1
|
Wang X, Teng P, Meng Q, Jiang Y, Wu J, Li T, Wang M, Guan Y, Zhou J, Sheng J, Gao JH, Luan G. Performance of optically pumped magnetometer magnetoencephalography: validation in large samples and multiple tasks. J Neural Eng 2024; 21:066033. [PMID: 39580819 DOI: 10.1088/1741-2552/ad9680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/24/2024] [Indexed: 11/26/2024]
Abstract
Objective.Current commercial magnetoencephalography (MEG) systems detect neuro-magnetic signals using superconducting quantum interference devices (SQUIDs), which require liquid helium as cryogen and have many limitations during operation. In contrast, optically pumped magnetometers (OPMs) technology provides a promising alternative to conventional SQUID-MEG. OPMs can operate at room temperature, offering benefits such as flexible deployment and lower costs. However, the validation of OPM-MEG has primarily been conducted on small sample sizes and specific regions of interest in the brain, lacking comprehensive validation for larger sample sizes and assessment of whole-brain.Approach.We recruited 100 participants, including healthy and neurological disorders individuals. Whole-brain OPM-MEG and SQUID-MEG data were recorded sequentially during auditory (n= 50) and visual (n= 50) stimulation experiments. By comparing the task-evoked responses of the two systems, we aimed to validate the performance of the next-generation OPM-MEG.Main results.The results showed that OPM-MEG enhanced the amplitude of task-related responses and exhibited similar magnetic field patterns and neural oscillatory activity as SQUID-MEG. There was no difference in the task-related latencies measured by the two systems. The signal-to-noise ratio was lower for the OPM-MEG in the auditory experiment, but did not differ in the visual experiment, suggesting that the results may be task-dependent.Significance.These results demonstrate that OPM-MEG, as an alternative to traditional SQUID-MEG, shows superior response amplitude and comparable performance in capturing brain dynamics. This study provides evidence for the effectiveness of OPM-MEG as a next-generation neuroimaging technique.
Collapse
Affiliation(s)
- Xiongfei Wang
- Department of Neurosurgery, Laboratory for Clinical Medicine, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, People's Republic of China
- Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, People's Republic of China
| | - Pengfei Teng
- Department of MEG, Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, People's Republic of China
| | - Qiujian Meng
- Beijing Quanmag Healthcare, Beijing 100195, People's Republic of China
| | - Yuying Jiang
- Beijing Quanmag Healthcare, Beijing 100195, People's Republic of China
| | - Jiangfen Wu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Tianfu Li
- Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, People's Republic of China
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, People's Republic of China
| | - Mengyang Wang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, People's Republic of China
| | - Yuguang Guan
- Department of Neurosurgery, Laboratory for Clinical Medicine, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, People's Republic of China
| | - Jian Zhou
- Department of Neurosurgery, Laboratory for Clinical Medicine, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, People's Republic of China
| | - Jingwei Sheng
- Beijing Quanmag Healthcare, Beijing 100195, People's Republic of China
| | - Jia-Hong Gao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- Changping Laboratory, Beijing 102206, People's Republic of China
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China
- McGovern Institute for Brain Research, Peking University, Beijing 100871, People's Republic of China
| | - Guoming Luan
- Department of Neurosurgery, Laboratory for Clinical Medicine, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, People's Republic of China
- Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, People's Republic of China
| |
Collapse
|
2
|
Bezsudnova Y, Quinn AJ, Jensen O. Optimizing magnetometers arrays and analysis pipelines for multivariate pattern analysis. J Neurosci Methods 2024; 412:110279. [PMID: 39265820 DOI: 10.1016/j.jneumeth.2024.110279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 08/12/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Multivariate pattern analysis (MVPA) has proven an excellent tool in cognitive neuroscience. It also holds a strong promise when applied to optically-pumped magnetometer-based magnetoencephalography. NEW METHOD To optimize OPM-MEG systems for MVPA experiments this study examines data from a conventional MEG magnetometer array, focusing on appropriate noise reduction techniques for magnetometers. We determined the least required number of sensors needed for robust MVPA for image categorization experiments. RESULTS We found that the use of signal space separation (SSS) without a proper regularization significantly lowered the classification accuracy considering a sub-array of 102 magnetometers or a sub-array of 204 gradiometers. We also found that classification accuracy did not improve when going beyond 30 sensors irrespective of whether SSS has been applied. COMPARISON WITH EXISTING METHODS The power spectra of data filtered with SSS has a substantially higher noise floor that data cleaned with SSP or HFC. Consequently, MVPA decoding results obtained from the SSS-filtered data are significantly lower compared to all other methods employed. CONCLUSIONS When designing MEG system based on SQUID magnetometers optimized for multivariate analysis for image categorization experiments, about 30 magnetometers are sufficient. We advise against applying SSS filters without a proper regularization to data from MEG and OPM systems prior to performing MVPA as this method, albeit reducing low-frequency external noise contributions, also introduces an increase in broadband noise. We recommend employing noise reduction techniques that either decrease or maintain the noise floor of the data like signal-space projection, homogeneous field correction and gradient noise reduction.
Collapse
Affiliation(s)
- Yulia Bezsudnova
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
| | - Andrew J Quinn
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Cheng H, He K, Li C, Ma X, Zheng F, Xu W, Liao P, Yang R, Li D, Qin L, Na S, Lyu B, Gao JH. Wireless optically pumped magnetometer MEG. Neuroimage 2024; 300:120864. [PMID: 39322096 DOI: 10.1016/j.neuroimage.2024.120864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024] Open
Abstract
The current magnetoencephalography (MEG) systems, which rely on cables for control and signal transmission, do not fully realize the potential of wearable optically pumped magnetometers (OPM). This study presents a significant advancement in wireless OPM-MEG by reducing magnetization in the electronics and developing a tailored wireless communication protocol. Our protocol effectively eliminates electromagnetic interference, particularly in the critical frequency bands of MEG signals, and accurately synchronizes the acquisition and stimulation channels with the host computer's clock. We have successfully achieved single-channel wireless OPM-MEG measurement and demonstrated its reliability by replicating three well-established experiments: The alpha rhythm, auditory evoked field, and steady-state visual evoked field in the human brain. Our prototype wireless OPM-MEG system not only streamlines the measurement process but also represents a major step forward in the development of wearable OPM-MEG applications in both neuroscience and clinical research.
Collapse
Affiliation(s)
- Hao Cheng
- Center for MRl Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China; Changping Laboratory, Beijing 102206, PR China
| | - Kaiyan He
- Changping Laboratory, Beijing 102206, PR China
| | - Congcong Li
- Changping Laboratory, Beijing 102206, PR China
| | - Xiao Ma
- Center for MRl Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China; Changping Laboratory, Beijing 102206, PR China; Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy lon Physics, School of Physics, Peking University, Beijing 100871, PR China
| | - Fufu Zheng
- Center for MRl Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China; Changping Laboratory, Beijing 102206, PR China; Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy lon Physics, School of Physics, Peking University, Beijing 100871, PR China
| | - Wei Xu
- Center for MRl Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China; Changping Laboratory, Beijing 102206, PR China
| | - Pan Liao
- Center for MRl Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China; Changping Laboratory, Beijing 102206, PR China
| | - Rui Yang
- Center for MRl Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China; Changping Laboratory, Beijing 102206, PR China; Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy lon Physics, School of Physics, Peking University, Beijing 100871, PR China
| | - Dongxu Li
- Center for MRl Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China; Changping Laboratory, Beijing 102206, PR China; Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy lon Physics, School of Physics, Peking University, Beijing 100871, PR China
| | - Lang Qin
- Center for MRl Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Shuai Na
- National Biomedical Imaging Center, Peking University, Beijing 100871, PR China
| | | | - Jia-Hong Gao
- Center for MRl Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China; Changping Laboratory, Beijing 102206, PR China; Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy lon Physics, School of Physics, Peking University, Beijing 100871, PR China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, PR China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, PR China.
