1
|
Vithanage M, Zhang X, Gunarathne V, Zhu Y, Herath L, Peiris K, Solaiman ZM, Bolan N, Siddique KHM. Plant nanobionics: Fortifying food security via engineered plant productivity. ENVIRONMENTAL RESEARCH 2023; 229:115934. [PMID: 37080274 DOI: 10.1016/j.envres.2023.115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The world's human population is increasing exponentially, increasing the demand for high-quality food sources. As a result, there is a major global concern over hunger and malnutrition in developing countries with limited food resources. To address this issue, researchers worldwide must focus on developing improved crop varieties with greater productivity to overcome hunger. However, conventional crop breeding methods require extensive periods to develop new varieties with desirable traits. To tackle this challenge, an innovative approach termed plant nanobionics introduces nanomaterials (NMs) into cell organelles to enhance or modify plant function and thus crop productivity and yield. A comprehensive review of nanomaterials affect crop yield is needed to guide nanotechnology research. This article critically reviews nanotechnology applications for engineering plant productivity, seed germination, crop growth, enhancing photosynthesis, and improving crop yield and quality, and discusses nanobionic approaches such as smart drug delivery systems and plant nanobiosensors. Moreover, the review describes NM classification and synthesis and human health-related and plant toxicity hazards. Our findings suggest that nanotechnology application in agricultural production could significantly increase crop yields to alleviate global hunger pressures. However, the environmental risks associated with NMs should be investigated thoroughly before their widespread adoption in agriculture.
Collapse
Affiliation(s)
- Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; Sustainability Cluster, University of Petroleum and Energy Studies, Dehradun, India.
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Viraj Gunarathne
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Yi Zhu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Lasantha Herath
- Sri Lanka Institute of Nano Technology, Pitipana, Homagama, Sri Lanka
| | - Kanchana Peiris
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Zakaria M Solaiman
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| | - Nanthi Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
2
|
Shaw DS, Honeychurch KC. Nanosensor Applications in Plant Science. BIOSENSORS 2022; 12:675. [PMID: 36140060 PMCID: PMC9496508 DOI: 10.3390/bios12090675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 12/28/2022]
Abstract
Plant science is a major research topic addressing some of the most important global challenges we face today, including energy and food security. Plant science has a role in the production of staple foods and materials, as well as roles in genetics research, environmental management, and the synthesis of high-value compounds such as pharmaceuticals or raw materials for energy production. Nanosensors-selective transducers with a characteristic dimension that is nanometre in scale-have emerged as important tools for monitoring biological processes such as plant signalling pathways and metabolism in ways that are non-destructive, minimally invasive, and capable of real-time analysis. A variety of nanosensors have been used to study different biological processes; for example, optical nanosensors based on Förster resonance energy transfer (FRET) have been used to study protein interactions, cell contents, and biophysical parameters, and electrochemical nanosensors have been used to detect redox reactions in plants. Nanosensor applications in plants include nutrient determination, disease assessment, and the detection of proteins, hormones, and other biological substances. The combination of nanosensor technology and plant sciences has the potential to be a powerful alliance and could support the successful delivery of the 2030 Sustainable Development Goals. However, a lack of knowledge regarding the health effects of nanomaterials and the high costs of some of the raw materials required has lessened their commercial impact.
Collapse
Affiliation(s)
- Daniel S. Shaw
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
- Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Kevin C. Honeychurch
- Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| |
Collapse
|
3
|
Jmii S, Dewez D. Toxic Responses of Palladium Accumulation in Duckweed (Lemna minor): Determination of Biomarkers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1630-1638. [PMID: 33605477 DOI: 10.1002/etc.5011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/01/2020] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Palladium (Pd) is a trace metal of the platinum group elements, representing an emerging contaminant for the environment. It is of great interest to characterize the bioaccumulation and toxicity of Pd to improve our toxicological knowledge for this contaminant. Under standardized toxicity testing conditions, we analyzed Pd accumulation and toxicity effects on the duckweed Lemna minor exposed to nominal concentrations from 2 to 50 µM. The inhibitory effect was significant (p < 0.05) from 8 µM of Pd, starting with 9.5% of growth inhibition and a decrease of 1 cm for the root size. Under 12.5 μM of Pd, the bioaccumulated Pd of 63.93 µg/g fresh weight inhibited plant growth by 37.4%, which was caused by a strong oxidative stress in the cytosol and organelles containing DNA. Under 25 and 50 μM of Pd, bioaccumulated Pd was able to deteriorate the entire plant physiology including chlorophyll synthesis, the photosystem II antenna complex, and the photochemical reactions of photosynthesis. In fact, plants treated with 50 μM Pd accumulated Pd up to 255.95 µg/g fresh weight, causing a strong decrease in total biomass and root elongation process. Therefore, we showed several growth, physiological, and biochemical alterations which were correlated with the bioaccumulation of Pd. These alterations constituted toxicity biomarkers of Pd with different lowest-observed-effect dose, following this order: root size = growth inhibition < catalase activity = carotenoid content = reactive oxygen species production = total thiols < chlorophyll a/b = variable fluorescence to maximal fluorescence intensity ratio = absorbed-light energy transfer from the chlorophyll a antenna to the photosystem II reaction center = performance index of photosystem II activity < VJ . Therefore, the present study provides insight into the toxicity mechanism of Pd in L. minor plants under standardized testing conditions. Environ Toxicol Chem 2021;40:1630-1638. © 2021 SETAC.
Collapse
Affiliation(s)
- Souleimen Jmii
- Laboratory of Environmental & Analytical Biochemistry of Contaminants, Department of Chemistry, University of Quebec at Montreal, Montreal, Quebec, Canada
| | - David Dewez
- Laboratory of Environmental & Analytical Biochemistry of Contaminants, Department of Chemistry, University of Quebec at Montreal, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Mukherjee S. Insights into nitric oxide-melatonin crosstalk and N-nitrosomelatonin functioning in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6035-6047. [PMID: 31429913 DOI: 10.1093/jxb/erz375] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/06/2019] [Indexed: 05/23/2023]
Abstract
Similar to animal systems, plants have been suggested to possess both positive and antagonistic interactions between nitric oxide (NO) and melatonin. This review summarizes the current understanding of NO-melatonin crosstalk in plants with regard to redox homoeostasis, regulation of gene expression, and developmental changes. It also addresses the possible role of N-nitrosomelatonin (NOmela), which is likely to be associated with redox signaling and long-distance communication. Localization and quantification of NOmela are expected to add new insights into its precise role in plants. Methodological advances in imaging, isolation, and quantification of such a transient molecule require further attention. The quest for the biological role of NOmela in plants should lure physiologists to pursue investigations to obtain solid experimental evidence.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal 742213, India
| |
Collapse
|
5
|
An Assessment of the Effect of Green Synthesized Silver Nanoparticles Using Sage Leaves ( Salvia officinalis L.) on Germinated Plants of Maize ( Zea mays L.). NANOMATERIALS 2019; 9:nano9111550. [PMID: 31683686 PMCID: PMC6915364 DOI: 10.3390/nano9111550] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 11/29/2022]
Abstract
AgNPs have attracted considerable attention in many applications including industrial use, and their antibacterial properties have been widely investigated. Due to the green synthesis process employed, the nanoparticle surface can be coated with molecules with biologically important characteristics. It has been reported that increased use of nanoparticles elevates the risk of their release into the environment. However, little is known about the behaviour of AgNPs in the eco-environment. In this study, the effect of green synthesized AgNPs on germinated plants of maize was examined. The effects on germination, basic growth and physiological parameters of the plants were monitored. Moreover, the effect of AgNPs was compared with that of Ag(I) ions in the form of AgNO3 solution. It was found that the growth inhibition of the above-ground parts of plants was about 40%, and AgNPs exhibited a significant effect on photosynthetic pigments. Significant differences in the following parameters were observed: weights of the caryopses and fresh weight (FW) of primary roots after 96 h of exposure to Ag(I) ions and AgNPs compared to the control and between Ag compounds. In addition, the coefficient of velocity of germination (CVG) between the control and the AgNPs varied and that between the Ag(I) ions and AgNPs was also different. Phytotoxicity was proved in the following sequence: control < AgNPs < Ag(I) ions.
