1
|
Yang W, Ma Z, Yang S, Hu Y, Zhang L. Triboelectric nanogenerators with groove textures and carbon fillers for self-powered cathodic protection. NANOSCALE 2024; 16:21447-21455. [PMID: 39469915 DOI: 10.1039/d4nr03126a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Contact-separation mode triboelectric nanogenerators (CS-TENG) have received widespread attention in self-powered cathodic corrosion protection, but their relatively low output limits the application. This paper introduced both groove textures and carbon-fillers into CS-TENG and investigated the influences and mechanism of textures and filler parameters on the output of CS-TENG. Through the external connection to the protected metal, the CS-TENG with optimal textures and fillers established the power supply of the self-powered cathodic protection. It is shown that for CS-TENG with groove textures, a texture size of 10 μm-10 μm exhibits the maximum lateral deformation, which generates the largest contact area and lateral deformation, and thus outputs the highest voltage. Among the three selected carbon-fillers (carbon fibers, hard carbon particles, graphene oxide), carbon fibers with 0.5 wt% mass fraction provide the highest charge storage capacity and thus the largest electrical output. Compared to the CS-TENG without textures and fillers, the open-circuit voltage of CS-TENG with optimal textures and fillers increased by 165.08%. Cathode anti-corrosion experiments and EIS (electrochemical impedance spectroscopy) tests indicate that CS-TENG with optimal textures and fillers significantly reduce the electron transfer rate on the metal surface, exhibiting excellent anti-corrosion performance.
Collapse
Affiliation(s)
- Weixu Yang
- Department of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Zepeng Ma
- Department of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Suqing Yang
- Department of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yanqiang Hu
- Beijing Key Laboratory of Long-life Technology of Precise Rotation and Transmission Mechanisms, Beijing Institute of Control Engineering, Beijing 100094, China
| | - Lu Zhang
- Shougang Zhixin Electromagnetic Materials (Qian'an) Co., Ltd, Qian'an 064400, China
| |
Collapse
|
2
|
Duan Z, Cai F, Chen Y, Chen T, Lu P. Advanced Applications of Porous Materials in Triboelectric Nanogenerator Self-Powered Sensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:3812. [PMID: 38931596 PMCID: PMC11207259 DOI: 10.3390/s24123812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Porous materials possess advantages such as rich pore structures, a large surface area, low relative density, high specific strength, and good breathability. They have broad prospects in the development of a high-performance Triboelectric Nanogenerator (TENG) and self-powered sensing fields. This paper elaborates on the structural forms and construction methods of porous materials in existing TENG, including aerogels, foam sponges, electrospinning, 3D printing, and fabric structures. The research progress of porous materials in improving TENG performance is systematically summarized, with a focus on discussing design strategies of porous structures to enhance the TENG mechanical performance, frictional electrical performance, and environmental tolerance. The current applications of porous-material-based TENG in self-powered sensing such as pressure sensing, health monitoring, and human-machine interactions are introduced, and future development directions and challenges are discussed.
Collapse
Affiliation(s)
- Zhengyin Duan
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.D.); (F.C.); (Y.C.)
| | - Feng Cai
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.D.); (F.C.); (Y.C.)
| | - Yuxin Chen
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.D.); (F.C.); (Y.C.)
| | - Tianying Chen
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.D.); (F.C.); (Y.C.)
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Peng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.D.); (F.C.); (Y.C.)
| |
Collapse
|
3
|
Sun E, Zhu Q, Rehman HU, Wu T, Cao X, Wang N. Magnetic Material in Triboelectric Nanogenerators: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:826. [PMID: 38786783 PMCID: PMC11124044 DOI: 10.3390/nano14100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Nowadays, magnetic materials are also drawing considerable attention in the development of innovative energy converters such as triboelectric nanogenerators (TENGs), where the introduction of magnetic materials at the triboelectric interface not only significantly enhances the energy harvesting efficiency but also promotes TENG entry into the era of intelligence and multifunction. In this review, we begin from the basic operating principle of TENGs and then summarize the recent progress in applications of magnetic materials in the design of TENG magnetic materials by categorizing them into soft ferrites and amorphous and nanocrystalline alloys. While highlighting key role of magnetic materials in and future opportunities for improving their performance in energy conversion, we also discuss the most promising choices available today and describe emerging approaches to create even better magnetic TENGs and TENG-based sensors as far as intelligence and multifunctionality are concerned. In addition, the paper also discusses the integration of magnetic TENGs as a power source for third-party sensors and briefly explains the self-powered applications in a wide range of related fields. Finally, the paper discusses the challenges and prospects of magnetic TENGs.