| |
Collapse
|
4
|
Rhodes N, Sato J, Safar K, Amorim K, Taylor MJ, Brookes MJ. Paediatric magnetoencephalography and its role in neurodevelopmental disorders. Br J Radiol 2024; 97:1591-1601. [PMID: 38976633 PMCID: PMC11417392 DOI: 10.1093/bjr/tqae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/30/2024] [Indexed: 07/10/2024] Open
Abstract
Magnetoencephalography (MEG) is a non-invasive neuroimaging technique that assesses neurophysiology through the detection of the magnetic fields generated by neural currents. In this way, it is sensitive to brain activity, both in individual regions and brain-wide networks. Conventional MEG systems employ an array of sensors that must be cryogenically cooled to low temperature, in a rigid one-size-fits-all helmet. Systems are typically designed to fit adults and are therefore challenging to use for paediatric measurements. Despite this, MEG has been employed successfully in research to investigate neurodevelopmental disorders, and clinically for presurgical planning for paediatric epilepsy. Here, we review the applications of MEG in children, specifically focussing on autism spectrum disorder and attention-deficit hyperactivity disorder. Our review demonstrates the significance of MEG in furthering our understanding of these neurodevelopmental disorders, while also highlighting the limitations of current instrumentation. We also consider the future of paediatric MEG, with a focus on newly developed instrumentation based on optically pumped magnetometers (OPM-MEG). We provide a brief overview of the development of OPM-MEG systems, and how this new technology might enable investigation of brain function in very young children and infants.
Collapse
Affiliation(s)
- Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2QX, United Kingdom
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julie Sato
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kristina Safar
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kaela Amorim
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Margot J Taylor
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Psychology, University of Toronto, Toronto, ON M5S 2E5, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON M5T 1W7, Canada
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2QX, United Kingdom
- Cerca Magnetics Limited, Nottingham NG7 1LD, United Kingdom
| |
Collapse
|
5
|
Brickwedde M, Anders P, Kühn AA, Lofredi R, Holtkamp M, Kaindl AM, Grent-'t-Jong T, Krüger P, Sander T, Uhlhaas PJ. Applications of OPM-MEG for translational neuroscience: a perspective. Transl Psychiatry 2024; 14:341. [PMID: 39181883 PMCID: PMC11344782 DOI: 10.1038/s41398-024-03047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Magnetoencephalography (MEG) allows the non-invasive measurement of brain activity at millisecond precision combined with localization of the underlying generators. So far, MEG-systems consisted of superconducting quantum interference devices (SQUIDS), which suffer from several limitations. Recent technological advances, however, have enabled the development of novel MEG-systems based on optically pumped magnetometers (OPMs), offering several advantages over conventional SQUID-MEG systems. Considering potential improvements in the measurement of neuronal signals as well as reduced operating costs, the application of OPM-MEG systems for clinical neuroscience and diagnostic settings is highly promising. Here we provide an overview of the current state-of-the art of OPM-MEG and its unique potential for translational neuroscience. First, we discuss the technological features of OPMs and benchmark OPM-MEG against SQUID-MEG and electroencephalography (EEG), followed by a summary of pioneering studies of OPMs in healthy populations. Key applications of OPM-MEG for the investigation of psychiatric and neurological conditions are then reviewed. Specifically, we suggest novel applications of OPM-MEG for the identification of biomarkers and circuit deficits in schizophrenia, dementias, movement disorders, epilepsy, and neurodevelopmental syndromes (autism spectrum disorder and attention deficit hyperactivity disorder). Finally, we give an outlook of OPM-MEG for translational neuroscience with a focus on remaining methodological and technical challenges.