Collapse
|
6
|
Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH. Heavy metals in food crops: Health risks, fate, mechanisms, and management. ENVIRONMENT INTERNATIONAL 2019; 125:365-385. [PMID: 30743144 DOI: 10.1016/j.envint.2019.01.067] [Citation(s) in RCA: 714] [Impact Index Per Article: 142.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 05/20/2023]
Abstract
Food security is a high-priority issue for sustainable global development both quantitatively and qualitatively. In recent decades, adverse effects of unexpected contaminants on crop quality have threatened both food security and human health. Heavy metals and metalloids (e.g., Hg, As, Pb, Cd, and Cr) can disturb human metabolomics, contributing to morbidity and even mortality. Therefore, this review focuses on and describes heavy metal contamination in soil-food crop subsystems with respect to human health risks. It also explores the possible geographical pathways of heavy metals in such subsystems. In-depth discussion is further offered on physiological/molecular translocation mechanisms involved in the uptake of metallic contaminants inside food crops. Finally, management strategies are proposed to regain sustainability in soil-food subsystems.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
7
|
Kwak SY, Wong MH, Lew TTS, Bisker G, Lee MA, Kaplan A, Dong J, Liu AT, Koman VB, Sinclair R, Hamann C, Strano MS. Nanosensor Technology Applied to Living Plant Systems. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:113-140. [PMID: 28605605 DOI: 10.1146/annurev-anchem-061516-045310] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An understanding of plant biology is essential to solving many long-standing global challenges, including sustainable and secure food production and the generation of renewable fuel sources. Nanosensor platforms, sensors with a characteristic dimension that is nanometer in scale, have emerged as important tools for monitoring plant signaling pathways and metabolism that are nondestructive, minimally invasive, and capable of real-time analysis. This review outlines the recent advances in nanotechnology that enable these platforms, including the measurement of chemical fluxes even at the single-molecule level. Applications of nanosensors to plant biology are discussed in the context of nutrient management, disease assessment, food production, detection of DNA proteins, and the regulation of plant hormones. Current trends and future needs are discussed with respect to the emerging trends of precision agriculture, urban farming, and plant nanobionics.
Collapse
Affiliation(s)
- Seon-Yeong Kwak
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Min Hao Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Tedrick Thomas Salim Lew
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Gili Bisker
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Michael A Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Amir Kaplan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Juyao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Albert Tianxiang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Rosalie Sinclair
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Catherine Hamann
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| |
Collapse
|
8
|
Chang YL, Hsieh CL, Huang YM, Chiou WL, Kuo YH, Tseng MH. Modified method for determination of sulfur metabolites in plant tissues by stable isotope dilution-based liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal Biochem 2013; 442:24-33. [PMID: 23911527 DOI: 10.1016/j.ab.2013.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 12/25/2022]
Abstract
A wide variety of sulfur metabolites play important roles in plant functions. We have developed a precise and sensitive method for the simultaneous measurement of several sulfur metabolites based on liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and (34)S metabolic labeling of sulfur-containing metabolites in Arabidopsis thaliana seedlings. However, some sulfur metabolites were unstable during the extraction procedure. Our proposed method does not allow for the detection of the important sulfur metabolite homocysteine because of its instability during sample extraction. Stable isotope-labeled sulfur metabolites of A. thaliana shoot were extracted and utilized as internal standards for quantification of sulfur metabolites with LC-MS/MS using S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), methionine (Met), glutathione (GSH), and glutathione disulfide (GSSG) as example metabolites. These metabolites were detected using electrospray ionization in positive mode. Standard curves were linear (r(2)>0.99) over a range of concentrations (SAM 0.01-2.0μM, SAH 0.002-0.10μM, Met 0.05-4.0μM, GSH 0.17-20.0μM, GSSG 0.07-20.0μM), with limits of detection for SAM, SAH, Met, GSH, and GSSG of 0.83, 0.67, 10, 0.56, and 1.1nM, respectively; and the within-run and between-run coefficients of variation based on quality control samples were less than 8%.
Collapse
Affiliation(s)
- Ya-Lan Chang
- Department of Applied Physics and Chemistry, University of Taipei, Taipei 10048, Taiwan
| | | | | | | | | | | |
Collapse
|
9
|
Ion exchange chromatography and mass spectrometric methods for analysis of cadmium-phytochelatin (II) complexes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:1304-11. [PMID: 23538727 PMCID: PMC3709318 DOI: 10.3390/ijerph10041304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/13/2013] [Accepted: 03/20/2013] [Indexed: 11/17/2022]
Abstract
In this study, in vitro formed Cd-phytochelatin (PC2) complexes were characterized using ion exchange chromatography (IEC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The ratio of both studied compounds as well as experimental conditions were optimized. The highest yield of the complex was observed under an applied concentration of 100 µg·mL−1 PC2 and 100 µg·mL−1 of CdCl2. The data obtained show that IEC in combination with MALDI-TOF is a reliable and fast method for the determination of these complexes.
Collapse
|
10
|
Skladanka J, Adam V, Zitka O, Krystofova O, Beklova M, Kizek R, Havlicek Z, Slama P, Nawrath A. Investigation into the effect of molds in grasses on their content of low molecular mass thiols. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012. [PMID: 23202817 PMCID: PMC3524598 DOI: 10.3390/ijerph9113789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of this study was to investigate the effect of molds on levels of low molecular mass thiols in grasses. For this purpose, the three grass species Lolium perenne, Festulolium pabulare and Festulolium braunii were cultivated and sampled during four months, from June to September. The same species were also grown under controlled conditions. High-performance liquid chromatography with electrochemical detection was used for quantification of cysteine, reduced (GSH) and oxidized (GSSG) glutathione, and phytochelatins (PC2, PC3, PC4 and PC5). Data were statistically processed and analyzed. Thiols were present in all examined grass species. The effect of fungicide treatments applied under field conditions on the content of the evaluated thiols was shown to be insignificant. Species influenced (p < 0.05) PC3 and GSSG content. F. pabulare, an intergeneric hybrid of drought- and fungi-resistant Festuca arundinacea, was comparable in PC3 content with L. perenne and F. braunii under field conditions. Under controlled conditions, however, F. pabulare had higher (p < 0.05) PC3 content than did L. perenne and F. braunii. Under field conditions, differences between the evaluated species were recorded only in GSSG content, but only sampling in June was significant. F. pabulare had higher (p < 0.05) GSSG content in June than did L. perenne and F. braunii.
