciplinary collaboration for addressing the pressing issues in this field.
Collapse
Affiliation(s)
- Wengang Huang
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Muhammad Yazid Bin Zulkifli
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
- School of Chemical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| | - Milton Chai
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Rijia Lin
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Jingjing Wang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Yuelei Chen
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Vicki Chen
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Jingwei Hou
- School of Chemical EngineeringThe University of QueenslandSaint LuciaQueenslandAustralia
| |
Collapse
|
6
|
Sharma A, Chhabra M. The versatility of microbial fuel cells as tools for organic matter monitoring. BIORESOURCE TECHNOLOGY 2023; 377:128949. [PMID: 36963695 DOI: 10.1016/j.biortech.2023.128949] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Water monitoring and remediation require robust, low-cost, and reliable test systems that can couple with prompt treatment interventions. Organic matter (BOD, COD), toxicants, heavy metals, and other pollutants in water need to be regularly inspected. Microbial fuel cells (MFCs) have already gained popularity as BOD biomonitoring systems as these don't need an external transducer or power source. Moreover, these systems are cost-effective, compact, biodegradable, reusable, portable, and applicable for on-site measurements. MFCs truly stands out as online BOD measurement devices as they provide wide detection range (0-25 g/L), low response time (2-4 min) and longer stability in continuous operations (2-5 years) in a cost-effective approach. This review examines the benefits, kinds, performance metrics, and signal optimization of the current state-of-the-art of the BOD measurement, with detailed focus on MFC-based BOD biomonitoring systems. This review covers the important technological breakthroughs in practical applications with associated bottlenecks to develop reliable sensing systems.
Collapse
Affiliation(s)
- Arti Sharma
- Environmental Biotechnology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur (IIT J), Jodhpur 342030, Rajasthan, India
| | - Meenu Chhabra
- Environmental Biotechnology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur (IIT J), Jodhpur 342030, Rajasthan, India.
| |
Collapse
|
7
|
Georgiadis I, Tsiligkaki C, Patavou V, Orfanidou M, Tsoureki A, Andreadelli A, Theodosiou E, Makris AM. Identification and Construction of Strong Promoters in Yarrowia lipolytica Suitable for Glycerol-Based Bioprocesses. Microorganisms 2023; 11:1152. [PMID: 37317126 DOI: 10.3390/microorganisms11051152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Abstract
Yarrowia lipolytica is a non-pathogenic aerobic yeast with numerous industrial biotechnology applications. The organism grows in a wide variety of media, industrial byproducts, and wastes. A need exists for molecular tools to improve heterologous protein expression and pathway reconstitution. In an effort to identify strong native promoters in glycerol-based media, six highly expressed genes were mined from public data, analyzed, and validated. The promoters from the three most highly expressed (H3, ACBP, and TMAL) were cloned upstream of the reporter mCherry in episomal and integrative vectors. Fluorescence was quantified by flow cytometry and promoter strength was benchmarked with known strong promoters (pFBA1in, pEXP1, and pTEF1in) in cells growing in glucose, glycerol, and synthetic glycerol media. The results show that pH3 > pTMAL > pACBP are very strong promoters, with pH3 exceeding all other tested promoters. Hybrid promoters were also constructed, linking the Upstream Activating Sequence 1B (UAS1B8) with H3(260) or TMAL(250) minimal promoters, and compared to the UAS1B8-TEF1(136) promoter. The new hybrid promoters exhibited far superior strength. The novel promoters were utilized to overexpress the lipase LIP2, achieving very high secretion levels. In conclusion, our research identified and characterized several strong Y. lipolytica promoters that expand the capacity to engineer Yarrowia strains and valorize industrial byproducts.