Collapse
Affiliation(s)
- Enqi Sun
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (E.S.); (Q.Z.); (H.U.R.)
| | - Qiliang Zhu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (E.S.); (Q.Z.); (H.U.R.)
| | - Hafeez Ur Rehman
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (E.S.); (Q.Z.); (H.U.R.)
| | - Tong Wu
- National Institute of Metrology China, Beijing 100029, China;
| | - Xia Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (E.S.); (Q.Z.); (H.U.R.)
| |
Collapse
|
4
|
Liang Y, Xu X, Zhao L, Lei C, Dai K, Zhuo R, Fan B, Cheng E, Hassan MA, Gao L, Mu X, Hu N, Zhang C. Advances of Strategies to Increase the Surface Charge Density of Triboelectric Nanogenerators: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308469. [PMID: 38032176 DOI: 10.1002/smll.202308469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Indexed: 12/01/2023]
Abstract
Triboelectric nanogenerators (TENGs) have manifested a remarkable potential for harvesting environmental energy and have the prospects to be utilized for various uses, for instance, self-powered sensing devices, flexible wearables, and marine corrosion protection. However, the potential for further development of TENGs is restricted on account of their low output power that in turn is determined by their surface charge density. The current review majorly focuses on the selection and optimization of triboelectric materials. Subsequently, various methods capable of enhancing the surface charge density of TENGs, including environmental regulation, charge excitation, charge pumping, electrostatic breakdown, charge trapping, and liquid-solid structure are comprehensively reviewed. Lastly, the review is concluded by highlighting the existing challenges in enhancing the surface charge density of TENGs and exploring potential opportunities for future research endeavors in this area.
Collapse
Affiliation(s)
- Yu Liang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Xinyu Xu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
- Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, P. R. China
| | - Libin Zhao
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
- Key Laboratory of Advanced Intelligent Protective Equipment Technology, Ministry of Education, Tianjin, 300401, P. R. China
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Chenyang Lei
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Kejie Dai
- School of Electrical and Mechanical Engineering, Pingdingshan University, Pingdingshan, 467000, P. R. China
| | - Ran Zhuo
- Electric Power Research Institute, China Southern Power Grid Company Ltd., Guangzhou, 510080, P. R. China
| | - Beibei Fan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - E Cheng
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Mohsen A Hassan
- Industrial and Manufacturing Department, Faculty of Innovative Design Engineering, Egypt-Japan University for Science and Technology (E-JUST), New Borg Al-Arab City, 21934, Egypt
| | - Lingxiao Gao
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology & Systems Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, P. R. China
| | - Ning Hu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Chi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| |
Collapse
|
5
|
Begum SR, Chandrasekhar A. Biomimicking hydrophobic leaf structure using soft lithography for fog harvesting, triboelectric nanogenerators as a self-powered rain sensor. iScience 2024; 27:108878. [PMID: 38318356 PMCID: PMC10839692 DOI: 10.1016/j.isci.2024.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
This study focused on the soft lithography technique of transferring the shape of a leaf's surface using a polymer film made by replicating the different patterns on the surfaces of four leaves. These films were used to collect fog water and to create TENGs for self-powered rain sensors. This research mainly focuses on analyzing the potential surface patterns of leaf films to improve fog water collection, enhancing the efficiency of TENGs, and looking at freshwater shortages in arid areas. The evaluations included surface morphology, contact angles, and structural analysis with goniometric drop morphology and 3D optical profilometry. Leaf-based TENGs showed promising power density, stability, and charging for energy gathering. Furthermore, the TENG devices showed their ability to detect raindrop patterns, highlighting their potential uses in promoting environmental sustainability. Hence, the result revealed that biomimicry can produce eco-friendly energy harvesting and sensor systems to reduce water scarcity and advance renewable energy.