Collapse
Affiliation(s)
- Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic;
- Author to whom correspondence should be addressed; ; Tel.: +420-5-4513-3079; Fax: +420-5-4521-2044
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (V.A.); (O.Z.); (O.K.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (V.A.); (O.Z.); (O.K.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1–3, CZ-612 42 Brno, Czech Republic; (M.B.)
| | - Olga Krystofova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (V.A.); (O.Z.); (O.K.); (R.K.)
| | - Miroslava Beklova
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1–3, CZ-612 42 Brno, Czech Republic; (M.B.)
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (V.A.); (O.Z.); (O.K.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Zdenek Havlicek
- Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (Z.H.); (P.S.)
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (Z.H.); (P.S.)
| | - Adam Nawrath
- Department of Animal Nutrition and Forage Production, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic;
| |
Collapse
|
11
|
Abstract
AbstractEmissions of toxic substances such as oxides of carbon, nitrogen, sulphur, and, in addition, aromatic hydrocarbons, aldehydes and heavy metals are the most serious problem of road traffic affecting landscape. Platinum group elements (PGE), which are the main component of the catalyst, are one of the main sources of heavy metals in the environment. Here, we review the way by which emissions and forms of the emitted PGE end up in the environment especially to the soil-water-plant-animal system. The major points discussed are the following: 1) the main sources of PGE emission are automobile exhaust catalysts; 2) hospitals, where platinum is widely used to treat malignant neoplasm, and urban waste water belonging to other important sources of PGE in the environment; 3) soil is one of the most important components of the environment that may be contaminated with platinum metals; 4) phytotoxicity of PGE depends on the following conditions: the concentration of metals in the soil, time of exposure, the chemical form of metal, the chemical composition of exposed soil and plant species; 5) animals are also endangered by the increasing concentration of PGE in the environment. Moreover, we pay our attention to thiol-based mechanisms of how an organism protects itself against platinum group elements.
Collapse
|
12
|
Babula P, Masarik M, Adam V, Eckschlager T, Stiborova M, Trnkova L, Skutkova H, Provaznik I, Hubalek J, Kizek R. Mammalian metallothioneins: properties and functions. Metallomics 2012; 4:739-50. [PMID: 22791193 DOI: 10.1039/c2mt20081c] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metallothioneins (MT) are a family of ubiquitous proteins, whose role is still discussed in numerous papers, but their affinity to some metal ions is undisputable. These cysteine-rich proteins are connected with antioxidant activity and protective effects on biomolecules against free radicals, especially reactive oxygen species. In this review, the connection between zinc(II) ions, reactive oxygen species, heavy metal ions and metallothioneins is demonstrated with respect to effect of these proteins on cell proliferation and a possible negative role in resistance to heavy metal-based and non-heavy metal-based drugs.
Collapse
Affiliation(s)
- Petr Babula
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zitka O, Merlos MA, Adam V, Ferrol N, Pohanka M, Hubalek J, Zehnalek J, Trnkova L, Kizek R. Electrochemistry of copper(II) induced complexes in mycorrhizal maize plant tissues. JOURNAL OF HAZARDOUS MATERIALS 2012; 203-204:257-263. [PMID: 22209587 DOI: 10.1016/j.jhazmat.2011.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/29/2011] [Accepted: 12/05/2011] [Indexed: 05/31/2023]
Abstract
Aim of the present paper was to study the electrochemical behavior of copper(II) induced complexes in extracts obtained from mycorrhizal and non-mycorrhizal maize (Zea mays L.) plants grown at two concentrations of copper(II): physiological (31.7 ng/mL) and toxic (317 μg/mL). Protein content was determined in the plant extracts and, after dilution to proper concentration, various concentrations of copper(II) ions (0, 100, 200 and 400 μg/mL) were added and incubated for 1h at 37°C. Further, the extracts were analyzed using flow injection analysis with electrochemical detection. The hydrodynamic voltammogram (HDV), which was obtained for each sample, indicated the complex creation. Steepness of measured dependencies was as follows: control 317 μg/mL of copper<control 31.7 ng/mL of copper<mycorrhizal 31.7 ng/mL of copper<mycorrhizal 317 μg/mL of copper. Based on these results it can be concluded that mycorrhizal fungus actively blocks transport copper(II) ions to upper parts of a plant by means of adsorbing of copper(II) in roots. Rapid complex formation was determined under applied potentials 300, 500 and 600 mV during the measuring HDVs. It was also verified that mycorrhizal colonization reduced root to shoot translocation of Cu(II) ions.
Collapse
Affiliation(s)
- Ondrej Zitka
- Department of Chemistry and Biochemistry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cavanillas S, Gusmão R, Ariño C, Díaz-Cruz JM, Esteban M. Voltammetric Analysis of Phytochelatin Complexation in Ternary Metal Mixtures Supported by Multivariate Analysis and ESI-MS. ELECTROANAL 2012. [DOI: 10.1002/elan.201100578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Dago À, González-García O, Ariño C, Díaz-Cruz JM, Esteban M. Characterization of Hg(II) binding with different length phytochelatins using liquid chromatography and amperometric detection. Anal Chim Acta 2011; 695:51-7. [DOI: 10.1016/j.aca.2011.03.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/18/2011] [Accepted: 03/21/2011] [Indexed: 11/25/2022]
|
16
|
Pohanka M, Drobik O, Krenkova Z, Zdarova-Karasova J, Pikula J, Cabal J, Kuca K. Voltammetric Biosensor Based on Acetylcholinesterase and Different Immobilization Protocols: A Simple Tool for Toxic Organophosphate Assay. ANAL LETT 2011. [DOI: 10.1080/00032719.2010.511745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Huska D, Adam V, Babula P, Trnkova L, Hubalek J, Zehnalek J, Havel L, Kizek R. Microfluidic robotic device coupled with electrochemical sensor field for handling of paramagnetic micro-particles as a tool for determination of plant mRNA. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0545-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Bandouchova H, Pohanka M, Vlckova K, Damkova V, Peckova L, Sedlackova J, Treml F, Vitula F, Pikula J. Biochemical responses and oxidative stress in Francisella tularensis infection: a European brown hare model. Acta Vet Scand 2011; 53:2. [PMID: 21232117 PMCID: PMC3025891 DOI: 10.1186/1751-0147-53-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 01/13/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The aim of the present study was to investigate biochemical and oxidative stress responses to experimental F. tularensis infection in European brown hares, an important source of human tularemia infections. METHODS For these purposes we compared the development of an array of biochemical parameters measured in blood plasma using standard procedures of dry chemistry as well as electrochemical devices following a subcutaneous infection with a wild Francisella tularensis subsp. holarctica strain (a single dose of 2.6 × 10⁹ CFU pro toto). RESULTS Subcutaneous inoculation of a single dose with 2.6 × 10⁹ colony forming units of a wild F. tularensis strain pro toto resulted in the death of two out of five hares. Plasma chemistry profiles were examined on days 2 to 35 post-infection. When compared to controls, the total protein, urea, lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase were increased, while albumin, glucose and amylase were decreased. Both uric and ascorbic acids and glutathione dropped on day 2 and then increased significantly on days 6 to 12 and 6 to 14 post-inoculation, respectively. There was a two-fold increase in lipid peroxidation on days 4 to 8 post-inoculation. CONCLUSIONS Contrary to all expectations, the present study demonstrates that the European brown hare shows relatively low susceptibility to tularemia. Therefore, the circumstances of tularemia in hares under natural conditions should be further studied.