Collapse
Affiliation(s)
- Ioannis Georgiadis
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
- School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Christina Tsiligkaki
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
- School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Victoria Patavou
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
- School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Maria Orfanidou
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Antiopi Tsoureki
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Aggeliki Andreadelli
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Eleni Theodosiou
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Antonios M Makris
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| |
Collapse
|
8
|
Kumar V, Vangnai AS, Sharma N, Kaur K, Chakraborty P, Umesh M, Singhal B, Utreja D, Carrasco EU, Andler R, Awasthi MK, Taherzadeh MJ. Bioengineering of biowaste to recover bioproducts and bioenergy: A circular economy approach towards sustainable zero-waste environment. CHEMOSPHERE 2023; 319:138005. [PMID: 36731660 DOI: 10.1016/j.chemosphere.2023.138005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/11/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The inevitable need for waste valorisation and management has revolutionized the way in which the waste is visualised as a potential biorefinery for various product development rather than offensive trash. Biowaste has emerged as a potential feedstock to produce several value-added products. Bioenergy generation is one of the potential applications originating from the valorisation of biowaste. Bioenergy production requires analysis and optimization of various parameters such as biowaste composition and conversion potential to develop innovative and sustainable technologies for most effective utilization of biowaste with enhanced bioenergy production. In this context, feedstocks, such as food, agriculture, beverage, and municipal solid waste act as promising resources to produce renewable energy. Similarly, the concept of microbial fuel cells employing biowaste has clearly gained research focus in the past few decades. Despite of these potential benefits, the area of bioenergy generation still is in infancy and requires more interdisciplinary research to be sustainable alternatives. This review is aimed at analysing the bioconversion potential of biowaste to renewable energy. The possibility of valorising underutilized biowaste substrates is elaborately presented. In addition, the application and efficiency of microbial fuel cells in utilizing biowaste are described in detail taking into consideration of its great scope. Furthermore, the review addresses the significance bioreactor development for energy production along with major challenges and future prospects in bioenergy production. Based on this review it can be concluded that bioenergy production utilizing biowaste can clearly open new avenues in the field of waste valorisation and energy research. Systematic and strategic developments considering the techno economic feasibilities of this excellent energy generation process will make them a true sustainable alternative for conventional energy sources.
Collapse
Affiliation(s)
- Vinay Kumar
- Ecotoxicity and Bioconversion Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam, 602105, India.
| | - Alisa S Vangnai
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Neha Sharma
- Metagenomics and Bioprocess Design Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Komalpreet Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Pritha Chakraborty
- School of Allied Healthcare and Sciences, Jain (Deemed to Be) University, Whitefield, Bangalore-66, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029, Karnataka, India
| | - Barkha Singhal
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P., India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | | | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de Los Recursos Naturales (Cenbio), Universidad Católica Del Maule, Chile
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | | |
Collapse
|
9
|
Andriukonis E, Butkevicius M, Simonis P, Ramanavicius A. Development of a Disposable Polyacrylamide Hydrogel-Based Semipermeable Membrane for Micro Ag/AgCl Reference Electrode. SENSORS (BASEL, SWITZERLAND) 2023; 23:2510. [PMID: 36904713 PMCID: PMC10007609 DOI: 10.3390/s23052510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Currently, Ag/AgCl-based reference electrodes are used in most electrochemical biosensors and other bioelectrochemical devices. However, standard reference electrodes are rather large and do not always fit within electrochemical cells designed for the determination of analytes in low-volume aliquots. Therefore, various designs and improvements in reference electrodes are critical for the future development of electrochemical biosensors and other bioelectrochemical devices. In this study, we explain a procedure to apply common laboratory polyacrylamide hydrogel in a semipermeable junction membrane between the Ag/AgCl reference electrode and the electrochemical cell. During this research, we have created disposable, easily scalable, and reproducible membranes suitable for the design of reference electrodes. Thus, we came up with castable semipermeable membranes for reference electrodes. Performed experiments highlighted the most suitable gel formation conditions to achieve optimal porosity. Here, Cl- ion diffusion through the designed polymeric junctions was evaluated. The designed reference electrode was also tested in a three-electrode flow system. The results show that home-built electrodes can compete with commercial products due to low reference electrode potential deviation (~3 mV), long shelf-life (up to six months), good stability, low cost, and disposability. The results show a high response rate, which makes in-house formed polyacrylamide gel junctions good membrane alternatives in the design of reference electrodes, especially for these applications where high-intensity dyes or toxic compounds are used and therefore disposable electrodes are required.