Collapse
Affiliation(s)
- Marion Brickwedde
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Child and Adolescent Psychiatry, 13353, Berlin, Germany.
- Physikalisch-Technische Bundesanstalt, Berlin, Germany.
| | - Paul Anders
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | - Andrea A Kühn
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Sektion für Bewegungsstörungen und Neuromodulation, Klinik für Neurologie und Experimentelle Neurologie, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany
- NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZNE, German center for neurodegenerative diseases, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roxanne Lofredi
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Sektion für Bewegungsstörungen und Neuromodulation, Klinik für Neurologie und Experimentelle Neurologie, 10117, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Martin Holtkamp
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Neurology, Epilepsy-Center Berlin-Brandenburg, 10117, Berlin, Germany
| | - Angela M Kaindl
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Pediatric Neurology, 13353, Berlin, Germany
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Center for Chronically Sick Children, 13353, Berlin, Germany
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Institute of Cell Biology and Neurobiology, 10117, Berlin, Germany
| | - Tineke Grent-'t-Jong
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Child and Adolescent Psychiatry, 13353, Berlin, Germany
- Institute for Neuroscience and Psychology, Glasgow University, Scotland, United Kingdom
| | - Peter Krüger
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | | | - Peter J Uhlhaas
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Child and Adolescent Psychiatry, 13353, Berlin, Germany
- Institute for Neuroscience and Psychology, Glasgow University, Scotland, United Kingdom
| |
Collapse
|
6
|
Liang X, Wang R, Wu H, Ma Y, Liu C, Gao Y, Yu D, Ning X. A Novel Time-Frequency Parameterization Method for Oscillations in Specific Frequency Bands and Its Application on OPM-MEG. Bioengineering (Basel) 2024; 11:773. [PMID: 39199731 PMCID: PMC11351447 DOI: 10.3390/bioengineering11080773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Time-frequency parameterization for oscillations in specific frequency bands reflects the dynamic changes in the brain. It is related to cognitive behavior and diseases and has received significant attention in neuroscience. However, many studies do not consider the impact of the aperiodic noise and neural activity, including their time-varying fluctuations. Some studies are limited by the low resolution of the time-frequency spectrum and parameter-solved operation. Therefore, this paper proposes super-resolution time-frequency periodic parameterization of (transient) oscillation (STPPTO). STPPTO obtains a super-resolution time-frequency spectrum with Superlet transform. Then, the time-frequency representation of oscillations is obtained by removing the aperiodic component fitted in a time-resolved way. Finally, the definition of transient events is used to parameterize oscillations. The performance of this method is validated on simulated data and its reliability is demonstrated on magnetoencephalography. We show how it can be used to explore and analyze oscillatory activity under rhythmic stimulation.
Collapse
Affiliation(s)
- Xiaoyu Liang
- School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (X.L.); (R.W.); (H.W.); (Y.M.); (C.L.); (Y.G.)
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Hefei National Laboratory, Hefei 230088, China
| | - Ruonan Wang
- School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (X.L.); (R.W.); (H.W.); (Y.M.); (C.L.); (Y.G.)
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Huanqi Wu
- School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (X.L.); (R.W.); (H.W.); (Y.M.); (C.L.); (Y.G.)
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Yuyu Ma
- School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (X.L.); (R.W.); (H.W.); (Y.M.); (C.L.); (Y.G.)
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Changzeng Liu
- School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (X.L.); (R.W.); (H.W.); (Y.M.); (C.L.); (Y.G.)
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Yang Gao
- School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (X.L.); (R.W.); (H.W.); (Y.M.); (C.L.); (Y.G.)
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Hangzhou 310051, China
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310051, China
| | - Dexin Yu
- Shandong Key Laboratory: Magnetic Field-Free Medicine & Functional Imaging, Qilu Hospital of Shandong University, Jinan 250012, China;
| | - Xiaolin Ning
- School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (X.L.); (R.W.); (H.W.); (Y.M.); (C.L.); (Y.G.)