Collapse
|
19
|
Tzanavaras PD, Tsiomlektsis A, Zacharis CK. Derivatization of thiols under flow conditions using two commercially available propiolate esters. J Pharm Biomed Anal 2010; 53:790-4. [DOI: 10.1016/j.jpba.2010.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 05/29/2010] [Accepted: 06/01/2010] [Indexed: 11/25/2022]
|
20
|
Gusmão R, Cavanillas S, Ariño C, Díaz-Cruz JM, Esteban M. Circular Dichroism and Voltammetry, Assisted by Multivariate Curve Resolution, and Mass Spectrometry of the Competitive Metal Binding by Phytochelatin PC5. Anal Chem 2010; 82:9006-13. [PMID: 20931969 DOI: 10.1021/ac1019733] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rui Gusmão
- Departament de Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Santiago Cavanillas
- Departament de Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Cristina Ariño
- Departament de Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - José Manuel Díaz-Cruz
- Departament de Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Miquel Esteban
- Departament de Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| |
Collapse
|
21
|
Krystofova O, Adam V, Babula P, Zehnalek J, Beklova M, Havel L, Kizek R. Effects of various doses of selenite on stinging nettle (Urtica dioica L.). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:3804-15. [PMID: 21139861 PMCID: PMC2996193 DOI: 10.3390/ijerph7103804] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/14/2010] [Accepted: 10/02/2010] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate the effects of selenium (Se) on the growth, accumulation and possible mechanisms of Se transport in certain parts (roots, leaves, stamp and apex) of nettle (Urtica dioica L.) plants. Se was supplemented by one-shot and two repeated doses to the soil (2.0 and 4.0 mg Se per kg of substrate). Selenium content in roots increased linearly with dose and was significantly higher compared to other plant parts of interest. However, growth of the above-ground parts of plant as well as roots was slightly inhibited with increasing selenium concentration in comparison to the untreated plants. The content of phytochelatin2, a low molecular mass peptide containing a sulfhydryl group, correlated well with the Se content. This suggests a possible stimulation of synthesis of this plant peptide by Se.
Collapse
Affiliation(s)
- Olga Krystofova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (O.K.); (V.A.); (J.Z.)
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (O.K.); (V.A.); (J.Z.)
| | - Petr Babula
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, CZ-612 42 Brno, Czech Republic; E-Mail: (P.B.)
| | - Josef Zehnalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (O.K.); (V.A.); (J.Z.)
| | - Miroslava Beklova
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, CZ-612 42 Brno, Czech Republic; E-Mail: (M.B.)
| | - Ladislav Havel
- Department of Plant Biology, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mail: (L.H.)
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (O.K.); (V.A.); (J.Z.)
| |
Collapse
|
22
|
Gusmão R, Ariño C, Díaz-Cruz JM, Esteban M. Electrochemical survey of the chain length influence in phytochelatins competitive binding by cadmium. Anal Biochem 2010; 406:61-9. [PMID: 20599645 DOI: 10.1016/j.ab.2010.06.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/18/2010] [Accepted: 06/22/2010] [Indexed: 11/29/2022]
Abstract
Multivariate curve resolution with alternating least squares (MCR-ALS) was applied to voltammetric data obtained in the analysis of the competitive binding of glutathione (GSH) and phytochelatins [(gammaGlu-Cys)(n)-Gly, PC(n), n=2-5] by Cd(2+). The displacements between ligands and chain length influence on the competitive binding of PC(n) toward Cd(2+) were investigated. The analysis of the resulting pure voltammograms and concentration profiles of the resolved components suggests that ligands containing more thiol groups are able to displace the shortest chain ligands from their metal complexes, whereas the opposite does not happen. However, when the length of the chain surpasses that of PC(3), the binding capacity of the molecule still increases (i.e., it can bind more metal ions), but the position and shape of the voltammetric signals practically rest unchanged. This suggests that at this level, the stability of metal binding could depend more on the nature of the binding sites separately than on the quantity of the sites (i.e., the chain length).
Collapse
Affiliation(s)
- Rui Gusmão
- Departament de Química Analítica, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
23
|
Pohanka M, Karasova JZ, Musilek K, Kuca K, Jung YS, Kassa J. Changes of rat plasma total low molecular weight antioxidant level after tabun exposure and consequent treatment by acetylcholinesterase reactivators. J Enzyme Inhib Med Chem 2010; 26:93-7. [DOI: 10.3109/14756361003733613] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Miroslav Pohanka
- Centre of Advanced Studies, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
- Department of Toxicology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Jana Zdarova Karasova
- Department of Toxicology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Toxicology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Centre of Advanced Studies, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
- Department of Toxicology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Young-Sik Jung
- Medicinal Science Division, Korea Research Institute of Chemical Technology, Yusong, Taejon, Korea
| | - Jiri Kassa
- Department of Toxicology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| |
Collapse
|
24
|
Krystofova O, Trnkova L, Adam V, Zehnalek J, Hubalek J, Babula P, Kizek R. Electrochemical microsensors for the detection of cadmium(II) and lead(II) ions in plants. SENSORS 2010; 10:5308-28. [PMID: 22219663 PMCID: PMC3247708 DOI: 10.3390/s100605308] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 04/04/2010] [Accepted: 04/19/2010] [Indexed: 12/04/2022]
Abstract
Routine determination of trace metals in complex media is still a difficult task for many analytical instruments. The aim of this work was to compare three electro-chemical instruments [a standard potentiostat (Autolab), a commercially available miniaturized potentiostat (PalmSens) and a homemade micropotentiostat] for easy-to-use and sensitive determination of cadmium(II) and lead(II) ions. The lowest detection limits (hundreds of pM) for both metals was achieved by using of the standard potentiostat, followed by the miniaturized potentiostat (tens of nM) and the homemade instrument (hundreds of nM). Nevertheless, all potentiostats were sensitive enough to evaluate contamination of the environment, because the environmental limits for both metals are higher than detection limits of the instruments. Further, we tested all used potentiostats and working electrodes on analysis of environmental samples (rainwater, flour and plant extract) with artificially added cadmium(II) and lead(II). Based on the similar results obtained for all potentiostats we choose a homemade instrument with a carbon tip working electrode for our subsequent environmental experiments, in which we analyzed maize and sunflower seedlings and rainwater obtained from various sites in the Czech Republic.
Collapse
Affiliation(s)
- Olga Krystofova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (O.K.); (V.A.); (J.Z.)
| | - Libuse Trnkova
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czech Republic; E-Mail: (L.T.)
- Research Centre for Environmental Chemistry and Ecotoxicology, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (O.K.); (V.A.); (J.Z.)
| | - Josef Zehnalek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (O.K.); (V.A.); (J.Z.)
| | - Jaromir Hubalek
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Udolni 53, CZ-602 00 Brno, Czech Republic; E-Mail: (J.H.)
| | - Petr Babula
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1-3, CZ-612 42 Brno, Czech Republic; E-Mail: (P.B.)
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (O.K.); (V.A.); (J.Z.)