Collapse
Affiliation(s)
- Eivydas Andriukonis
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, 10257 Vilnius, Lithuania
| | - Marius Butkevicius
- Department of Bioanalysis, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10257 Vilnius, Lithuania
| | - Povilas Simonis
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, 10257 Vilnius, Lithuania
| | - Arunas Ramanavicius
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, 10257 Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225 Vilnius, Lithuania
| |
Collapse
|
10
|
Mehrpooya M, Ganjali MR, Mousavi SA, Hedayat N, Allahyarzadeh A. Comprehensive Review of Fuel-Cell-Type Sensors for Gas Detection. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Mehdi Mehrpooya
- Department of Renewable Energies and Environment, Faculty of New Sciences and Technologies, University of Tehran, Tehran1439957131, Iran
- Hydrogen and Fuel Cell Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran1439957131, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran1417614411, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran1439957131, Iran
| | - Seyed Ali Mousavi
- Hydrogen and Fuel Cell Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran1439957131, Iran
| | - Nader Hedayat
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio44325, United States
| | - Ali Allahyarzadeh
- Department of Renewable Energies and Environment, Faculty of New Sciences and Technologies, University of Tehran, Tehran1439957131, Iran
- Mechanical Engineering, Polytechnic School, University of São Paulo, São Paulo68503, Brazil
| |
Collapse
|
11
|
Kižys K, Zinovičius A, Jakštys B, Bružaitė I, Balčiūnas E, Petrulevičienė M, Ramanavičius A, Morkvėnaitė-Vilkončienė I. Microbial Biofuel Cells: Fundamental Principles, Development and Recent Obstacles. BIOSENSORS 2023; 13:221. [PMID: 36831987 PMCID: PMC9954062 DOI: 10.3390/bios13020221] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
This review focuses on the development of microbial biofuel cells to demonstrate how similar principles apply to the development of bioelectronic devices. The low specificity of microorganism-based amperometric biosensors can be exploited in designing microbial biofuel cells, enabling them to consume a broader range of chemical fuels. Charge transfer efficiency is among the most challenging and critical issues while developing biofuel cells. Nanomaterials and particular redox mediators are exploited to facilitate charge transfer between biomaterials and biofuel cell electrodes. The application of conductive polymers (CPs) can improve the efficiency of biofuel cells while CPs are well-suitable for the immobilization of enzymes, and in some specific circumstances, CPs can facilitate charge transfer. Moreover, biocompatibility is an important issue during the development of implantable biofuel cells. Therefore, biocompatibility-related aspects of conducting polymers with microorganisms are discussed in this review. Ways to modify cell-wall/membrane and to improve charge transfer efficiency and suitability for biofuel cell design are outlined.