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Hefei National Laboratory, Hefei 230088, China
- Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Hangzhou 310051, China
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310051, China
| |
Collapse
|
7
|
Iivanainen J, Carter TR, Dhombridge JE, Read TS, Campbell K, Abate Q, Ridley DM, Borna A, Schwindt PDD. Four-channel optically pumped magnetometer for a magnetoencephalography sensor array. OPTICS EXPRESS 2024; 32:18334-18351. [PMID: 38858992 PMCID: PMC11239169 DOI: 10.1364/oe.517961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 06/12/2024]
Abstract
We present a novel four-channel optically pumped magnetometer (OPM) for magnetoencephalography that utilizes a two-color pump/probe scheme on a single optical axis. We characterize its performance across 18 built sensor modules. The new sensor implements several improvements over our previously developed sensor including lower vapor-cell operating temperature, improved probe-light detection optics, and reduced optical power requirements. The sensor also has new electromagnetic field coils on the sensor head which are designed using stream-function-based current optimization. We detail the coil design methodology and present experimental characterization of the coil performance. The magnetic sensitivity of the sensor is on average 12.3 fT/rt-Hz across the 18 modules while the average gradiometrically inferred sensitivity is about 6.0 fT/rt-Hz. The sensor 3-dB bandwidth is 100 Hz on average. The on-sensor coil performance is in good agreement with the simulations.
Collapse
Affiliation(s)
| | - Tony R. Carter
- Sandia National Laboratories, Albuquerque, NM 87123, USA
| | - Jonathan E. Dhombridge
- Sandia National Laboratories, Albuquerque, NM 87123, USA
- Center for Quantum Information and Control, Department of Physics & Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Timothy S. Read
- Sandia National Laboratories, Albuquerque, NM 87123, USA
- Center for Quantum Information and Control, Department of Physics & Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Kaleb Campbell
- Sandia National Laboratories, Albuquerque, NM 87123, USA
- Center for Quantum Information and Control, Department of Physics & Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Quinn Abate
- Sandia National Laboratories, Albuquerque, NM 87123, USA
| | - David M. Ridley
- Sandia National Laboratories, Albuquerque, NM 87123, USA
- Center for Quantum Information and Control, Department of Physics & Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Amir Borna
- Sandia National Laboratories, Albuquerque, NM 87123, USA
| | | |
Collapse
|
8
|
Badier JM, Schwartz D, Bénar CG, Kanzari K, Daligault S, Romain R, Mitryukovskiy S, Fourcault W, Josselin V, Le Prado M, Jung J, Palacios-Laloy A, Romain C, Bartolomei F, Labyt E, Bonini F. Helium Optically Pumped Magnetometers Can Detect Epileptic Abnormalities as Well as SQUIDs as Shown by Intracerebral Recordings. eNeuro 2023; 10:ENEURO.0222-23.2023. [PMID: 37932045 PMCID: PMC10748329 DOI: 10.1523/eneuro.0222-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 11/08/2023] Open
Abstract
Magnetoencephalography based on superconducting quantum interference devices (SQUIDs) has been shown to improve the diagnosis and surgical treatment decision for presurgical evaluation of drug-resistant epilepsy. Still, its use remains limited because of several constraints such as cost, fixed helmet size, and the obligation of immobility. A new generation of sensors, optically pumped magnetometers (OPMs), could overcome these limitations. In this study, we validate the ability of helium-based OPM (4He-OPM) sensors to record epileptic brain activity thanks to simultaneous recordings with intracerebral EEG [stereotactic EEG (SEEG)]. We recorded simultaneous SQUIDs-SEEG and 4He-OPM-SEEG signals in one patient during two sessions. We show that epileptic activities on intracerebral EEG can be recorded by OPMs with a better signal-to noise ratio than classical SQUIDs. The OPM sensors open new venues for the widespread application of magnetoencephalography in the management of epilepsy and other neurologic diseases and fundamental neuroscience.