Collapse
Affiliation(s)
- Shaik Ruksana Begum
- Nanosensor and Nanoenergy Lab, Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Arunkumar Chandrasekhar
- Nanosensor and Nanoenergy Lab, Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
6
|
Hu H, Shang S, Liu J, Zhu P. Silk fibroin based flexible and self-powered sensor for real-time monitoring of abdominal respiration. Int J Biol Macromol 2024; 254:127723. [PMID: 37907181 DOI: 10.1016/j.ijbiomac.2023.127723] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Personal health monitoring is very important for the health operation of special populations, like newborns and the old. But how to construct a sensor that can achieve real-time monitoring without the need for an external power supply still faces serious challenges. In this paper, a flexible, breathable and self-powered sensor based on triboelectric nanogenerators (TENG) was designed. Silk fibroin (SF) and poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fiber membranes were prepared by electro-spinning, and a u-shaped circuit was sprayed on one side of the fiber membrane as the electrode. Separating by an elastic silicone ring of the two fiber membranes, the all-fiber and self-powered sensor with a simple structure, good stability, and high output performance was developed. The as prepared sensor can instantly light up hundreds of LEDs by hand tapping. The sensor prepared in this work may have some potential applications in wearable devices and energy systems for real-time monitoring of abdominal breathing.
Collapse
Affiliation(s)
- Huifang Hu
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Shenglong Shang
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China.
| | - Jie Liu
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Ping Zhu
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao Key Laboratory of Flame-Retardant Textile Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
7
|
He J, Guo X, Pan C, Cheng G, Zheng M, Zi Y, Cui H, Li X. High-output soft-contact fiber-structure triboelectric nanogenerator and its sterilization application. NANOTECHNOLOGY 2023; 34:385403. [PMID: 37339612 DOI: 10.1088/1361-6528/acdfd5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
Infectious diseases are spreading rapidly with the flow of the world's population, and the prevention of epidemic diseases is particularly important for public and personal health. Therefore, there is an urgent need to develop a simple, efficient and non-toxic method to control the spread of bacteria and viruses. The newly developed triboelectric nanogenerator (TENG) can generate a high voltage, which inhibits bacterial reproduction. However, the output performance is the main factor limiting real-world applications of TENGs. Herein, we report a soft-contact fiber-structure TENG to avoid insufficient friction states and to improve the output, especially at a high rotation speed. Rabbit hair, carbon nanotubes, polyvinylidene difluoride film and paper all contain fiber structures that are used to guarantee soft contact between the friction layers and improve the contact state and abrasion problem. Compared with a direct-contact triboelectric nanogenerator, the outputs of this soft-contact fiber-structure TENG are improved by about 350%. Meanwhile, the open-circuit voltage can be enhanced to 3440 V, which solves the matching problems when driving high-voltage devices. A TENG-driven ultraviolet sterilization system is then developed. The bactericidal rate of this sterilization system can reach 91%, which significantly reduces the risk of disease spread. This work improves a forward-looking strategy to improve the output and service life of the TENG. It also expands the applications of self-powered TENG sterilization systems.
Collapse
Affiliation(s)
- Jianwei He
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Xuhua Guo
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Caofeng Pan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, People's Republic of China
| | - Gang Cheng
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Mingli Zheng
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Yunlong Zi
- Sustainable Energy and Environment Thrust, Hong Kong University of Science and Technology, Guangzhou, 510000, People's Republic of China
| | - Hongzhi Cui
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Xiaoyi Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| |
Collapse
|
8
|
Zhou Y, Zhang JH, Li S, Qiu H, Shi Y, Pan L. Triboelectric Nanogenerators Based on 2D Materials: From Materials and Devices to Applications. MICROMACHINES 2023; 14:mi14051043. [PMID: 37241666 DOI: 10.3390/mi14051043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Recently, there has been an increasing consumption of fossil fuels such as oil and natural gas in both industrial production and daily life. This high demand for non-renewable energy sources has prompted researchers to investigate sustainable and renewable energy alternatives. The development and production of nanogenerators provide a promising solution to address the energy crisis. Triboelectric nanogenerators, in particular, have attracted significant attention due to their portability, stability, high energy conversion efficiency, and compatibility with a wide range of materials. Triboelectric nanogenerators (TENGs) have many potential applications in various fields, such as artificial intelligence (AI) and the Internet of Things (IoT). Additionally, by virtue of their remarkable physical and chemical properties, two-dimensional (2D) materials, such as graphene, transition metal dichalcogenides (TMDs), hexagonal boron nitride (h-BN), MXenes, and layered double hydroxides (LDHs), have played a crucial role in the advancement of TENGs. This review summarizes recent research progress on TENGs based on 2D materials, from materials to their practical applications, and provides suggestions and prospects for future research.