Collapse
Affiliation(s)
- Kasparas Kižys
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Antanas Zinovičius
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
- Faculty of Mechanics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Baltramiejus Jakštys
- Faculty of Natural Sciences, Vytautas Magnus University, LT-44248 Kaunas, Lithuania
| | - Ingrida Bružaitė
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Evaldas Balčiūnas
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Milda Petrulevičienė
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Arūnas Ramanavičius
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
- Faculty of Chemistry and Geosciences, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Inga Morkvėnaitė-Vilkončienė
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
- Faculty of Mechanics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| |
Collapse
|
12
|
Immobilized Enzyme-based Novel Biosensing System for Recognition of Toxic Elements in the Aqueous Environment. Top Catal 2023. [DOI: 10.1007/s11244-023-01786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Reinikovaite V, Zukauskas S, Zalneravicius R, Ratautaite V, Ramanavicius S, Bucinskas V, Vilkiene M, Ramanavicius A, Samukaite-Bubniene U. Assessment of Rhizobium anhuiense Bacteria as a Potential Biocatalyst for Microbial Biofuel Cell Design. BIOSENSORS 2022; 13:bios13010066. [PMID: 36671901 PMCID: PMC9855892 DOI: 10.3390/bios13010066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 05/31/2023]
Abstract
The development of microbial fuel cells based on electro-catalytic processes is among the novel topics, which are recently emerging in the sustainable development of energetic systems. Microbial fuel cells have emerged as unique biocatalytic systems, which transform the chemical energy accumulated in renewable organic fuels and at the same time reduce pollution from hazardous organic compounds. However, not all microorganisms involved in metabolic/catalytic processes generate sufficient redox potential. In this research, we have assessed the applicability of the microorganism Rhizobium anhuiense as a catalyst suitable for the design of microbial fuel cells. To improve the charge transfer, several redox mediators were tested, namely menadione, riboflavin, and 9,10-phenanthrenequinone (PQ). The best performance was determined for a Rhizobium anhuiense-based bio-anode mediated by menadione with a 0.385 mV open circuit potential and 5.5 μW/cm2 maximal power density at 0.35 mV, which generated 50 μA/cm2 anode current at the same potential.
Collapse
Affiliation(s)
- Viktorija Reinikovaite
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Sarunas Zukauskas
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
- Department of Nanotechnology, Centre for Physical Sciences and Technology, Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Rokas Zalneravicius
- Department of Nanotechnology, Centre for Physical Sciences and Technology, Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Vilma Ratautaite
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
- Department of Nanotechnology, Centre for Physical Sciences and Technology, Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
- Department of Electrochemical Material Science, Centre for Physical Sciences and Technology, Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Vytautas Bucinskas
- Department of Mechatronics, Robotics, and Digital Manufacturing, Faculty of Mechanics, Vilnius Gediminas Technical University, J. Basanaviciaus Str. 28, LT-03224 Vilnius, Lithuania
| | - Monika Vilkiene
- Lithuanian Research Center for Agriculture and Forestry, Instituto Ave. 1, Akademija, LT-58344 Kėdainiai, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Urte Samukaite-Bubniene
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
- Department of Nanotechnology, Centre for Physical Sciences and Technology, Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Mechatronics, Robotics, and Digital Manufacturing, Faculty of Mechanics, Vilnius Gediminas Technical University, J. Basanaviciaus Str. 28, LT-03224 Vilnius, Lithuania
| |
Collapse
|
14
|
Smutok O, Katz E. Biosensors: Electrochemical Devices-General Concepts and Performance. BIOSENSORS 2022; 13:44. [PMID: 36671878 PMCID: PMC9855974 DOI: 10.3390/bios13010044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
This review provides a general overview of different biosensors, mostly concentrating on electrochemical analytical devices, while briefly explaining general approaches to various kinds of biosensors, their construction and performance. A discussion on how all required components of biosensors are brought together to perform analytical work is offered. Different signal-transducing mechanisms are discussed, particularly addressing the immobilization of biomolecular components in the vicinity of a transducer interface and their functional integration with electronic devices. The review is mostly addressing general concepts of the biosensing processes rather than specific modern achievements in the area.