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|
25
|
Diopan V, Shestivska V, Zitka O, Galiova M, Adam V, Kaiser J, Horna A, Novotny K, Liska M, Havel L, Zehnalek J, Kizek R. Determination of Plant Thiols by Liquid Chromatography Coupled with Coulometric and Amperometric Detection in Lettuce Treated by Lead(II) Ions. ELECTROANAL 2010. [DOI: 10.1002/elan.200900374] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Gusmão R, Ariño C, Díaz-Cruz JM, Esteban M. Cadmium binding in mixtures of phytochelatins and their fragments: A voltammetric study assisted by multivariate curve resolution and mass spectrometry. Analyst 2010; 135:86-95. [DOI: 10.1039/b918293d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Pohanka M, Karasova JZ, Musilek K, Kuca K, Kassa J. Effect of five acetylcholinesterase reactivators on tabun-intoxicated rats: induction of oxidative stress versus reactivation efficacy. J Appl Toxicol 2009; 29:483-8. [PMID: 19338015 DOI: 10.1002/jat.1432] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Oxime reactivators HI-6, obidoxime, trimedoxime, K347 and K628 were investigated as drugs designed for treatment of tabun intoxication. The experiments were performed on rats in order to simulate real conditions. Rats were intoxicated with one LD(50 )of tabun and treated with atropine and mentioned reactivators. Activities of erythrocyte acetylcholinesterase (AChE), plasma butyrylcholinesterase (BChE) and brain AChE were measured as markers of reactivation efficacy. An estimation of low molecular weight antioxidant levels using cyclic voltammetry was the second examination parameter. The evaluation of cholinesterases activity showed good reactivation potency of blood AChE and plasma BChE by commercially available obidoxime and newly synthesized K347. The potency of oximes to reactivate brain AChE was lower due to the poor blood-brain barrier penetration of used compounds. Commercially available reactivator HI-6 and newly synthesized K628 caused oxidative stress measured by cyclic voltammetry as antioxidant level. The oxidative stress provoked by HI-6 and K628 was found to be significant on probability level P = 0.05. The others reactivators did not affect antioxidant levels.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Centre of Advanced Studies, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic.
| | | | | | | | | |
Collapse
|
28
|
Pohanka M, Bandouchova H, Sobotka J, Sedlackova J, Soukupova I, Pikula J. Ferric reducing antioxidant power and square wave voltammetry for assay of low molecular weight antioxidants in blood plasma: performance and comparison of methods. SENSORS 2009; 9:9094-103. [PMID: 22291555 PMCID: PMC3260632 DOI: 10.3390/s91109094] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/07/2009] [Accepted: 10/22/2009] [Indexed: 12/02/2022]
Abstract
The purpose of the present study was to employ two methods—square wave voltammetry (SWV) performed on screen printed sensors and ferric reducing antioxidant power (FRAP)—as suitable tools for the assay of low-molecular-weight antioxidants (LMWAs). LMWAs were assayed by both methods and the resulting data were statistically compared. Plasma samples from five Cinereous vultures accidentally intoxicated with lead were used to represent real biological matrices with different levels of LMWAs. Blood was collected from the birds prior to and one month after treatment with Ca-EDTA. SWV resulted in two peaks. The first peak, with the potential value of 466 ± 15 mV, was recognized as ascorbic and uric acids, while the second one (743 ± 30 mV) represented glutathione, tocopherol, ascorbic acid and in a minor effect by uric acid, too. Contribution of individual antioxidants was recognized by separate assays of LMWA standards. Correlation between peaks 1 and 2 as well as the sum of the two peaks and FRAP was analysed. While peak 1 and the sum of peaks were in close correlation to FRAP results (correlation coefficient of 0.97), the relation between peak 2 and FRAP may be expressed using a correlation coefficient of 0.64. The determination of thiols by the Ellman assay confirmed the accuracy of SWV. Levels of glutathione and other similar structures were stable in the chosen model and it may be concluded that SWV is appropriate for assay of LMWAs in plasma samples. The methods employed in the study were advantageous in minimal sample volume consumption and fast acquisition of results.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Centre of Advanced Studies and Department of Toxicology, Faculty of Military Health Sciences, University of Defence / Trebesska 1575, 50001 Hradec Kralove, Czech Republic
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +420-973-251-519; Fax: +420-495-518-094
| | - Hana Bandouchova
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic; E-Mails: (H.B.); (J.S.); (I.S.); (J.P.)
| | - Jakub Sobotka
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10 Pardubice, Czech Republic; E-Mail: (J.S.)
| | - Jana Sedlackova
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic; E-Mails: (H.B.); (J.S.); (I.S.); (J.P.)
| | - Ivana Soukupova
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic; E-Mails: (H.B.); (J.S.); (I.S.); (J.P.)
| | - Jiri Pikula
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic; E-Mails: (H.B.); (J.S.); (I.S.); (J.P.)
| |
Collapse
|
29
|
Pohanka M, Stetina R. Shift of oxidants and antioxidants levels in rats as a reaction to exposure to sulfur mustard. J Appl Toxicol 2009; 29:643-7. [DOI: 10.1002/jat.1451] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Pohanka M, Koch M. Variation of cholinesterase-based biosensor sensitivity to inhibition by organophosphate due to ionizing radiation. SENSORS (BASEL, SWITZERLAND) 2009; 9:5580-9. [PMID: 22346715 PMCID: PMC3274157 DOI: 10.3390/s90705580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 06/27/2009] [Accepted: 07/01/2009] [Indexed: 11/25/2022]
Abstract
A cholinesterase based biosensor was constructed in order to assess the effects of ionizing radiation on exposed AChE. Although the primary objective of the experiment was to investigate the effect of ionizing radiation on the activity of the biosensor, no changes in cholinesterase activity were observed. Current provided by oxidation of thiocholine previously created from acetylthiocholine by enzyme catalyzed reaction was in a range 395-455 nA. No significant influence of radiation on AChE activity was found, despite the current variation. However, a surprising phenomenon was observed when a model organophosphate paraoxon was assayed. Irradiated biosensors seem to be more susceptible to the inhibitory effects of paraoxon. Control biosensors provided a 94 ± 5 nA current after exposure to 1 ppm paraoxon. The biosensors irradiated by a 5 kGy radiation dose and exposed to paraoxon provided a current of 49 ± 6 nA. Irradiation by doses ranging from 5 mGy to 100 kGy were investigated and the mentioned effect was confirmed at doses above 50 Gy. After the first promising experiments, biosensors irradiated by 5 kGy were used for calibration on paraoxon and compared with the control biosensors. Limits of detection 2.5 and 3.8 ppb were achieved for irradiated and non-irradiated biosensors respectively. The overall impact of this effect is discussed.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Centre for Advanced Studies and Department of Toxicology, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 50002 Hradec Kralove, Czech Republic
| | - Miroslav Koch
- VF Company, Namesti Miru 50, 679 21 Cerna Hora, Czech Republic; E-Mail:
| |
Collapse
|
31
|
Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions. SENSORS 2009; 9:5040-58. [PMID: 22346686 PMCID: PMC3274165 DOI: 10.3390/s90705040] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 06/22/2009] [Accepted: 06/24/2009] [Indexed: 11/17/2022]
Abstract
In this study, the influence of lead (II) ions on sunflower growth and biochemistry was investigated from various points of view. Sunflower plants were treated with 0, 10, 50, 100 and/or 500 μM Pb-EDTA for eight days. We observed alterations in growth in all experimental groups compared with non-treated control plants. Further we determined total content of proteins by a Bradford protein assay. By the eighth day of the experiment, total protein contents in all treated plants were much lower compared to control. Particularly noticeable was the loss of approx. 8 μg/mL or 15 μg/mL in shoots or roots of plants treated with 100 mM Pb-EDTA. We also focused our attention on the activity of alanine transaminase (ALT), aspartate transaminase (AST) and urease. Activity of the enzymes increased with increasing length of the treatment and applied concentration of lead (II) ions. This increase corresponds well with a higher metabolic activity of treated plants. Contents of cysteine, reduced glutathione (GSH), oxidized glutathione (GSSG) and phytochelatin 2 (PC2) were determined by high performance liquid chromatography with electrochemical detection. Cysteine content declined in roots of plants with the increasing time of treatment of plants with Pb-EDTA and the concentration of toxic substance. Moreover, we observed ten times higher content of cysteine in roots in comparison with shoots. The observed reduction of cysteine content probably relates with its utilization for biosynthesis of GSH and phytochelatins, because the content of GSH and PC2 was similar in roots and shoots and increased with increased treatment time and concentration of Pb-EDTA. Moreover, we observed oxidative stress caused by Pb-EDTA in roots where the GSSG/GSH ratio was about 0.66. In shoots, the oxidative stress was less distinctive, with a GSSG/GSH ratio 0.14. We also estimated the rate of phytochelatin biosynthesis from the slope of linear equations plotted with data measured in the particular experimental group. The highest rate was detected in roots treated with 100 μM of Pb-EDTA. To determine heavy metal ions many analytical instruments can be used, however, most of them are only able to quantify total content of the metals. This problem can be overcome using laser induced breakdown spectroscopy, because it is able to provide a high spatial-distribution of metal ions in different types of materials, including plant tissues. Data obtained were used to assemble 3D maps of Pb and Mg distribution. Distribution of these elements is concentrated around main vascular bundle of leaf, which means around midrib.