Collapse
Affiliation(s)
- Yukai Zhou
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Jia-Han Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Songlin Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Hao Qiu
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
9
|
Yuan M, Zhang X, Wang J, Zhao Y. Recent Progress of Energy-Storage-Device-Integrated Sensing Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040645. [PMID: 36839014 PMCID: PMC9964226 DOI: 10.3390/nano13040645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/12/2023]
Abstract
With the rapid prosperity of the Internet of things, intelligent human-machine interaction and health monitoring are becoming the focus of attention. Wireless sensing systems, especially self-powered sensing systems that can work continuously and sustainably for a long time without an external power supply have been successfully explored and developed. Yet, the system integrated by energy-harvester needs to be exposed to a specific energy source to drive the work, which provides limited application scenarios, low stability, and poor continuity. Integrating the energy storage unit and sensing unit into a single system may provide efficient ways to solve these above problems, promoting potential applications in portable and wearable electronics. In this review, we focus on recent advances in energy-storage-device-integrated sensing systems for wearable electronics, including tactile sensors, temperature sensors, chemical and biological sensors, and multifunctional sensing systems, because of their universal utilization in the next generation of smart personal electronics. Finally, the future perspectives of energy-storage-device-integrated sensing systems are discussed.
Collapse
|
10
|
Vafaiee M, Ejehi F, Mohammadpour R. CNT-PDMS foams as self-powered humidity sensors based on triboelectric nanogenerators driven by finger tapping. Sci Rep 2023; 13:370. [PMID: 36611085 PMCID: PMC9825370 DOI: 10.1038/s41598-023-27690-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
An increasing number of frequently applied portable electronics has raised the significance of self-powered systems. In this regard, triboelectric nanogenerators (TENGs) have drawn considerable attention due to their diversity of design and high power output. As a widely used material in TENG electrodes, polydimethylsiloxane (PDMS) shows attractive characteristics, such as electron affinity, flexibility, and facile fabrication. To achieve active TENG-based humidity sensing, we proposed a straightforward method to enhance the hydrophilicity of PDMS by two parallel approaches: 1. Porosity induction, 2. Carbon nanotube (CNT) compositing. Both of the mentioned processes have been performed by water addition during the synthesis procedure, which is not only totally safe (in contrast with the similar foaming/compositing routes), but also applicable for a wide range of nanomaterials. Applying the modified electrode as a single-electrode TENG-based humidity sensor, demonstrated an impressive enhancement of sensing response from 56% up to 108%, compared to the bare electrodes. Moreover, the detecting range of ambient humidity was broadened to higher values of 80% in a linear behavior. The fabricated humidity sensor based on a CNT-PDMS foam not only provides superior sensing characteristics but also is satisfactory for portable applications, due to being lightweight and desirably self-powered.
Collapse
Affiliation(s)
- Mohaddeseh Vafaiee
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Faezeh Ejehi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Raheleh Mohammadpour
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran.
| |
Collapse
|
11
|
Jeon SH, Lee Y, Biswas S, Choi H, Han S, Kim M, Lee DW, Lee S, Kim H, Bae JH. Washable Fabric Triboelectric Nanogenerators for Potential Application in Face Masks. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183152. [PMID: 36144940 PMCID: PMC9503916 DOI: 10.3390/nano12183152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 05/28/2023]
Abstract
In order to counteract the COVID-19 pandemic by wearing face masks, we examine washable fabric-based triboelectric nanogenerators (FTENGs). We applied the flash-spun nonwoven fabric (FS fabric) into the FTENGs, comparing the melt-blown nonwoven fabric (MB fabric) based FTENGs, which is conventionally studied in the field of energy harvesting. For reusability, all our proposed FTENGs are systematically investigated by controlling the washing conditions. After washing, the degradation ratio of the obtained output voltage is found to be only 12.5% for FS FTENGs, compared to the ratio of about 50% for the typical MB FTENGs. A rather small degradation ratio for FS fabric cases has resulted from less changed fabric structure after washing due to more dense fabric nature. Additionally, in order to improve the electrical characteristics of FS FTENGs. Note that the output voltage of FTENGs exhibits as much as 600 V.