Collapse
Affiliation(s)
- Jean-Michel Badier
- Institut de Neurosciences des Systèmes, Institut National de la Santé et de la Recherche Médicale, Aix Marseille Université, Marseille 13005, France
| | - Denis Schwartz
- MEG Departement, CERMEP-Imagerie du Vivant, Lyon 69003, France
| | - Christian-George Bénar
- Institut de Neurosciences des Systèmes, Institut National de la Santé et de la Recherche Médicale, Aix Marseille Université, Marseille 13005, France
| | - Khoubeib Kanzari
- Institut de Neurosciences des Systèmes, Institut National de la Santé et de la Recherche Médicale, Aix Marseille Université, Marseille 13005, France
| | | | - Rudy Romain
- CEA-LETI, MINATEC, Université Grenoble Alpes, Grenoble 38054, France
- MAG4Health, Grenoble 38000, France
| | - Sergey Mitryukovskiy
- CEA-LETI, MINATEC, Université Grenoble Alpes, Grenoble 38054, France
- MAG4Health, Grenoble 38000, France
| | - William Fourcault
- CEA-LETI, MINATEC, Université Grenoble Alpes, Grenoble 38054, France
| | - Vincent Josselin
- CEA-LETI, MINATEC, Université Grenoble Alpes, Grenoble 38054, France
| | - Matthieu Le Prado
- CEA-LETI, MINATEC, Université Grenoble Alpes, Grenoble 38054, France
- MAG4Health, Grenoble 38000, France
| | - Julien Jung
- Centre de Recherche en Neurosciences de Lyon, Unité Mixte de Recherche S1028, Centre National de la Recherche Scientifique, Hospices Civils de Lyon, Institut National de la Santé et de la Recherche Médicale, Université Lyon 1, Lyon 69002, France
| | - Augustin Palacios-Laloy
- CEA-LETI, MINATEC, Université Grenoble Alpes, Grenoble 38054, France
- MAG4Health, Grenoble 38000, France
| | - Carron Romain
- Institut de Neurosciences des Systèmes, Institut National de la Santé et de la Recherche Médicale, Aix Marseille Université, Marseille 13005, France
- Department of Functional and Stereotactic Neurosurgery, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille 3005, France
| | - Fabrice Bartolomei
- Institut de Neurosciences des Systèmes, Institut National de la Santé et de la Recherche Médicale, Aix Marseille Université, Marseille 13005, France
- Department of Epileptology and Cerebral Rythmology, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille 3005, France
| | - Etienne Labyt
- CEA-LETI, MINATEC, Université Grenoble Alpes, Grenoble 38054, France
- MAG4Health, Grenoble 38000, France
| | - Francesca Bonini
- Institut de Neurosciences des Systèmes, Institut National de la Santé et de la Recherche Médicale, Aix Marseille Université, Marseille 13005, France
- MEG Departement, CERMEP-Imagerie du Vivant, Lyon 69003, France
| |
Collapse
|
9
|
Iivanainen J, Carter TR, Trumbo MCS, McKay J, Taulu S, Wang J, Stephen JM, Schwindt PDD, Borna A. Single-trial classification of evoked responses to auditory tones using OPM- and SQUID-MEG. J Neural Eng 2023; 20:056032. [PMID: 37748476 DOI: 10.1088/1741-2552/acfcd9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Objective.Optically pumped magnetometers (OPMs) are emerging as a near-room-temperature alternative to superconducting quantum interference devices (SQUIDs) for magnetoencephalography (MEG). In contrast to SQUIDs, OPMs can be placed in a close proximity to subject's scalp potentially increasing the signal-to-noise ratio and spatial resolution of MEG. However, experimental demonstrations of these suggested benefits are still scarce. Here, to compare a 24-channel OPM-MEG system to a commercial whole-head SQUID system in a data-driven way, we quantified their performance in classifying single-trial evoked responses.Approach.We measured evoked responses to three auditory tones in six participants using both OPM- and SQUID-MEG systems. We performed pairwise temporal classification of the single-trial responses with linear discriminant analysis as well as multiclass classification with both EEGNet convolutional neural network and xDAWN decoding.Main results.OPMs provided higher classification accuracies than SQUIDs having a similar coverage of the left hemisphere of the participant. However, the SQUID sensors covering the whole helmet had classification scores larger than those of OPMs for two of the tone pairs, demonstrating the benefits of a whole-head measurement.Significance.The results demonstrate that the current OPM-MEG system provides high-quality data about the brain with room for improvement for high bandwidth non-invasive brain-computer interfacing.