Collapse
|
32
|
Pohanka M, Novotný L, Misík J, Kuca K, Zdarova-Karasova J, Hrabinova M. Evaluation of cholinesterase activities during in vivo intoxication using an electrochemical sensor strip - correlation with intoxication symptoms. SENSORS (BASEL, SWITZERLAND) 2009; 9:3627-34. [PMID: 22412329 PMCID: PMC3297120 DOI: 10.3390/s90503627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/10/2009] [Accepted: 05/13/2009] [Indexed: 11/16/2022]
Abstract
Cholinesterase activity in blood of laboratory rats was monitored. Rats were intoxicated with paraoxon at dosis of 0 - 65 - 125 - 170 - 250 - 500 nmol. The 250 nmol dose was found to be the LD(50). An electrochemical sensor was found useful to provide information about cholinesterase activity. The decrease of cholinesterase activity was correlated to intoxication symptoms and mortality level. It was found that the symptoms of intoxication are not observed while at least 50% of cholinesterase activity in blood remains. The minimal cholinesterase activity essential to survival is around 10%, when compared with the initial state. No changes in levels of low moleculary weight antioxidants were observed.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Centre of Advanced Studies, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; E-Mail: (L.N.)
- Department of Toxicology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; E-Mail: (J.M.); (K.K.)
| | - Ladislav Novotný
- Centre of Advanced Studies, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; E-Mail: (L.N.)
| | - Jan Misík
- Department of Toxicology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; E-Mail: (J.M.); (K.K.)
| | - Kamil Kuca
- Centre of Advanced Studies, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; E-Mail: (L.N.)
- Department of Toxicology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; E-Mail: (J.M.); (K.K.)
| | - Jana Zdarova-Karasova
- Department of Toxicology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; E-Mail: (J.M.); (K.K.)
| | - Martina Hrabinova
- Centre of Advanced Studies, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; E-Mail: (L.N.)
| |
Collapse
|
33
|
Competitive binding of cadmium by plant thiols: an electrochemical study assisted by multivariate curve resolution. Anal Bioanal Chem 2009; 394:1137-45. [DOI: 10.1007/s00216-009-2791-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/01/2009] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
|
34
|
Uncommon Heavy Metals, Metalloids and Their Plant Toxicity: A Review. SUSTAINABLE AGRICULTURE REVIEWS 2009. [DOI: 10.1007/978-1-4020-9654-9_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
35
|
Determination of Vitamin C (Ascorbic Acid) Using High Performance Liquid Chromatography Coupled with Electrochemical Detection. SENSORS 2008; 8:7097-7112. [PMID: 27873917 PMCID: PMC3787433 DOI: 10.3390/s8117097] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 11/04/2008] [Accepted: 11/06/2008] [Indexed: 11/16/2022]
Abstract
Vitamin C (ascorbic acid, ascorbate, AA) is a water soluble organic compound that participates in many biological processes. The main aim of this paper was to utilize two electrochemical detectors (amperometric - Coulouchem III and coulometric - CoulArray) coupled with flow injection analysis for the detection of ascorbic acid. Primarily, we optimized the experimental conditions. The optimized conditions were as follows: detector potential 100 mV, temperature 25 °C, mobile phase 0.09% TFA:ACN, 3:97 (v/v) and flow rate 0.13 mL·min-1. The tangents of the calibration curves were 0.3788 for the coulometric method and 0.0136 for the amperometric one. The tangent of the calibration curve measured by the coulometric detector was almost 30 times higher than the tangent measured by the amperometric detector. Consequently, we coupled a CoulArray electrochemical detector with high performance liquid chromatography and estimated the detection limit for AA as 90 nM (450 fmol per 5 μL injection). The method was used for the determination of vitamin C in a pharmaceutical preparations (98 ± 2 mg per tablet), in oranges (Citrus aurantium) (varied from 30 to 56 mg/100 g fresh weight), in apples (Malus sp.) (varied from 11 to 19 mg/100 g fresh weight), and in human blood serum (varied from 38 to 78 μM). The recoveries were also determined.
Collapse
|
36
|
Adam V, Kizek R. Utilization of Electrochemical Sensors and Biosensors in Biochemistry and Molecular Biology. SENSORS 2008; 8:6125-6131. [PMID: 27873861 PMCID: PMC3707441 DOI: 10.3390/s8106125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 09/26/2008] [Indexed: 11/16/2022]
Abstract
A special issue of Sensors entitled “Utilization of Electrochemical Sensors and Biosensors in Biochemistry and Molecular Biology” has been prepared over a period of three years. In this Editorial Note we would like to highlight one of the possible directions for electrochemical sensor and biosensor research resulting from the ideas of Czechoslovakian Nobel Prize winner Jaroslav Heyrovsky and his colleague Rudolf Brdicka.