Collapse
|
15
|
Tarasov SE, Plekhanova YV, Kitova AE, Bykov AG, Machulin AV, Kolesov VV, Klenova NA, Revin VV, Ponamoreva ON, Reshetilov AN. Bacterial Cellulose as a Matrix for Microorganisms in Bioelectrocatalytic Systems. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822040159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Li D, Shi Y, Sun Y, Wang Z, Kehoe DK, Romeral L, Gao F, Yang L, McCurtin D, Gun’ko YK, Lyons MEG, Xiao L. Microbe-Based Sensor for Long-Term Detection of Urine Glucose. SENSORS (BASEL, SWITZERLAND) 2022; 22:5340. [PMID: 35891020 PMCID: PMC9320042 DOI: 10.3390/s22145340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The development of a reusable and low-cost urine glucose sensor can benefit the screening and control of diabetes mellitus. This study focused on the feasibility of employing microbial fuel cells (MFC) as a selective glucose sensor for continuous monitoring of glucose levels in human urine. Using MFC technology, a novel cylinder sensor (CS) was developed. It had a quick response time (100 s), a large detection range (0.3-5 mM), and excellent accuracy. More importantly, the CS could last for up to 5 months. The selectivity of the CS was validated by both synthetic and actual diabetes-negative urine samples. It was found that the CS's selectivity could be significantly enhanced by adjusting the concentration of the culture's organic matter. The CS results were comparable to those of a commercial glucose meter (recovery ranged from 93.6% to 127.9%) when the diabetes-positive urine samples were tested. Due to the multiple advantages of high stability, low cost, and high sensitivity over urine test strips, the CS provides a novel and reliable approach for continuous monitoring of urine glucose, which will benefit diabetes assessment and control.
Collapse
Affiliation(s)
- Dunzhu Li
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.L.); (Y.S.); (Y.S.); (Z.W.); (F.G.); (L.Y.); (D.M.)
| | - Yunhong Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.L.); (Y.S.); (Y.S.); (Z.W.); (F.G.); (L.Y.); (D.M.)
| | - Yifan Sun
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.L.); (Y.S.); (Y.S.); (Z.W.); (F.G.); (L.Y.); (D.M.)
| | - Zeena Wang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.L.); (Y.S.); (Y.S.); (Z.W.); (F.G.); (L.Y.); (D.M.)
| | - Daniel K. Kehoe
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.K.K.); (L.R.); (M.E.G.L.)
| | - Luis Romeral
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.K.K.); (L.R.); (M.E.G.L.)
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland;
| | - Fei Gao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.L.); (Y.S.); (Y.S.); (Z.W.); (F.G.); (L.Y.); (D.M.)
| | - Luming Yang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.L.); (Y.S.); (Y.S.); (Z.W.); (F.G.); (L.Y.); (D.M.)
| | - David McCurtin
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.L.); (Y.S.); (Y.S.); (Z.W.); (F.G.); (L.Y.); (D.M.)
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yurii K. Gun’ko
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland;
- BEACON, Bioeconomy SFI Research Centre, University College Dublin, D07 R2WY Dublin, Ireland
| | - Michael E. G. Lyons
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.K.K.); (L.R.); (M.E.G.L.)
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland;
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.L.); (Y.S.); (Y.S.); (Z.W.); (F.G.); (L.Y.); (D.M.)
- TrinityHaus, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
17
|
Abstract
Fuel cells (FCs) have received huge attention for development from lab and pilot scales to full commercial scale. This is mainly due to their inherent advantage of direct conversion of chemical energy to electrical energy as a high-quality energy supply and, hence, higher conversion efficiency. Additionally, FCs have been produced at a wide range of capacities with high flexibility due to modularity characteristics. Using the right materials and efficient manufacturing processes is directly proportional to the total production cost. This work explored the different components of proton exchange membrane fuel cells (PEMFCs) and their manufacturing processes. The challenges associated with these manufacturing processes were critically analyzed, and possible mitigation strategies were proposed. The PEMFC is a relatively new and developing technology so there is a need for a thorough analysis to comprehend the current state of fuel cell operational characteristics and discover new areas for development. It is hoped that the view discussed in this paper will be a means for improved fuel cell development.