Collapse
Affiliation(s)
- Joonas Iivanainen
- Sandia National Laboratories, Albuquerque, NM 87185, United States of America
| | - Tony R Carter
- Sandia National Laboratories, Albuquerque, NM 87185, United States of America
| | - Michael C S Trumbo
- Sandia National Laboratories, Albuquerque, NM 87185, United States of America
| | - Jim McKay
- Candoo Systems Inc, Port Coquitlam, BC, Canada
| | - Samu Taulu
- University of Washington, Seattle, WA, United States of America
| | - Jun Wang
- Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin, Austin, TX, United States of America
- Department of Neurology, The University of Texas at Austin, Austin, TX, United States of America
| | - Julia M Stephen
- The Mind Research Network a Division of Lovelace Biomedical Research Institute, Albuquerque, NM 87106, United States of America
| | - Peter D D Schwindt
- Sandia National Laboratories, Albuquerque, NM 87185, United States of America
| | - Amir Borna
- Sandia National Laboratories, Albuquerque, NM 87185, United States of America
| |
Collapse
|
10
|
Holmes N, Bowtell R, Brookes MJ, Taulu S. An Iterative Implementation of the Signal Space Separation Method for Magnetoencephalography Systems with Low Channel Counts. SENSORS (BASEL, SWITZERLAND) 2023; 23:6537. [PMID: 37514831 PMCID: PMC10385807 DOI: 10.3390/s23146537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
The signal space separation (SSS) method is routinely employed in the analysis of multichannel magnetic field recordings (such as magnetoencephalography (MEG) data). In the SSS method, signal vectors are posed as a multipole expansion of the magnetic field, allowing contributions from sources internal and external to a sensor array to be separated via computation of the pseudo-inverse of a matrix of the basis vectors. Although powerful, the standard implementation of the SSS method on MEG systems based on optically pumped magnetometers (OPMs) is unstable due to the approximate parity of the required number of dimensions of the SSS basis and the number of channels in the data. Here we exploit the hierarchical nature of the multipole expansion to perform a stable, iterative implementation of the SSS method. We describe the method and investigate its performance via a simulation study on a 192-channel OPM-MEG helmet. We assess performance for different levels of truncation of the SSS basis and a varying number of iterations. Results show that the iterative method provides stable performance, with a clear separation of internal and external sources.
Collapse
Affiliation(s)
- Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.B.); (M.J.B.)
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.B.); (M.J.B.)
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.B.); (M.J.B.)
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK
| | - Samu Taulu
- Department of Physics, University of Washington, Seattle, WA 98195, USA;
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Lu Y, Zhao T, Zhu W, Liu L, Zhuang X, Fang G, Zhang X. Recent Progress of Atomic Magnetometers for Geomagnetic Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115318. [PMID: 37300044 DOI: 10.3390/s23115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
The atomic magnetometer is currently one of the most-sensitive sensors and plays an important role in applications for detecting weak magnetic fields. This review reports the recent progress of total-field atomic magnetometers that are one important ramification of such magnetometers, which can reach the technical level for engineering applications. The alkali-metal magnetometers, helium magnetometers, and coherent population-trapping magnetometers are included in this review. Besides, the technology trend of atomic magnetometers was analyzed for the purpose of providing a certain reference for developing the technologies in such magnetometers and for exploring their applications.
