1
|
Nayak GS, Roland M, Wiese B, Hort N, Diebels S. Influence of implant base material on secondary bone healing: an in silico study. Comput Methods Biomech Biomed Engin 2024:1-9. [PMID: 38613482 DOI: 10.1080/10255842.2024.2338121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 04/15/2024]
Abstract
The implant material at the fracture site influences fracture healing not only from biological perspective but also from mechanical perspective. Biodegradable implants such as magnesium (Mg) based alloys have shown faster secondary bone healing properties as compared to bioinert implants such as titanium (Ti). The general reasoning behind this is the benefit of Mg from biocompatibility perspectives. We studied the effect of Ti and Mg as base materials for implants from mechanical perspectives, where we focused on the displacements at the fracture site of the tibia and their influence on the stimulus for bone healing. We found out that in comparison to Ti, Mg implants have minimal stress shielding problem, only which led to better mechanical stimulus at the fracture site.
Collapse
Affiliation(s)
| | - Michael Roland
- Chair of Applied Mechanics, Saarland University, Saarbrücken, Germany
| | - Björn Wiese
- Institute of Metallic Biomaterials, Geesthacht, Germany
| | - Norbert Hort
- Institute of Metallic Biomaterials, Geesthacht, Germany
- Leuphana University Lüneburg, Institute of Product and Process Innovation, Lüneburg, Germany
| | - Stefan Diebels
- Chair of Applied Mechanics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
2
|
Wang J, Chu J, Song J, Li Z. The application of impantable sensors in the musculoskeletal system: a review. Front Bioeng Biotechnol 2024; 12:1270237. [PMID: 38328442 PMCID: PMC10847584 DOI: 10.3389/fbioe.2024.1270237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
As the population ages and the incidence of traumatic events rises, there is a growing trend toward the implantation of devices to replace damaged or degenerated tissues in the body. In orthopedic applications, some implants are equipped with sensors to measure internal data and monitor the status of the implant. In recent years, several multi-functional implants have been developed that the clinician can externally control using a smart device. Experts anticipate that these versatile implants could pave the way for the next-generation of technological advancements. This paper provides an introduction to implantable sensors and is structured into three parts. The first section categorizes existing implantable sensors based on their working principles and provides detailed illustrations with examples. The second section introduces the most common materials used in implantable sensors, divided into rigid and flexible materials according to their properties. The third section is the focal point of this article, with implantable orthopedic sensors being classified as joint, spine, or fracture, based on different practical scenarios. The aim of this review is to introduce various implantable orthopedic sensors, compare their different characteristics, and outline the future direction of their development and application.
Collapse
Affiliation(s)
- Jinzuo Wang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning, China
| | - Jian Chu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Jinhui Song
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Zhonghai Li
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning, China
| |
Collapse
|
3
|
Kim DY, Park E, Ku K, Hwang SJ, Hwang KT, Lee CH, Yoon GH. Application of stacked autoencoder for identification of bone fracture. J Mech Behav Biomed Mater 2023; 146:106077. [PMID: 37657297 DOI: 10.1016/j.jmbbm.2023.106077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/02/2023] [Accepted: 08/13/2023] [Indexed: 09/03/2023]
Abstract
This study presents a stacked autoencoder (SAE)-based assessment method which is one of the unsupervised learning schemes for the investigation of bone fracture. Relatively accurate health monitoring of bone fracture requires considering physical interactions among tissue, muscle, wave propagation and boundary conditions inside the human body. Furthermore, the investigation of fracture, crack and healing process without state-of-the-art medical devices such as CT, X-ray and MRI systems is challenging. To address these issues, this study presents the SAE method that incorporates bilateral symmetry of the human legs and low-frequency transverse vibration. To verify the presented method, several examples are employed with plastic pipes, cadaver legs and human legs. Virtual spectrograms, created by applying a short-time Fourier transform to the differences in vibration responses, are employed for image-based training in SAE. The virtual spectrograms are then classified and the fine-tuning is also carried out to increase the accuracy. Moreover, a confusion matrix is employed to evaluate classification accuracy and training validity.
Collapse
Affiliation(s)
- Dong-Yoon Kim
- School of Mechanical Engineering, Hanyang University, Seoul, South Korea
| | - EunBin Park
- School of Mechanical Engineering, Hanyang University, Seoul, South Korea
| | - KyoBeom Ku
- School of Mechanical Engineering, Hanyang University, Seoul, South Korea
| | - Se Jin Hwang
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Kyu Tae Hwang
- Department of Orthopaedic Surgery, College of Medicine, Hanyang University, Seoul, South Korea
| | - Chang-Hun Lee
- Department of Orthopaedic Surgery, College of Medicine, Hanyang University, Seoul, South Korea
| | - Gil Ho Yoon
- School of Mechanical Engineering, Hanyang University, Seoul, South Korea.