Collapse
Affiliation(s)
- Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Department of Animal Nutrition and Forage Production, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
37
|
Diagnosis of Intoxication by the Organophosphate VX: Comparison Between an Electrochemical Sensor and Ellman´s Photometric Method. SENSORS 2008; 8:5229-5237. [PMID: 27873811 PMCID: PMC3705501 DOI: 10.3390/s8095229] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 08/27/2008] [Accepted: 08/28/2008] [Indexed: 11/17/2022]
Abstract
An electrochemical sensor is introduced as a tool applicable for diagnosis of intoxication by cholinesterase inhibitors caused by the well-known nerve agent VX. The traditional Ellman method was chosen for comparison with the sensor's analytical parameters. Both methods are based on estimation of blood cholinesterase inhibition as a marker of intoxication. While Ellman´s method provided a limit of detection of 5.2´10-7 M for blood containing VX, the electrochemical sensor was able to detect 4.0´10-7 M. Good correlation between both methods was observed (R = 0.92). The electrochemical sensor could be considered a convenient tool for a fast yet accurate method, easily available for field as well as laboratory use. Time and cost savings are key features of the sensor-based assay.
Collapse
|
38
|
Garrigosa AM, Ariño C, Díaz-Cruz JM, Esteban M. Comparison of differential pulse and alternating current polarography in the soft-modelling study of the complexation of Cd(II) by the fragment Cys-Gly and by the phytochelatin (γ-Glu-Cys)2Gly. Anal Bioanal Chem 2008; 391:2209-18. [DOI: 10.1007/s00216-008-2151-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 04/17/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
|
39
|
Ryant P, Dolezelova E, Fabrik I, Baloun J, Adam V, Babula P, Kizek R. Electrochemical Determination of Low Molecular Mass Thiols Content in Potatoes (Solanum tuberosum) Cultivated in the Presence of Various Sulphur Forms and Infected by Late Blight (Phytophora infestans). SENSORS 2008; 8:3165-3182. [PMID: 27879872 PMCID: PMC3675538 DOI: 10.3390/s8053165] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 05/14/2008] [Indexed: 12/03/2022]
Abstract
In the present paper potato plants were cultivated in the presence of ammonium sulphate or elemental sulphur supplementation into the soil to reveal the effects of different sulphur forms on content of nitrogen, phosphorus, potassium, calcium, magnesium and sulphur, and yield of tubers. During the investigation of the influence of different sulphur forms on yield of potato tubers we did not observe significant changes. Average weight of tubers of control plants per one experimental pot was 355 g. Application of sulphur in both forms resulted in moderate potato tubers weight reduction per one experimental pot compared to control group; average value ranged from 320 to 350 g per one experimental pot. Further we treated the plants with two different supplementation of sulphur with cadmium(II) ions (4 mg of cadmium(II) acetate per kilogram of the soil). The significantly lowest cadmium content (p < 0.05) was determined in tissues of plants treated with the highest dosage of elemental sulphur (0.64 mg Cd/kg) compared to control plants (0.82 mg Cd/kg). We also aimed our attention on the cadmium content in proteins, lipids or soluble carbohydrates and ash. Application of sulphate as well as elemental sulphur resulted in significant cadmium content reduction in lipid fraction compared to control plants. In addition to this we quantified content of low molecular mass thiols in potatoes tissues. To determine the thiols content we employed differential pulse voltammetry Brdicka reaction. After twelve days of the treatment enhancing of thiols level was observed in all experimental groups regardless to applied sulphur form and its concentration. Finally we evaluated the effect of sulphur supplementation on Phytophora infestans infection of potato plants.
Collapse
Affiliation(s)
- Pavel Ryant
- Depatment of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Eva Dolezelova
- Depatment of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Ivo Fabrik
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Jiri Baloun
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Department of Animal Nutrition and Forage Production, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Petr Babula
- Deparment of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, CZ-612 42 Brno, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
40
|
Krizkova S, Ryant P, Krystofova O, Adam V, Galiova M, Beklova M, Babula P, Kaiser J, Novotny K, Novotny J, Liska M, Malina R, Zehnalek J, Hubalek J, Havel L, Kizek R. Multi-instrumental Analysis of Tissues of Sunflower Plants Treated with Silver(I) Ions - Plants as Bioindicators of Environmental Pollution. SENSORS 2008; 8:445-463. [PMID: 27879716 PMCID: PMC3681137 DOI: 10.3390/s8010445] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 01/15/2008] [Indexed: 11/17/2022]
Abstract
The aim of this work is to investigate sunflower plants response on stress induced by silver(I) ions. The sunflower plants were exposed to silver(I) ions (0, 0.1, 0.5, and 1 mM) for 96 h. Primarily we aimed our attention to observation of basic physiological parameters. We found that the treated plants embodied growth depression, coloured changes and lack root hairs. Using of autofluorescence of anatomical structures, such as lignified cell walls, it was possible to determine the changes of important shoot and root structures, mainly vascular bungles and development of secondary thickening. The differences in vascular bundles organisation, parenchymatic pith development in the root centre and the reduction of phloem part of vascular bundles were well observable. Moreover with increasing silver(I) ions concentration the vitality of rhizodermal cells declined; rhizodermal cells early necrosed and were replaced by the cells of exodermis. Further we employed laser induced breakdown spectroscopy for determination of spatial distribution of silver(I) ions in tissues of the treated plants. The Ag is accumulated mainly in near-root part of the sample. Moreover basic biochemical indicators of environmental stress were investigated. The total content of proteins expressively decreased with increasing silver(I) ions dose and the time of the treatment. As we compare the results obtained by protein analysis – the total protein contents in shoot as well as root parts – we can assume on the transport of the proteins from the roots to shoots. This phenomenon can be related with the cascade of processes connecting with photosynthesis. The second biochemical parameter, which we investigated, was urease activity. If we compared the activity in treated plants with control, we found out that presence of silver(I) ions markedly enhanced the activity of urease at all applied doses of this toxic metal. Finally we studied the effect of silver(I) ions on activity of urease in in vitro conditions.