Collapse
Affiliation(s)
- Yuantian Lu
- Aerospace Information Research Institute, Chinese Academy of Sciences, No. 9 Dengzhuang South Road, Beijing 100094, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tian Zhao
- Aerospace Information Research Institute, Chinese Academy of Sciences, No. 9 Dengzhuang South Road, Beijing 100094, China
| | - Wanhua Zhu
- Aerospace Information Research Institute, Chinese Academy of Sciences, No. 9 Dengzhuang South Road, Beijing 100094, China
| | - Leisong Liu
- Aerospace Information Research Institute, Chinese Academy of Sciences, No. 9 Dengzhuang South Road, Beijing 100094, China
| | - Xin Zhuang
- Aerospace Information Research Institute, Chinese Academy of Sciences, No. 9 Dengzhuang South Road, Beijing 100094, China
| | - Guangyou Fang
- Aerospace Information Research Institute, Chinese Academy of Sciences, No. 9 Dengzhuang South Road, Beijing 100094, China
| | - Xiaojuan Zhang
- Aerospace Information Research Institute, Chinese Academy of Sciences, No. 9 Dengzhuang South Road, Beijing 100094, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Ghahremani Arekhloo N, Parvizi H, Zuo S, Wang H, Nazarpour K, Marquetand J, Heidari H. Alignment of magnetic sensing and clinical magnetomyography. Front Neurosci 2023; 17:1154572. [PMID: 37274205 PMCID: PMC10232862 DOI: 10.3389/fnins.2023.1154572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Neuromuscular diseases are a prevalent cause of prolonged and severe suffering for patients, and with the global population aging, it is increasingly becoming a pressing concern. To assess muscle activity in NMDs, clinicians and researchers typically use electromyography (EMG), which can be either non-invasive using surface EMG, or invasive through needle EMG. Surface EMG signals have a low spatial resolution, and while the needle EMG provides a higher resolution, it can be painful for the patients, with an additional risk of infection. The pain associated with the needle EMG can pose a risk for certain patient groups, such as children. For example, children with spinal muscular atrophy (type of NMD) require regular monitoring of treatment efficacy through needle EMG; however, due to the pain caused by the procedure, clinicians often rely on a clinical assessment rather than needle EMG. Magnetomyography (MMG), the magnetic counterpart of the EMG, measures muscle activity non-invasively using magnetic signals. With super-resolution capabilities, MMG has the potential to improve spatial resolution and, in the meantime, address the limitations of EMG. This article discusses the challenges in developing magnetic sensors for MMG, including sensor design and technology advancements that allow for more specific recordings, targeting of individual motor units, and reduction of magnetic noise. In addition, we cover the motor unit behavior and activation pattern, an overview of magnetic sensing technologies, and evaluations of wearable, non-invasive magnetic sensors for MMG.
Collapse
Affiliation(s)
- Negin Ghahremani Arekhloo
- Microelectronics Lab, James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom
- Neuranics Ltd., Glasgow, United Kingdom
| | - Hossein Parvizi
- Microelectronics Lab, James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom
| | - Siming Zuo
- Microelectronics Lab, James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom
- Neuranics Ltd., Glasgow, United Kingdom
| | - Huxi Wang
- Microelectronics Lab, James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom
- Neuranics Ltd., Glasgow, United Kingdom
| | - Kianoush Nazarpour
- Neuranics Ltd., Glasgow, United Kingdom
- School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Justus Marquetand
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- MEG Centre, University of Tübingen, Tübingen, Germany
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hadi Heidari
- Microelectronics Lab, James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom
- Neuranics Ltd., Glasgow, United Kingdom
| |
Collapse
|