Collapse
|
18
|
Borja-Maldonado F, López Zavala MÁ. Contribution of configurations, electrode and membrane materials, electron transfer mechanisms, and cost of components on the current and future development of microbial fuel cells. Heliyon 2022; 8:e09849. [PMID: 35855980 PMCID: PMC9287189 DOI: 10.1016/j.heliyon.2022.e09849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/01/2022] [Accepted: 06/28/2022] [Indexed: 10/25/2022] Open
Abstract
Microbial fuel cells (MFCs) are a technology that can be applied to both the wastewater treatment and bioenergy generation. This work discusses the contribution of improvements regarding the configurations, electrode materials, membrane materials, electron transfer mechanisms, and materials cost on the current and future development of MFCs. Analysis of the most recent scientific publications on the field denotes that dual-chamber MFCs configuration offers the greatest potential due to the excellent ability to be adapted to different operating environments. Carbon-based materials show the best performance, biocompatibility of carbon-brush anode favors the formation of the biofilm in a mixed consortium and in wastewater as a substrate resembles the conditions of real scenarios. Carbon-cloth cathode modified with nanotechnology favors the conductive properties of the electrode. Ceramic clay membranes emerge as an interesting low-cost membrane with a proton conductivity of 0.0817 S cm-1, close to that obtained with the Nafion membrane. The use of nanotechnology in the electrodes also enhances electron transfer in MFCs. It increases the active sites at the anode and improves the interface with microorganisms. At the cathode, it favors its catalytic properties and the oxygen reduction reaction. These features together favor MFCs performance through energy production and substrate degradation with values above 2.0 W m-2 and 90% respectively. All the recent advances in MFCs are gradually contributing to enable technological alternatives that, in addition to wastewater treatment, generate energy in a sustainable manner. It is important to continue the research efforts worldwide to make MFCs an available and affordable technology for industry and society.
Collapse
Affiliation(s)
- Fátima Borja-Maldonado
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, N.L., Mexico
| | - Miguel Ángel López Zavala
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, N.L., Mexico
| |
Collapse
|
19
|
Drobysh M, Ramanaviciene A, Viter R, Chen CF, Samukaite-Bubniene U, Ratautaite V, Ramanavicius A. Biosensors for the Determination of SARS-CoV-2 Virus and Diagnosis of COVID-19 Infection. Int J Mol Sci 2022; 23:666. [PMID: 35054850 PMCID: PMC8776074 DOI: 10.3390/ijms23020666] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Monitoring and tracking infection is required in order to reduce the spread of the coronavirus disease 2019 (COVID-19), induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To achieve this goal, the development and deployment of quick, accurate, and sensitive diagnostic methods are necessary. The determination of the SARS-CoV-2 virus is performed by biosensing devices, which vary according to detection methods and the biomarkers which are inducing/providing an analytical signal. RNA hybridisation, antigen-antibody affinity interaction, and a variety of other biological reactions are commonly used to generate analytical signals that can be precisely detected using electrochemical, electrochemiluminescence, optical, and other methodologies and transducers. Electrochemical biosensors, in particular, correspond to the current trend of bioanalytical process acceleration and simplification. Immunosensors are based on the determination of antigen-antibody interaction, which on some occasions can be determined in a label-free mode with sufficient sensitivity.
Collapse
Affiliation(s)
- Maryia Drobysh
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (M.D.); (U.S.-B.); (V.R.)
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| | - Almira Ramanaviciene
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| | - Roman Viter
- Center for Collective Use of Scientific Equipment, Sumy State University, Sanatornaya Str. 31, 40018 Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University 1, Sec. 4, Roosevelt Rd., Da’an Dist., Taipei 106, Taiwan;
| | - Urte Samukaite-Bubniene
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (M.D.); (U.S.-B.); (V.R.)
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| | - Vilma Ratautaite
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (M.D.); (U.S.-B.); (V.R.)
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| | - Arunas Ramanavicius
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (M.D.); (U.S.-B.); (V.R.)