Collapse
Affiliation(s)
- Sona Krizkova
- Department of Chemistry and Biochemistry, 2 Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, CZ-613 00 Brno, Czech Republic
| | - Pavel Ryant
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, CZ-613 00 Brno, Czech Republic
| | - Olga Krystofova
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice CZ-625 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, 2 Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, CZ-613 00 Brno, Czech Republic
| | - Michaela Galiova
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice CZ-625 00 Brno, Czech Republic
| | - Miroslava Beklova
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice CZ-625 00 Brno, Czech Republic
| | - Petr Babula
- Department of Natural Drugs, Faculty of Pharmacy and University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, CZ-612 42 Brno, Czech Republic
| | - Jozef Kaiser
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, CZ-616 69 Brno, Czech Republic
| | - Karel Novotny
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice CZ-625 00 Brno, Czech Republic
| | - Jan Novotny
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, CZ-616 69 Brno, Czech Republic
| | - Miroslav Liska
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, CZ-616 69 Brno, Czech Republic
| | - Radomir Malina
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, CZ-616 69 Brno, Czech Republic
| | - Josef Zehnalek
- Department of Chemistry and Biochemistry, 2 Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, CZ-613 00 Brno, Czech Republic
| | - Jaromir Hubalek
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Udolni 53, CZ-602 00 Brno, Czech Republic
| | - Ladislav Havel
- Department of Plant Biology, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, 2 Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
41
|
Adam V, Zitka O, Dolezal P, Zeman L, Horna A, Hubalek J, Sileny J, Krizkova S, Trnkova L, Kizek R. Lactoferrin Isolation Using Monolithic Column Coupled with Spectrometric or Micro-Amperometric Detector. SENSORS 2008; 8:464-487. [PMID: 27879717 PMCID: PMC3681142 DOI: 10.3390/s8010464] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 01/15/2008] [Indexed: 01/14/2023]
Abstract
Lactoferrin is a multifunctional protein with antimicrobial activity and others tohealth beneficial properties. The main aim of this work was to propose easy to usetechnique for lactoferrin isolation from cow colostrum samples. Primarily we utilizedsodium dodecyl sulphate - polyacrylamide gel electrophoresis for isolation of lactoferrinfrom the real samples. Moreover we tested automated microfluidic Experionelectrophoresis system to isolate lactoferrin from the collostrum sample. The welldeveloped signal of lactoferrin was determined with detection limit (3 S/N) of 20 ng/ml. Inspite of the fact that Experion is faster than SDS-PAGE both separation techniques cannotbe used in routine analysis. Therefore we have tested third separation technique, ionexchange chromatography, using monolithic column coupled with UV-VIS detector (LCUV-VIS). We optimized wave length (280 nm), ionic strength of the elution solution (1.5M NaCl) and flow rate of the retention and elution solutions (0.25 ml/min and 0.75 ml/min.respectively). Under the optimal conditions the detection limit was estimated as 0.1 μg/mlof lactoferrin measured. Using LC-UV-VIS we determined that lactoferrin concentrationvaried from 0.5 g/l to 1.1 g/l in cow colostrums collected in the certain time interval up to 72 hours after birth. Further we focused on miniaturization of detection device. We testedamperometric detection at carbon electrode. The results encouraged us to attempt tominiaturise whole detection system and to test it on analysis of real samples of humanfaeces, because lactoferrin level in faeces is closely associated with the inflammations ofintestine mucous membrane. For the purpose of miniaturization we employed thetechnology of printed electrodes. The detection limit of lactoferrin was estimated as 10μg/ml measured by the screen-printed electrodes fabricated by us. The fabricatedelectrodes were compared with commercially available ones. It follows from the obtainedresults that the responses measured by commercial electrodes are app. ten times highercompared with those measured by the electrodes fabricated by us. This phenomenonrelates with smaller working electrode surface area of the electrodes fabricated by us(about 50 %) compared to the commercial ones. The screen-printed electrodes fabricatedby us were utilized for determination of lactoferrin faeces. Regarding to fact that sample offaeces was obtained from young and healthy man the amount of lactoferrin in sample wasunder the limit of detection of this method.
Collapse
Affiliation(s)
- Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Petr Dolezal
- Department of Animal Nutrition and Forage Production Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Ladislav Zeman
- Department of Animal Nutrition and Forage Production Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Ales Horna
- Department of Food Engineering, Faculty of Technology, Tomas Bata University, T.G. Masaryka 275, CZ-762 72 Zlin, Czech Republic
| | - Jaromir Hubalek
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Udolni 53, CZ-602 00 Brno, Czech Republic
| | - Jan Sileny
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Udolni 53, CZ-602 00 Brno, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Libuse Trnkova
- Department Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
42
|
Utilizing of Square Wave Voltammetry to Detect Flavonoids in the Presence of Human Urine. SENSORS 2007; 7:2402-2418. [PMID: 28903234 PMCID: PMC3864529 DOI: 10.3390/s7102402] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 10/17/2007] [Indexed: 11/17/2022]
Abstract
About biological affecting of flavonoids on animal organisms is known less, thus we selected flavonoids, flavanones and flavones, and their glycosides, which were examined as potential inducers of cytochrome(s) P450 when administrated by gavages into experimental male rats. The study was focused on induction of CYP1A1, the major cytochrome P450 involved in carcinogen activation. The data obtained demonstrate the necessity of taking into account not only ability of flavonoids to bind to Ah receptor (induction factor) but also to concentrate on their distribution and metabolism (including colon microflora) in the body. After that we examined certain flavonoids as potential inducers of cytochrome P450, we wanted to suggest and optimize suitable electrochemical technique for determination of selected flavonoids (quercetin, quercitrin, rutin, chrysin and diosmin) in body liquids. For these purposes, we selected square wave voltannetry using carbon paste electrode. Primarily we aimed on investigation of their basic electrochemical behaviour. After that we have optimized frequency, step potential and supporting electrolyte. Based on the results obtained, we selected the most suitable conditions for determination of the flavonoids as follows: frequency 180 Hz, step potential 1.95 mV/s and phosphate buffer of pH 7 as supporting electrolyte. Detection limits (3 S/N) of the flavonoids were from units to tens of nM except diosmin, where the limit were higher than μM. In addition, we attempted to suggest a sensor for analysis of flavonoids in urine. It clearly follows from the results obtained that flavonoids can be analysed in the presence of animal urine, because urine did not influence much the signals of flavonoids (recoveries of the signals were about 90 %).
Collapse
|
43
|
Adam V, Beklova M, Pikula J, Hubalek J, Trnkova L, Kizek R. Shapes of Differential Pulse Voltammograms and Level of Metallothionein at Different Animal Species. SENSORS 2007; 7:2419-2429. [PMID: 28903235 PMCID: PMC3864530 DOI: 10.3390/s7102419] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 10/17/2007] [Indexed: 11/16/2022]
Abstract
Metallothioneins play a key role in maintaining homeostasis of essential metals and in protecting of cells against metal toxicity as well as oxidative damaging. Excepting humans, blood levels of metallothionein have not yet been reported from any animal species. Blood plasma samples of 9 animal species were analysed by the adsorptive transfer stripping technique to obtain species specific voltammograms. Quite distinct records were obtained from the Takin (Budorcas taxicolor), while other interesting records were observed in samples from the European Bison (Bison bonasus bonasus) and the Red-eared Slider (Trachemys scripta elegans). To quantify metallothionein the catalytic peak Cat2 was used, well developed in the Domestic Fowl (Gallus gallus f. domestica) and showing a very low signal in the Red Deer (Cervus elaphus). The highest levels of metallothionein reaching over 20 µM were found in the Domestic Fowl. High levels of MT were also found in the Bearded Dragon (Pogona vitticeps) and the Grey Wolf (Canis lupus lupus). The lowest values of about 1-3 µM were determined in the Red-eared Slider, Takin and Red Deer. Employing a simple electrochemical detection it was possible to examine variation in blood metallothionein in different species of vertebrates.
Collapse
Affiliation(s)
- Vojtech Adam
- Department of Chemistry and BiochemistryMendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Miroslava Beklova
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, CZ-612 42 Brno, Czech Republic
| | - Jiri Pikula
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, CZ-612 42 Brno, Czech Republic
| | - Jaromir Hubalek
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Udolni 53, CZ-602 00 Brno, Czech Republic
| | - Libuse Trnkova
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Udolni 53, CZ-602 00 Brno, Czech Republic
| | - Rene Kizek
- Department of Chemistry and BiochemistryMendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
44
|
An Investigation of Glutathione-Platinum(II) Interactions by Means of the Flow Injection Analysis Using Glassy Carbon Electrode. SENSORS 2007. [DOI: 10.3390/s7071256] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Hazards of Secondary Bromadiolone Intoxications Evaluated using High-performance Liquid Chromatography with Electrochemical Detection. SENSORS 2007. [DOI: 10.3390/s7071271] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Multi-instrumental Investigation of Affecting of Early Somatic Embryos of Spruce by Cadmium(II) and Lead(II) Ions. SENSORS 2007. [DOI: 10.3390/s7050743] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|