| |
Collapse
|
4
|
Conceição C, Completo A, Soares dos Santos MP. Ultrasensitive capacitive sensing system for smart medical devices with ability to monitor fracture healing stages. J R Soc Interface 2023; 20:20220818. [PMCID: PMC9943881 DOI: 10.1098/rsif.2022.0818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Bone fractures are a global public health problem. A sustained increase in the number of incident cases has been observed in the last few decades, as well as the number of prevalent cases and the number of years lived with disability. Current monitoring techniques are based on imaging techniques, which are highly subjective, radioactive, expensive and unable to provide daily monitoring of fracture healing stages. The development of reliable, non-invasive and non-subjective technologies is mandatory to minimize non-union risks. Delayed healing and non-union conditions require timely medical intervention, such that preventive procedures and shortened treatment periods can be carried out. This work proposes the development of an ultrasensitive capacitive sensing system for smart implantable fixation implants with ability to effectively monitor the evolution of bone fractures. Both in vitro experimental tests and numerical simulations highlight that networks of co-surface capacitive systems are able: (i) to detect four different bone healing phases, capacitance decrease patterns occurring as the healing process progresses and (ii) to monitor the callus evolution in multiple target regions. These are very promising results that highlight the potential of capacitive technologies to minimize the individual and social burdens related to fracture management, mainly when delayed healing or non-union conditions occur.
Collapse
Affiliation(s)
- Cassandra Conceição
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - António Completo
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal,TEMA—Centre for Mechanical Technology and Automation, 3810-193 Aveiro, Portugal,LASI—Intelligent Systems Associate Laboratory, Portugal
| | - Marco P. Soares dos Santos
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal,TEMA—Centre for Mechanical Technology and Automation, 3810-193 Aveiro, Portugal,LASI—Intelligent Systems Associate Laboratory, Portugal
| |
Collapse
|
5
|
Altering the course of fracture healing monitoring. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
6
|
Fukase N, Duke VR, Lin MC, Stake IK, Huard M, Huard J, Marmor MT, Maharbiz MM, Ehrhart NP, Bahney CS, Herfat ST. Wireless Measurements Using Electrical Impedance Spectroscopy to Monitor Fracture Healing. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22166233. [PMID: 36016004 PMCID: PMC9412277 DOI: 10.3390/s22166233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 05/05/2023]
Abstract
There is an unmet need for improved, clinically relevant methods to longitudinally quantify bone healing during fracture care. Here we develop a smart bone plate to wirelessly monitor healing utilizing electrical impedance spectroscopy (EIS) to provide real-time data on tissue composition within the fracture callus. To validate our technology, we created a 1-mm rabbit tibial defect and fixed the bone with a standard veterinary plate modified with a custom-designed housing that included two impedance sensors capable of wireless transmission. Impedance magnitude and phase measurements were transmitted every 48 h for up to 10 weeks. Bone healing was assessed by X-ray, µCT, and histology. Our results indicated the sensors successfully incorporated into the fracture callus and did not impede repair. Electrical impedance, resistance, and reactance increased steadily from weeks 3 to 7-corresponding to the transition from hematoma to cartilage to bone within the fracture gap-then plateaued as the bone began to consolidate. These three electrical readings significantly correlated with traditional measurements of bone healing and successfully distinguished between union and not-healed fractures, with the strongest relationship found with impedance magnitude. These results suggest that our EIS smart bone plate can provide continuous and highly sensitive quantitative tissue measurements throughout the course of fracture healing to better guide personalized clinical care.
Collapse
Affiliation(s)
- Naomasa Fukase
- Linda and Mitch Hart Center for Regenerative & Personalized Medicine at the Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Victoria R. Duke
- Linda and Mitch Hart Center for Regenerative & Personalized Medicine at the Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Monica C. Lin
- UCSF Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Ingrid K. Stake
- Linda and Mitch Hart Center for Regenerative & Personalized Medicine at the Steadman Philippon Research Institute, Vail, CO 81657, USA
- Department of Orthopaedic Surgery, Ostfold Hospital Trust, 1714 Graalum, Norway
| | - Matthieu Huard
- Linda and Mitch Hart Center for Regenerative & Personalized Medicine at the Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative & Personalized Medicine at the Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Meir T. Marmor
- UCSF Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Michel M. Maharbiz
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Nicole P. Ehrhart
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| | - Chelsea S. Bahney
- Linda and Mitch Hart Center for Regenerative & Personalized Medicine at the Steadman Philippon Research Institute, Vail, CO 81657, USA
- UCSF Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
- Correspondence: (C.S.B.); (S.T.H.)
| | - Safa T. Herfat
- UCSF Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
- Correspondence: (C.S.B.); (S.T.H.)
| |
Collapse
|
7
|
Abstract
Digital health principles are starting to be evident in medicine. Orthopaedic trauma surgery is also being impacted —indirectly by all other improvements in the health ecosystem but also in particular efforts aimed at trauma surgery. Data acquisition is changing how evidence is gathered and utilized. Sensors are the pen and paper of the next wave of data acquisition. Sensors are gathering wide arrays of information to facilitate digital health relevance and adoption. Early adaption of sensor technology by the nonlegacy health environment is what has made sensor driven data acquisition so palatable to the normal health care system. As it applies to orthopaedic trauma, current sensor driven diagnostics and surveillance are nowhere near as developed as in the larger medical community. Digital health is being explored for health care records, data acquisition in diagnostics and rehabilitation, wellness to health care translation, intraoperative monitoring, surgical technique improvement, as well as some early-stage projects in long-term monitoring with implantable devices. The internet of things is the next digital wave that will undoubtedly affect medicine and orthopaedics. Internet of things (loT) devices are now being used to enable remote health monitoring and emergency notification systems. This article reviews current and future concepts in digital health that will impact trauma care.
Collapse
|