Collapse
Affiliation(s)
- Sang-Hwa Jeon
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Yongju Lee
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, Seoul 02504, Korea
| | - Swarup Biswas
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, Seoul 02504, Korea
| | - Hyojeong Choi
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, Seoul 02504, Korea
| | - Selim Han
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, Seoul 02504, Korea
- AI Robot R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea
| | - Minseo Kim
- School of Chemical Engineering, Pusan National University, Busan 56241, Korea
| | - Dong-Wook Lee
- AI Robot R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea
| | - Sohee Lee
- Department of Clothing and Textiles, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hyeok Kim
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, Seoul 02504, Korea
| | - Jin-Hyuk Bae
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea
- School of Electronics Engineering, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
12
|
Lin Y, Qi Y, Wang J, Liu G, Wang Z, Zhao J, Lv Y, Zhang Z, Tian N, Wang M, Chen Y, Zhang C. Self-Powered and Autonomous Vibrational Wake-Up System Based on Triboelectric Nanogenerators and MEMS Switch. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22103752. [PMID: 35632159 PMCID: PMC9145876 DOI: 10.3390/s22103752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 06/02/2023]
Abstract
With the extensive application of wireless sensing nodes, the demand for sustainable energy in unattended environments is increasing. Here, we report a self-powered and autonomous vibrational wake-up system (SAVWS) based on triboelectric nanogenerators and micro-electromechanical system (MEMS) switches. The energy triboelectric nanogenerator (E-TENG) harvests vibration energy to power the wireless transmitter through a MEMS switch. The signal triboelectric nanogenerator (S-TENG) controls the state of the MEMS switch as a self-powered accelerometer and shows good linearity in the acceleration range of 1-4.5 m/s2 at 30 Hz with a sensitivity of about 14.6 V/(m/s2). When the acceleration increases, the S-TENG turns on the MEMS switch, and the wireless transmitter transmits an alarm signal with the energy from E-TENG, using only 0.64 mJ. Using TENGs simultaneously as an energy source and a sensor, the SAVWS provides a self-powered vibration monitoring solution for unattended environments and shows extensive applications and great promise in smart factories, autonomous driving, and the Internet of Things.
Collapse
Affiliation(s)
- Yuan Lin
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China;
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; (Y.Q.); (J.W.); (G.L.); (Z.W.); (J.Z.); (Y.L.); (Z.Z.)
| | - Youchao Qi
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; (Y.Q.); (J.W.); (G.L.); (Z.W.); (J.Z.); (Y.L.); (Z.Z.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; (Y.Q.); (J.W.); (G.L.); (Z.W.); (J.Z.); (Y.L.); (Z.Z.)
| | - Guoxu Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; (Y.Q.); (J.W.); (G.L.); (Z.W.); (J.Z.); (Y.L.); (Z.Z.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaozheng Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; (Y.Q.); (J.W.); (G.L.); (Z.W.); (J.Z.); (Y.L.); (Z.Z.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junqing Zhao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; (Y.Q.); (J.W.); (G.L.); (Z.W.); (J.Z.); (Y.L.); (Z.Z.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Lv
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; (Y.Q.); (J.W.); (G.L.); (Z.W.); (J.Z.); (Y.L.); (Z.Z.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; (Y.Q.); (J.W.); (G.L.); (Z.W.); (J.Z.); (Y.L.); (Z.Z.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Tian
- Tsinghua Innovation Center in Zhuhai, Zhuhai 519080, China;
| | - Mengbi Wang
- State Key Laboratory of Precision Measurement Technology and Instruments Department of Precision Instrument Tsinghua University, Beijing 100084, China;
| | - Yuanfen Chen
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China;
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Chi Zhang
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China;
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; (Y.Q.); (J.W.); (G.L.); (Z.W.); (J.Z.); (Y.L.); (Z.Z.)
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|