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| |
Collapse
|
20
|
Zinovicius A, Rozene J, Merkelis T, Bruzaite I, Ramanavicius A, Morkvenaite-Vilkonciene I. Evaluation of a Yeast-Polypyrrole Biocomposite Used in Microbial Fuel Cells. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22010327. [PMID: 35009869 PMCID: PMC8749611 DOI: 10.3390/s22010327] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 05/31/2023]
Abstract
Electrically conductive polymers are promising materials for charge transfer from living cells to the anodes of electrochemical biosensors and biofuel cells. The modification of living cells by polypyrrole (PPy) causes shortened cell lifespan, burdens the replication process, and diminishes renewability in the long term. In this paper, the viability and morphology non-modified, inactivated, and PPy-modified yeasts were evaluated. The results displayed a reduction in cell size, an incremental increase in roughness parameters, and the formation of small structural clusters of polymers on the yeast cells with the increase in the pyrrole concentration used for modification. Yeast modified with the lowest pyrrole concentration showed minimal change; thus, a microbial fuel cell (MFC) was designed using yeast modified by a solution containing 0.05 M pyrrole and compared with the characteristics of an MFC based on non-modified yeast. The maximal generated power of the modified system was 47.12 mW/m2, which is 8.32 mW/m2 higher than that of the system based on non-modified yeast. The open-circuit potentials of the non-modified and PPy-modified yeast-based cells were 335 mV and 390 mV, respectively. Even though applying a PPy layer to yeast increases the charge-transfer efficiency towards the electrode, the damage done to the cells due to modification with a higher concentration of PPy diminishes the amount of charge transferred, as the current density drops by 846 μA/cm2. This decrease suggests that modification by PPy may have a cytotoxic effect that greatly hinders the metabolic activity of yeast.
Collapse
Affiliation(s)
- Antanas Zinovicius
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, 03224 Vilnius, Lithuania; (A.Z.); (J.R.); (T.M.)
| | - Juste Rozene
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, 03224 Vilnius, Lithuania; (A.Z.); (J.R.); (T.M.)
| | - Timas Merkelis
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, 03224 Vilnius, Lithuania; (A.Z.); (J.R.); (T.M.)
| | - Ingrida Bruzaite
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
- Laboratory of Nanotechnology, State Research Institute Centre for Physical Sciences and Technology, 02300 Vilnius, Lithuania
| | - Inga Morkvenaite-Vilkonciene
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, 03224 Vilnius, Lithuania; (A.Z.); (J.R.); (T.M.)
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, 10257 Vilnius, Lithuania
| |
Collapse
|
21
|
Control of Microalgae Growth in Artificially Lighted Photobioreactors Using Metaheuristic-Based Predictions. SENSORS 2021; 21:s21238065. [PMID: 34884070 PMCID: PMC8659673 DOI: 10.3390/s21238065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022]
Abstract
A metaheuristic algorithm can be a realistic solution when optimal control problems require a significant computational effort. The problem stated in this work concerns the optimal control of microalgae growth in an artificially lighted photobioreactor working in batch mode. The process and the dynamic model are very well known and have been validated in previous papers. The control solution is a closed-loop structure whose controller generates predicted control sequences. An efficient way to make optimal predictions is to use a metaheuristic algorithm, the particle swarm optimization algorithm. Even if this metaheuristic is efficient in treating predictions with a very large prediction horizon, the main objective of this paper is to find a tool to reduce the controller’s computational complexity. We propose a soft sensor that gives information used to reduce the interval where the control input’s values are placed in each sampling period. The sensor is based on measurement of the biomass concentration and numerical integration of the process model. The returned information concerns the specific growth rate of microalgae and the biomass yield on light energy. Algorithms, which can be used in real-time implementation, are proposed for all modules involved in the simulation series. Details concerning the implementation of the closed loop, controller, and soft sensor are presented. The simulation results prove that the soft sensor leads to a significant decrease in computational complexity.
Collapse
|
22
|
Das S, Das S, Ghangrekar MM. Bacterial signalling mechanism: An innovative microbial intervention with multifaceted applications in microbial electrochemical technologies: A review. BIORESOURCE TECHNOLOGY 2021; 344:126218. [PMID: 34728350 DOI: 10.1016/j.biortech.2021.126218] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023]
Abstract
Microbial electrochemical technologies (METs) are a set of inventive tools that generate value-added by-products with concomitant wastewater remediation. However, due to the bottlenecks, like higher fabrication cost and inferior yield of resources, these inventive METs are still devoid of successful field-scale implementation. In this regard, application of quorum sensing (QS) mechanism to improve the power generation of the METs has gained adequate attention. The QS is an intercellular signalling mechanism that controls the bacterial social network in its vicinity via the synthesis of diffusible signal molecules labelled as auto inducers, thus ameliorating yield of valuables produced through METs. This state-of-the-art review elucidates different types of QS molecules and their working mechanism with the special focus on the widespread application of QS in the field of METs for their performance enhancement. Thus, this review intends to guide the researchers in rendering scalability to METs by integrating innovative QS mechanisms into them.
Collapse
Affiliation(s)
- Swati Das
- PK Sinha Centre for Bioenergy & Renewables, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 21302, West Bengal, India
| | - M M Ghangrekar
- PK Sinha Centre for Bioenergy & Renewables, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 21302, West Bengal, India.
| |
Collapse
|
23
|
Settu K, Chiu PT, Huang YM. Laser-Induced Graphene-Based Enzymatic Biosensor for Glucose Detection. Polymers (Basel) 2021; 13:2795. [PMID: 34451332 PMCID: PMC8400493 DOI: 10.3390/polym13162795] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 02/03/2023] Open
Abstract
Laser-induced graphene (LIG) has recently been receiving increasing attention due to its simple fabrication and low cost. This study reports a flexible laser-induced graphene-based electrochemical biosensor fabricated on a polymer substrate by the laser direct engraving process. For this purpose, a 450 nm UV laser was employed to produce a laser-induced graphene electrode (LIGE) on a polyimide substrate. After the laser engraving of LIGE, the chitosan-glucose oxidase (GOx) composite was immobilized on the LIGE surface to develop the biosensor for glucose detection. It was observed that the developed LIGE biosensor exhibited good amperometric responses toward glucose detection over a wide linear range up to 8 mM. The GOx/chitosan-modified LIGE biosensor showed high sensitivity of 43.15 µA mM-1 cm-2 with a detection limit of 0.431 mM. The interference studies performed with some possible interfering compounds such as ascorbic acid, uric acid, and urea exhibited no interference as there was no difference observed in the amperometric glucose detection. It was suggested that the LIGE-based biosensor proposed herein was easy to prepare and could be used for low-cost, rapid, and sensitive/selective glucose detection.
Collapse
Affiliation(s)
- Kalpana Settu
- Department of Electrical Engineering, National Taipei University, New Taipei City 23741, Taiwan; (P.-T.C.); (Y.-M.H.)
| | | | | |
Collapse
|
24
|
Sustainable Syntheses and Sources of Nanomaterials for Microbial Fuel/Electrolysis Cell Applications: An Overview of Recent Progress. Processes (Basel) 2021. [DOI: 10.3390/pr9071221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The use of microbial fuel cells (MFCs) is quickly spreading in the fields of bioenergy generation and wastewater treatment, as well as in the biosynthesis of valuable compounds for microbial electrolysis cells (MECs). MFCs and MECs have not been able to penetrate the market as economic feasibility is lost when their performances are boosted by nanomaterials. The nanoparticles used to realize or decorate the components (electrodes or the membrane) have expensive processing, purification, and raw resource costs. In recent decades, many studies have approached the problem of finding green synthesis routes and cheap sources for the most common nanoparticles employed in MFCs and MECs. These nanoparticles are essentially made of carbon, noble metals, and non-noble metals, together with a few other few doping elements. In this review, the most recent findings regarding the sustainable preparation of nanoparticles, in terms of syntheses and sources, are collected, commented, and proposed for applications in MFC and MEC devices. The use of naturally occurring, recycled, and alternative raw materials for nanoparticle synthesis is showcased in detail here. Several examples of how these naturally derived or sustainable nanoparticles have been employed in microbial devices are also examined. The results demonstrate that this approach is valuable and could represent a solid alternative to the expensive use of commercial nanoparticles.
Collapse
|